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Abstract

Precision and clarity are essential qualities of
written texts; however, Persian script, rooted
in Arabic script, presents unique challenges
that can compromise readability and correct-
ness. In particular, the use of space and half-
space—specifically the Zero Width Non-Joiner
(ZWNJ)—is essential for proper character sep-
aration in Persian typography. This research
introduces four models for correcting spac-
ing and ZWNIJ errors at the character level,
thereby improving both readability and textual
accuracy. By fine-tuning BERT-based trans-
former models on Bijankhan and Peykare cor-
pora—comprising over 12.7 million prepro-
cessed and annotated words—and formulating
the task as sequence labeling, the best model
achieves a macro-average F1-score of 97.26%.
An interactive corrector that incorporates user
input further improves performance to a macro-
average Fl-score of 98.38%. These results
demonstrate the effectiveness of advanced lan-
guage models in enhancing Persian text quality
and highlight their applicability to real-world
natural language processing tasks.

1 Introduction

Clear and accurate typography is essential for ef-
fective communication in digital text. However, the
intricate calligraphic styles of specific languages
can introduce errors that affect reading speed and
comprehension. Spoken by more than 100 mil-
lion people around the world (Bada, 2018), the
Persian language is a cornerstone of Persian cul-
ture and communication, characterized by a rich
history and a complex writing system. Persian
calligraphy is renowned for its graceful, flowing
lines, and curved forms. Letters are frequently in-
terconnected, producing a continuous undulating
pattern that is visually pleasing. Persian script is
exclusively written in cursive, meaning the letters
within words are connected. This unique feature
creates a sophisticated, often artistic presentation

in which individual letters blend seamlessly. In
Persian, some letters undergo form changes when
joined to their neighboring letters, adding to the
complexity and artistry of the script. These visual
characteristics make the simplest Persian scripts
visually striking and distinctive (Profarsi, 2024).
However, despite this rich heritage, Persian script
has encountered challenges in adapting to modern
Latin-based typography and typesetting systems.

To preserve the aesthetics of traditional Per-
sian calligraphy, modern Persian typography uses
spaces to separate words and ZWNIJs to prevent
unwanted letter connections within words. For ex-
ample, for the present tense, the prefix < .« >,
commonly used in daily Persian, must be separated
from the verb with a ZWNJ to ensure the correct
typography. This rule applies to frequently used
verbs such as < ai sie>and < aiy«>, which mean
“I can” and “I see”, respectively. By maintaining
these conventions, Persian digital text preserves the
visual harmony of the handwritten script.

Correct spacing and ZWNJ placement are essen-
tial for ensuring Persian texts remain clear, read-
able, and semantically precise. Spacing defines
word boundaries, clarifies punctuation, and en-
hances textual coherence by signaling the start of
independent semantic units. The ZWNJ, a non-
printing character, preserves the morphological in-
tegrity of Persian words by preventing unintended
letter merging at morpheme boundaries. While its
correct usage is crucial in formal writing, maintain-
ing consistency in informal contexts remains chal-
lenging, often leading to orthographic errors and
ambiguities. Despite space characters and ZWNlJs
comprising over 20% of our corpora and being
prominently featured on keyboards, their impor-
tance is often overlooked, resulting in a lack of
research on these fundamental aspects of written
Persian.

Several factors contribute to the frequent errors
in spacing and ZWNJ usage in Persian text. First,
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typos are a common issue, as they are with most
characters. Since spaces and ZWNIJs are invisible,
they are particularly prone to typographical errors,
as their absence or misplacement is not immedi-
ately noticeable. Second, typing can be cumber-
some when committing to strict rules about spac-
ing and ZWNJ placement. As a result, users may
intentionally skip these characters to type faster
or simplify the input process, especially since the
meaning of the text might still be understood, even
if it is technically incorrect typographically. This
tendency to sacrifice accuracy for speed or conve-
nience underscores a broader challenge in ensuring
consistent commitment to orthographic standards
in digital communication. Finally, many users may
not be thoroughly familiar with the correct usage of
the ZWNJ, either in terms of its linguistic function
or its position on physical and virtual keyboards.
This unfamiliarity is worsened by the fact that the
ZWNI is often hard to find on touchscreen devices
and standard keyboards, leading to its omission
or the use of space instead in many cases. These
errors are so common that generative text models
frequently replicate them because they have en-
countered such mistakes repeatedly in web content
(e.g., < ailuw >instead of < aily.«>). Generative
models often replicate common errors like incor-
rect spacing and ZWNIJ usage because they are
trained on large-scale datasets containing such mis-
takes. This highlights a broader issue of data qual-
ity, as widespread inaccuracies in training data lead
to their reinforcement in generated text, especially
in informal contexts.

This research is motivated by the widespread
importance of accurate text processing across digi-
tal applications, ranging from search engines and
chatbots to educational tools. Addressing the ex-
traordinary challenges of Persian script—such as
rich morphology, contextual nuances, and the need
for precise spacing and ZWNJ usage—this study
aims to improve the quality and user experience
of Persian text processing. By situating our work
within the broader advancements of NLP, partic-
ularly the use of transformer-based models like
BERT (Devlin et al., 2018), we seek to contribute
to Persian text processing and the field of multi-
lingual NLP. We aim to develop a robust model
capable of achieving high classification metrics in
correcting Persian text, which could be applied in
both text preparation for AI models and consumer-
oriented materials.
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This research proposes a system capable of au-
tomatically correcting spacing and ZWNJ usage
in Persian texts through a sequence labeling ap-
proach to address these issues. Each character is
classified as a non-space, space, or ZWNJ, result-
ing in a three-class classification problem. Our
BERT-based classifiers effectively handle the task
and are designed and fine-tuned specifically for
this purpose. Such a system would have immediate
practical applications in various domains, including
natural language processing, machine translation,
and educational tools, significantly improving the
accuracy of Persian language processing.

This paper is organized into seven sections. Sec-
tion 2 reviews related work on word segmenta-
tion and ZWNJ recognition. Section 3 details
our dataset, including preparation, preprocessing,
and annotation. Section 4 presents our methodol-
ogy, describing the pre-trained BERT-based mod-
els for character-level correction and four classi-
fier architectures: Baseline, ReLU-Norm Classifier
(RNC), DualStep DropNet Classifier (DSD), and
SimplexNet Classifier (SNet). Section 5 reports ex-
perimental results, comparing pre-trained models
and classifier architectures through direct and hy-
brid evaluations Section 6 discusses performance
factors, including BERT’s classification capabil-
ities, domain-specific pre-training, and practical
implications for real-world correction. Finally, Sec-
tion 7 concludes with a summary of contributions,
highlights the 97.26% macro F1-score achieved by
our classifiers, and outlines future directions for
Persian text processing and morphologically rich
languages.

2 Related Work

This section provides a comprehensive review of
the literature relevant to this study, placing the re-
search within the broader academic discourse. It
focuses on various studies, particularly those that
address the challenges of spacing and half-spacing,
implemented using ZWNJ, in Persian text. Much
of the work in this field relates to word segmenta-
tion, where the detection of spacing plays a crucial
role, as it marks word boundaries. Consequently,
word segmentation tasks overlap significantly with
spacing detection. However, while ZWNJ occurs
within words and does not involve word bound-
aries, word segmentation tasks address spacing and
non-spacing scenarios. The correct placement of
ZWNJ, though critical, remains an aspect often



overlooked in such tasks. Word segmentation is
fundamental to natural language processing (NLP)
and is critical in tasks like information retrieval,
part-of-speech tagging, named entity recognition,
and sentiment analysis.

The first study reviewed is by Sadiq Nawaz Khan
and colleagues, who proposed “Urdu Word Seg-
mentation using Machine Learning Approaches,”
employing Conditional Random Fields (CRF)
(Khan et al., 2018). Urdu word segmentation
presents challenges due to issues like improper
spacing. While tools for English and other West-
ern languages perform well, Urdu and similar
languages face difficulties in defining clear word
boundaries. This research aimed to overcome these
challenges using machine learning techniques. Re-
search on word segmentation in other languages,
such as Arabic and Chinese, has contributed valu-
able methods for addressing spacing challenges.
For instance, (Abdelali et al., 2006) presented a
fast and accurate Arabic segmenter called Farasa,
which utilizes Support Vector Machines (SVM)
for effective word segmentation in Arabic texts.
Similarly, (Chen et al., 2015) employed a gated
recursive neural network (GRNN) to model char-
acter combinations for word segmentation in Chi-
nese, showcasing the effectiveness of neural net-
work approaches in handling complex segmenta-
tion tasks. These studies have influenced the de-
velopment of techniques that can be adapted for
Persian language processing, particularly in man-
aging languages with rich morphology.

ParsiPardaz (Sarabi et al., 2013) is a Persian lan-
guage processing tool that addresses both word
segmentation and half-spacing issues as part of its
sequence labeling approach. Similarly, ParsiVar
(Mohtaj et al., 2018), another Persian language
processing tool, offers comprehensive NLP capa-
bilities, including word segmentation, sequence
labeling, and spelling correction. ParsiVar has been
successfully utilized in a range of real-world ap-
plications, including plagiarism detection and ma-
chine translation systems.

Another noteworthy tool is Hazm (Roshan Re-
search, 2023), a Python library for Persian NLP
tasks, which also adopts a sequence labeling ap-
proach for word segmentation and half-spacing.
Key features of Hazm include normalization, tok-
enization, lemmatization, part-of-speech tagging,
dependency parsing, and word embedding. It has
been widely employed in both research and prac-
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tical projects, demonstrating high performance in
addressing Persian text challenges.

A notable study by (Panahandeh and Ghan-
bari, 2019) in 2019 addresses the incorrect use
of spaces in Persian text, which poses significant
challenges for tokenization. They developed a
rule-based method to identify and correct word
segmentation and spacing errors. The model was
trained on a dataset derived from social media com-
ments, presenting a challenging dataset for learn-
ing. Their approach achieved a macro F1-score of
81.94%, marking a substantial improvement over
pre-existing tools.

Another influential paper, “Joint Persian Word
Segmentation Correction and Zero-Width Non-
Joiner Recognition Using BERT” by (Doostmo-
hammadi et al., 2020), published in 2020, serves
as a major inspiration for this research. The au-
thors employed BERT, a transformer-based ma-
chine learning model, to address word segmenta-
tion and half-spacing challenges in Persian. They
compiled a dataset of 500 highly complex sen-
tences containing numerous instances of incor-
rect word segmentation and half-spacing errors.
Their model achieved a macro F1-score of 92.40%,
demonstrating the strength of transformer models
in addressing these specific challenges.

3 Dataset

Our methodology uses the (Bijankhan, 2004) and
Peykare (Bijankhan et al., 2011) corpora to train
and evaluate BERT-based sequence classifiers in a
three-class classification task. These datasets are
preprocessed, annotated, and labeled to prepare
them as optimized inputs for the model, ensuring
they contain the correct supervised information for
maximum training efficiency.

3.1 Corpora

Bijankhan and Peykare corpora are well-
established resources in Persian language
processing, known for their comprehensive
tokenization and accurate part-of-speech (POS)
tagging. Both corpora feature precise word
boundary detection and reliable ZWN]J placement,
which are critical for tasks requiring detailed
annotated text. These characteristics make them
particularly suitable for our sequence labeling task,
where character-level precision is essential. In this
research, the corpora were combined to create a
robust dataset containing over 12.7 million words,



providing sufficient examples of various spacing
patterns encountered in Persian text.

3.2 Preprocessing and Annotation

Prior to training, extensive preprocessing was ap-
plied to ensure consistent tokenization and ZWNJ
usage. Custom Python scripts using regular expres-
sions were developed to address Persian-specific
text processing challenges. Tokens were reassem-
bled into sentences, and formatting issues—such
as spacing after punctuation and standardizing pat-
terns—were corrected. Manual annotation fol-
lowed, using common text editors to fix errors
like missing ZWNIJs in words such as < s>
(“more beautiful”). Since ZWNIJ rules were up-
dated in 2015 (of Persian Language and Literature,
2015), older corpora were adjusted to match cur-
rent standards. The revised dataset showed clear
improvements in orthographic accuracy, providing
higher-quality input for model training.

3.3 Labeling

After preprocessing and annotation, the text was
labeled at the character level. Each character was
assigned one of three labels: 0 for non-space, 1 for
space, and 2 for ZWNJ. The labels were shifted
one position back, so each character’s label indi-
cated whether the following character would be a
non-space, space, or ZWNIJ. Spaces and ZWNIs,
along with their corresponding labels, were then
removed, leaving only the non-space characters
and their labels. This labeling approach takes ad-
vantage of a key rule in Persian script: non-space
characters can only appear consecutively, while
spaces and ZWNJs cannot. An example of this
process is shown in Figure 1.

This approach is superior to alternatives because
we know with certainty that before and after space
and ZWNI is a non-space character, which provides
a clear pattern for the model to learn. The process
can be reversed to recreate the original text from a
sequence of characters and model generated labels.

3.4 Post-Processing

After generating predictions, our post-processing
step reconstructs the text by combining the model’s
predicted labels with the original character list.
This process accurately positions spaces and
ZWNIJs according to the predicted labels, effec-
tively rebuilding properly formatted text from the
raw character sequence. The simplicity of this re-
construction process underscores the effectiveness
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Figure 1: The figure shows how a Persian sentence
< laca jo 5Wexi  >—which translate to “The birds and
the trees.”— is converted into character-level labels.
The text is split into characters (0: non-space, 1: space,
2: ZWNJ), labels shifted one position back, and then
spaces and ZWNJ are removed to yield the final labeled
sequence.

of our labeling approach, demonstrating how our
method enables straightforward conversion from
labeled characters to correctly formatted output
text.

3.5 Statistics

An overview of the corpora’s statistics helps to
understand the data. Table 1 provides a summary of
key metrics from Bijankhan and Peykare corpora to
give further insight into the dataset. The combined
dataset was split into 80% for training, 10% for
validation, and 10% for testing. Input data was
processed in batches of 512 characters, which is
the maximum input sequence length supported by
BERT.

Table 1: Summary statistics for Bijankhan and Peykare
corpora. Includes counts and ratios of characters, tokens,
sentences, spaces, and ZWNIJs, highlighting structural
properties of each corpus.

Metrics Bijankhan Peykare
character count 12.4m 48.0m
token (word) count 2.5m 10.1m
sentence count 88255 335926

character to token ratio 4.77 4.75

character to sentence ratio 140.5 143

token to sentence ratio 29.43 30.07
spaces per sentence 26.64 26.97
ZWNIJs per sentence 1.948 2.082
space to character ratio 0.19 0.189
ZWN] to character ratio 0.014 0.015

Our carefully preprocessed and annotated
dataset aligns with current Persian orthographic



standards, providing high-quality input for train-
ing our BERT-based sequence classifier. To
support reproducibility and further research, the
dataset—containing sentences, character lists, POS
annotations, and space labels—is available for re-
search use'.

4 Models

To address character-level spacing and ZWNIJ cor-
rection, we utilize BERT-based models for se-
quence labeling. BERT’s bidirectional attention
captures both syntactic and semantic dependen-
cies on both sides, allowing precise classification
of each character as space, ZWNJ, or non-space.
This contextual modeling is particularly important
for Persian, where targeted errors often depend on
neighboring characters that construct the words.

4.1 Pre-trained Models

Pre-trained transformer models have demonstrated
strong performance across diverse NLP tasks (Han
et al., 2021; Zhou et al., 2023). In this study, we
evaluated six models derived from the BERT family
or related architectures:

* bert-base-multilingual-cased
(Devlin and Team, 2018a): A multilingual
BERT trained on Wikipedia in 104 languages,
including Persian.

* bert-base-multilingual-uncased
(Devlin and Team, 2018b): Similar to the
cased version but trained without case
sensitivity.

e ParsBERT (HooshvareLab, 2023a): A
monolingual Persian BERT model trained
on Persian Wikipedia, Persian news web-
sites, books, and social media texts, achieving
strong results in Persian NLP benchmarks.

* bert-fa-zwnj-base (HooshvareLab,
2023b): A ParsBERT variant that explicitly
incorporates half-space (ZWNJ) handling.

e roberta-fa-zwnj-base (Hooshvare-
Lab, 2023c): A RoBERTa-based Persian
model trained on the same ZWNJ-aware
corpus as bert-fa-zwnj-base.

'nttps://huggingface.co/datasets/
PerSpaCor/bijankhan-peykare-annotated
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e charbert-roberta-wiki (imvladikon,
2023): A CharBERT variant combining
character- and subword-level representations,
originally trained on English.

Choosing the right pre-trained model is
crucial for optimal classifier performance.
We evaluated these six models by integrat-
ing their weights into our baseline -classi-
fier and fine-tuning them on our dataset.
bert-base-multilingual-uncased
achieved the best results and was selected for the
following experiments on architectures.

4.2 Model Architectures

Our model architecture comprises two main compo-
nents. The first component is BERT, excluding the
last BERT Pooler layer. This component processes
characters as tokens and outputs a 768-dimensional
feature vector for each input character, utilizing
BERT’s attention mechanism to capture dependen-
cies across the entire sequence. This approach
effectively addresses the structural nuances of the
text. The resulting feature vectors are then fed
into the second component, known as the classifier,
which interprets the BERT outputs and classifies
each character into one of three classes. We present
three novel architectures in addition to the baseline
architecture for the classifier component.

4.2.1 Baseline Classifier?

A simple yet effective architecture consisting of a
single linear layer for classification. It serves as
the reference for evaluating other models and is
commonly used in sequence labeling tasks.

4.2.2 ReLU-Norm Classifier (RNC)?

our ReLU-Norm classifier includes a fully con-
nected layer followed by a ReLLU activation, a 0.1
dropout for regularization, and 1D batch normal-
ization for training stability. The output layer maps
features to label logits. It balances expressiveness
and regularization with minimal complexity.

4.2.3 DualStep DropNet Classifier (DSD)*

Designed with two intermediate linear layers for
hierarchical feature extraction, the first linear layer
reduces the input dimensionality by half, followed

https://huggingface.co/PerSpaCor/
bert-base-multilingual-uncased

*https://huggingface.co/PerSpaCor/
Relu-Norm

*https://huggingface.co/PerSpaCor/
DualStep-DropNet
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https://huggingface.co/datasets/PerSpaCor/bijankhan-peykare-annotated
https://huggingface.co/PerSpaCor/bert-base-multilingual-uncased
https://huggingface.co/PerSpaCor/bert-base-multilingual-uncased
https://huggingface.co/PerSpaCor/Relu-Norm
https://huggingface.co/PerSpaCor/Relu-Norm
https://huggingface.co/PerSpaCor/DualStep-DropNet
https://huggingface.co/PerSpaCor/DualStep-DropNet

by a ReLU activation and a 0.1 dropout to introduce
non-linearity and prevent overfitting. A second lin-
ear layer further reduces the feature size to a quarter
of the original input, with another ReLLU activation
and dropout layer applied. The final output layer
maps the compressed features to the specified num-
ber of labels, generating the classification logits.
This model leverages multiple transformations and
regularization steps for effective feature learning
and robust generalization.

4.2.4 SimplexNet Classifier (SNet) °

The SimplexNet is a streamlined neural network
designed for classification, featuring a single in-
termediate linear layer that reduces the input di-
mensionality by half. This is followed by a ReLU
activation to introduce nonlinearity and a dropout
layer with a 0.1 probability to prevent overfitting
during training. The final output layer then maps
the reduced feature set to the desired number of
labels, producing the classification logits. This
simpler architecture balances efficiency and per-
formance by focusing on a single transformation
with regularization. The architecture figures are
available in Figure 2

5 Results

All training sessions were conducted with a learn-
ing rate of 2 x 107 for a total of 10 epochs. In the
initial phase, we evaluated six different pre-trained
models using our baseline setup to identify the most
suitable one for testing our proposed architectures.

Table 2: Macro-average metrics of pre-trained models
fine-tuned on our task. Models are evaluated under iden-
tical settings; the top-performing model is highlighted
in bold.

Pre-trained Model Precision | Recall | F1 Score
bert-base-multilingual-uncased 0.9652 | 0.9680 0.9666
bert-base-multilingual-cased 0.9640 | 0.9647 0.9643
ParsBERT 0.9605 | 0.9631 0.9618
bert-fa-zwnj-base 0.9571 | 0.9536 0.9553
roberta-fa-zwnj-base 0.9564 | 0.9543 0.9554
charbert-roberta-wiki 0.9530 | 0.9518 0.9524
From the pre-trained models evaluated,

bert-base-multilingual-uncased was
selected as the most effective model to test our
architectures. The results of our architectures
are presented in two parts. In the first part,
the models insert spaces and ZWNJ characters

Shttps://huggingface.co/PerSpaCor/
SimplexNet
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Figure 2: Overview of the four classifier architectures.
Each diagram shows the structure of a classifier built
on top of BERT output layer. The models differ in
depth and regularization: Baseline uses a single lin-
ear layer, ReLU-Norm adds normalization and dropout,
SimplexNet introduces a smaller hidden layer, and Du-
alStep DropNet uses a two-step reduction with ReLU
and dropout at each stage.

without considering any user input, allowing
for a straightforward evaluation of the model’s
performance. We refer to this as a direct evaluation,
and the corresponding results are presented in
Table 3.

The second part involves a neural-based post-
processing step, where the model’s logits are lin-
early combined with the user input using a coef-
ficient . This coefficient is set to 0.5 by default,
representing an equal influence of both the model
and the user input on the final output. A value of
a = 0 implies that only the model output is used,
whereas o = 1 means that the final output is not af-
fected by the model output. To simulate user input,
we introduced artificial errors in the correct test set.
The error rates for different character classes are
defined as follows: non-space characters have an
error rate of 0.05, meaning that 5% of them will
be randomly altered or replaced with incorrect val-
ues. Space characters have a higher error rate of
0.1, meaning that 10% of spaces will be replaced
with either a non-space character or a ZWNJ. The
highest error rate is for the ZWNJ characters, set
at 0.4, which means that 40% of them will be al-


https://huggingface.co/PerSpaCor/SimplexNet
https://huggingface.co/PerSpaCor/SimplexNet

Table 3: Direct evaluation results of all models, grouped
by class label (Non-Space, Space, ZWNJ, and Macro
Average). For each class, models are compared on pre-
cision, recall, and F1 score. The highest value in each
metric column is highlighted in bold to emphasize the
best-performing model for that specific metric.

Table 4: Hybrid evaluation results of all models,
grouped by class label (Non-Space, Space, ZWNJ, and
Macro Average). Similar to the direct evaluation, mod-
els are assessed by precision, recall, and F1 score. Bold
values indicate the highest score among the models for
each metric and class.

| Precision | Recall [ F1 Score | Precision | Recall [ F1 Score

Non Space (0) Non-Space (0)
Baseline | 0.993587 | 0.996397 | 0.99499 Baseline | 0.995188 | 0.997807 | 0.996496
ReLU-Norm | 0.994663 | 0.997324 | 0.995992 ReLU-Norm | 0.995932 | 0.998386 | 0.997157
DualStep DropNet | 0.994608 | 0.997494 | 0.996049 DualStep DropNet | 0.995787 | 0.998443 | 0.997113
SimplexNet | 0.994801 | 0.997438 | 0.996117 SimplexNet | 0.995954 | 0.998437 | 0.997194

Space (1) Space (1)
Baseline | 0.985998 | 0.984774 | 0.985385 Baseline | 0.990217 | 0.990318 | 0.990268
ReLU-Norm | 0.989546 | 0.987828 | 0.988686 ReLU-Norm | 0.992917 | 0.992227 | 0.992572
DualStep DropNet | 0.989975 | 0.988518 | 0.989246 DualStep DropNet | 0.993023 | 0.992666 | 0.992844
SimplexNet | 0.989316 | 0.988844 | 0.98908 SimplexNet | 0.992541 | 0.992855 | 0.992698
ZWNIJ (2) ZWNJ (2)

Baseline | 0.916063 | 0.922959 | 0.919498 Baseline | 0.951941 | 0.950239 | 0.951089
ReLU-Norm | 0.913413 | 0.932125 | 0.922674 ReLU-Norm | 0.944612 | 0.959428 | 0.951962
DualStep DropNet | 0.928343 | 0.93531 | 0.931814 DualStep DropNet | 0.959529 | 0.962178 | 0.960852
SimplexNet | 0.930285 | 0.934932 | 0.932603 SimplexNet | 0.960943 | 0.962121 | 0.961532

Macro Average Macro Average
Baseline | 0.965216 | 0.968043 | 0.966624 Baseline | 0.979115 | 0.979455 | 0.979284
ReLU-Norm | 0.965874 | 0.972426 | 0.969117 ReLU-Norm | 0.97782 | 0.983347 | 0.980564
DualStep DropNet | 0.970976 | 0.973774 | 0.97237 DualStep DropNet | 0.98278 | 0.984429 | 0.983603
SimplexNet | 0.971467 | 0.973738 | 0.9726 SimplexNet | 0.983146 | 0.984471 | 0.983808

tered. This injected data set is linearly combined
with model outputs, where the final results are cal-
culated and compared with the correct data set to
evaluate performance under these conditions. We
refer to this evaluation method as hybrid evaluation.
The results are available in Table 4.

We conducted two types of evaluations to com-
prehensively assess the model’s performance. The
first provides an understanding of the model’s ca-
pabilities, while the second focuses on testing the
model with user-generated data. This latter eval-
uation is particularly important, as it mirrors real-
world scenarios where assessing the model’s be-
havior under typical usage conditions is essen-
tial. In practical applications, users often have
some degree of confidence in the spacing of their
text. As a result, the ability to correct existing
spacing—rather than generating it entirely from
scratch—is typically more valuable. This emphasis
on correction over complete re-spacing underlines
the model’s practical relevance and utility in real-
world applications.

Several factors may have contributed to the
performance of our model, though further con-
trolled experiments would be needed to isolate
their individual effects. The use of BERT, with
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its deep bidirectional architecture, is likely help-
ful in capturing contextual dependencies, allow-
ing it to distinguish between non-space, space,
and ZWNIJ characters more effectively. This
could explain why even a simple linear classi-
fier on top of BERT embeddings yielded rea-
sonable results, and why more complex classi-
fiers showed incremental improvements. We used
the bert-base-multilingual-uncased
model, which has been pre-trained on diverse mul-
tilingual corpora, including Persian. Its exposure
to a variety of scripts and linguistic patterns may
have enabled it to generalize to character-level dis-
tinctions in Persian without requiring large task-
specific datasets.

We fine-tuned the models for 10 epochs using a
learning rate of 2 x 10~°, which was selected based
on validation performance and aimed to strike a
balance between underfitting and overfitting. Addi-
tionally, ongoing error analysis and iterative refine-
ments to preprocessing, hyperparameters, and post-
processing may have contributed to gradual perfor-
mance gains. While these elements were adjusted
in response to observed errors, we acknowledge
that further experiments are needed to rigorously
evaluate their individual impact.



6 Conclusion

This study introduces novel classifier architectures
for correcting spacing and ZWNJ errors in Per-
sian text using BERT-based sequence classification
models, achieving an impressive macro F1-score
of 97.26%. We evaluated several prominent pre-
trained models to identify the most suitable ones for
our classifiers, ensuring robust performance across
diverse text formats.

Transformer models, particularly BERT, signif-
icantly enhance performance in natural language
processing tasks, especially for morphologically
rich languages like Persian. By focusing on correct-
ing existing spacing rather than full segmentation,
our model better reflects real-world applications
where users typically trust their text formatting to
some extent.

The two distinct evaluation sets highlight the im-
portance of testing models in realistic, user-centric
contexts. Future research could explore transfer
learning techniques, assess alternative transformer
architectures such as DeBERTa, and incorporate
additional contextual features to further enhance
model robustness (He et al., 2020; Chehreh et al.,
2024). Moreover, the proposed architectures can
be readily adapted for other sequence labeling
tasks, making them versatile for various applica-
tions in natural language processing. Extending
this methodology to other languages and domains
that employ sequence labeling could broaden its
impact, advancing multilingual natural language
processing and enabling new cross-lingual applica-
tions.

Through these strategies, our model demon-
strates competitive results across all evaluation met-
rics. The combination of a strong pre-trained foun-
dation, domain-specific adaptation, relative task
simplicity, and continuous optimization contributes
significantly to the overall performance of our ap-
proach.
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