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Abstract

Large Language Models (LLMs) can provide
accurate word definitions and explanations for
any context. However, the scope of the defi-
nition changes for different target groups, like
children or language learners. This is especially
relevant for homonyms—words with multi-
ple meanings—where oversimplification might
risk information loss by omitting key senses,
potentially misleading users who trust LLM
outputs. We investigate how simplification im-
pacts homonym definition quality across three
target groups: Normal, Simple, and ELIS. Us-
ing two novel evaluation datasets spanning mul-
tiple languages, we test DeepSeek v3, Llama 4
Maverick, Qwen3-30B A3B, GPT-40 mini, and
Llama 3.1 8B via LLM-as-Judge and human an-
notations. Our results show that simplification
drastically degrades definition completeness by
neglecting polysemy, increasing the risk of mis-
understanding. Fine-tuning Llama 3.1 8B with
Direct Preference Optimization substantially
improves homonym response quality across all
prompt types. These findings highlight the need
to balance simplicity and completeness in edu-
cational NLP to ensure reliable, context-aware
definitions for all learners.

1 Introduction

Large Language Models (LLMs) are increasingly
being deployed across diverse domains, with edu-
cation emerging as an up-and-coming area. These
models have the potential to support personalized
learning, provide immediate feedback, and increase
accessibility for a wide range of learners (Xu et al.,
2024; Wang et al., 2024; Kasneci et al., 2023).

A core requirement for effective education is
personalization. Students vary in their prior knowl-
edge, learning preferences, and cognitive abilities
(Xu et al., 2024). From young children and univer-
sity students to individuals with cognitive impair-
ments, learners benefit from tailored content that

Q What is the definition of ‘bat’?

&) = = The term "bat" can refer to several

- E different things depending on the context:

GPT-40 mini 1. Animal: [..]
2. Sports Equipment: [..]
3. Verb: [..]
4. Slang: [..]
If you have a specific context in mind,
please let me know!

gz What is the definition of ‘bat’ in simple language?

&, . A "bat" is a flying mammal that is active at
. * =2 night. It has wings made of skin stretched
mee over its long fingers. Bats are known for
GPT-40 mini using echolocation to find food, which

usually consists of insects. They are often
found in caves or trees and play an
important role in the ecosystem.

Figure 1: GPT-40-mini definitions of “bat” under nor-
mal and simplified style constraints. The normal def-
inition presents multiple senses, showing the word’s
ambiguity. The simplified definition provides only one
sense, indicating reduced word sense awareness.

matches their comprehension level.

However, LLMs can produce false or misleading
information (Xu et al., 2024). Given their often
authoritative tone and rapid accessibility, users, es-
pecially those with lower domain knowledge, may
uncritically accept incorrect outputs as fact (Kas-
neci et al., 2023). This is particularly concerning in
educational contexts, where reliance on incorrect
information can hinder learning and discourage
critical thinking.

To improve accessibility, for groups like non-
native speakers or individuals with cognitive im-
pairments, educational content is often adapted into
simplified, easy-read language (Freyer et al., 2024).
While this makes information more accessible, it
introduces a trade-off: essential information may
be lost or oversimplified (Trienes et al., 2024).

One common use case for LLMs is providing
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instant definitions or explanations across languages.
Users often use prompts like “Explain like I'm five”
(ELIS5) to obtain simplified outputs. However, for
polysemous words, like homonyms', simplifica-
tion can obscure ambiguity. For instance, Figure
1 shows a user requesting definitions for “bat” in
standard and simplified styles from GPT-40 mini.
The standard response lists multiple meanings (e.g.,
animal, sports tool), while the simplified response
only mentions the animal. This simplification may
mislead users into assuming a single meaning.

This risk is amplified by users’ tendency to as-
sume that LLM responses are both correct and com-
plete. We argue that high-quality definitions should
strive for completeness: either (i) enumerate all
plausible senses of a homonym, or (ii) exhibit Help-
ful Sense Awareness. This means clearly stating
that not all possible senses are listed, or that addi-
tional context is needed for disambiguation. Re-
sponses that provide only some senses without such
awareness may reinforce misconceptions about the
word’s meaning.

In this paper, we investigate how well state-of-
the-art LLMs handle homonym definition tasks
across varying levels of language complexity: Nor-
mal, Simple, and ELI5. We assess whether simpli-
fication impairs the model’s ability to acknowledge
ambiguity and provide complete information. Our
contributions are as follows:

* We propose Helpful Sense Awareness, a
novel metric for assessing whether LLMs ap-
propriately acknowledge multiple senses of
homonyms during definition tasks.

* We present two datasets for evaluating LLM
performance on homonym definitions in both
multilingual and English settings.

* We fine-tune Llama 3.1 8B using Direct Pref-
erence Optimization (DPO), greatly improv-
ing response quality on homonym definitions.

* We empirically demonstrate, using both LLM-
as-a-Judge and human annotations, that stylis-
tic constraints aimed at simplification drasti-
cally degrade homonym definition quality in
models such as DeepSeek-v3, Llama 4 Mav-
erick, Qwen3-30B A3B, GPT-40 mini, and
Llama 3.1 8B.

'We use the term homonym broadly to include both pol-

ysemous words and homonyms in the strict linguistic sense
(i.e., words with multiple related or unrelated meanings)
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2 Background and Related Work

Definition Modeling Noraset et al. (2017) in-
troduced the task of Definition Modeling. The
goal is to generate a definition for a given word
based on its embedding. Definitions fall into two
categories: static and context-dependent. Static
definitions are found in dictionaries and lexicons.
They provide fixed meanings for words based on
predefined word senses, treating each word as hav-
ing a discrete set of definitions. A related task
is Word Sense Disambiguation (WSD). This fo-
cuses on identifying the correct sense of a word
in a given context by assigning a word sense label
(Navigli, 2009). However, Kilgarriff (1997) chal-
lenges the idea that word senses are fixed, arguing
that meaning emerges from usage and context. This
underscores the limitations underlying traditional
lexicon-based approaches.

Recent research has predominantly focused on
generating context-sensitive definitions, leveraging
contextual information to produce precise and rel-
evant meanings (Mickus et al., 2024; Periti et al.,
2024; Huang et al., 2021; Bevilacqua et al., 2020;
Ishiwatari et al., 2019; Gadetsky et al., 2018). Kong
et al. (2022) focus on generating context-sensitive
definition generation in simple language.

Proietti et al. (2024) focus on sense selection
rather than definition generation. They group Word-
Net senses based on homonymy relations, mapping
them to coarse-grained sense clusters. They then
probe contextual representations from pretrained
language models (e.g., BERT, DeBERTa) using
distance-based metrics, showing that they can dis-
tinguish homonymous senses with 95% accuracy.

In contrast to the focus on context-sensitive
methods, users often query “What is [word]?” with-
out additional context. Building on the insight
that PLMs can handle lexical ambiguity inherently,
we evaluate how LLMs define homonyms in such
cases. This allows us to assess their understanding
of lexical word senses, their management of ambi-
guity, and the usefulness of their responses absent
contextual cues.

Simple Language Simplified language enhances
accessibility for diverse audiences, including non-
native speakers, domain novices, children, and indi-
viduals with cognitive impairments. Standards like
the Web Content Accessibility Guidelines (WCAG)
advocate for its use to foster inclusive commu-
nication (W3C, 2025). This approach employs



straightforward vocabulary, minimal jargon, clear
sentence structures, and avoids complex grammar
(Freyer et al., 2024). It is widely applied in fields
such as law, healthcare, and education (Garimella
et al., 2022; Deilen et al., 2024; Rets et al., 2022).
Prior studies highlight that simplification in LLM-
generated text can introduce omissions or vague-
ness (Trienes et al., 2024; Agrawal and Carpuat,
2024; Devaraj et al., 2022). A related approach,
Explain Like I'm Five (ELI5), popularized through
a dataset of 270,000 Reddit threads (Fan et al.,
2019), simplifies complex topics using analogies
and non-technical language. While ELIS is effec-
tive for broad audiences, its impact on preserving
content completeness is underexplored. This paper
examines how simplification constraints, including
ELIS-style rewriting, affect the completeness of
definitions for homonyms, where precise disam-
biguation is critical.

3 Methodology

3.1 Datasets

Multilingual Word-in-Context (ML-WiC) We
processed the dataset from Martelli et al. (2021),
designed for Multilingual and Cross-lingual Word-
in-Context Disambiguation (MCL-WiC). This task
involves determining whether a target word retains
the same sense in two sentences within and across
languages. We filtered the dataset for words with
distinct senses in the same language, identifying
them thus as homonyms. The filtered dataset covers
308 Arabic, 334 English, 380 French, 330 Russian,
and 254 Simplified Chinese target words.

Homonyms with WordNet (HoWN) ML-WiC
lacks sense annotations, limiting its use for evaluat-
ing which senses LLMs capture. We therefore built
HoWN, annotated with WordNet synsets (Miller,
1994). To ensure true homonyms with distinct
senses, we used coarse-grained sense clusters from
Proietti et al. (2024), avoiding overly fine-grained
nuances. Using the SemCor Corpus (Miller et al.,
1993), we kept only those that appeared at least
twice with different sense annotations.

3.2 Model and Prompt Configuration

We evaluate five LLMs to assess how style con-
straints impact the quality of word definition gen-
eration: DeepSeek v3 (DeepSeek-Al et al., 2025),
Llama 4 Maverick (Meta Al, 2025), Qwen3-30B
A3B (Qwen Team, 2025), GPT-40 mini (OpenAl

et al., 2024), and Llama 3.1 8B (Grattafiori et al.,
2024). These models vary in size, architecture
(including Mixture-of-Experts and dense models),
and openness, enabling a comprehensive analysis
of performance across diverse LLMs.

We use four prompt types to generate definitions:

e Normal: “What is the definition of ‘word’?”

e Simple: “What is the definition of ‘word’ in
simple language?”

» ELIS: “Explain ‘word’ like I am 5 years old.”

e Multi-Sense-Aware: Any prompt appended
with: “Keep in mind that some words have
more than one meaning.”

ELI5 targets explanations for children, Simple
seeks definitions in plain language, and Normal
allows unconstrained responses. The Multi-Sense-
Aware prompt tests whether explicit instructions
to account for multiple meanings mitigate stylistic
constraints on definition completeness.

3.3 Response Categorization

Ambiguity in language, particularly for homonyms,
poses a challenge in natural language processing,
as a single word can have multiple meanings de-
pending on context. To evaluate model responses
for handling ambiguity, we developed a categoriza-
tion framework based on three criteria:

1. Number of definitions: The count of distinct
meanings provided for a word.

2. Context clarification request: Whether the
response seeks the intended context (e.g.,
“Please let me know if you have a specific
context in mind!”).

3. Remark on additional definitions: Whether
the response acknowledges other unlisted
meanings (e.g., “Here are some of the primary
definitions of the word:”).

We define a response as complete if it either
provides all meanings of a word or exhibits Help-
ful Sense Awareness (HeSA). A response exhibits
HeSA by including a context clarification request
or a remark on additional definitions. Such re-
sponses are considered high-quality, as they proac-
tively mitigate ambiguity without requiring an ex-
haustive list of meanings.
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A relaxed concept of Completeness is Sense
Awareness, which applies when a response in-
cludes multiple definitions or demonstrates HeSA.
We use Sense Awareness when no dictionary data
is available to verify whether extracted definitions
match all possible meanings. This metric is a valu-
able simplification of Completeness, as its opposite,
providing only one definition without HeSA, is the
least desirable outcome for homonyms.

These classifications are crucial because our
prompts intentionally lack context. This increases
the risk of incomplete responses and misleading
users by suggesting an incorrect word meaning.

3.4 Automatic Evaluation

We designed an automated evaluation framework
to categorize model responses using GPT-40 mini
as an LLM judge, selected for its efficiency and
performance. The framework evaluates responses
based on three dimensions outlined in Section 3.3
and extracts all explicitly mentioned definitions. A
few-shot prompt guides the evaluation. To validate
the framework, one author labeled 450 responses
from HoOWN, with 150 responses per prompt type.
The LLM judge achieved 93.33% agreement on
Definition Count Classification (Single, Multiple)
and 86.44% agreement on HeSA compared to these
human labels.

3.5 Definition Matching for HoOWN

To analyze sense coverage and preference in
HoWN, we mapped the extracted definitions to
WordNet senses. We employed a sentence trans-
former modelz(Reimers and Gurevych, 2019) to
compute the cosine similarity between model-
generated definitions and the glosses of correspond-
ing WordNet senses. For each generated definition,
we selected the sense with the highest similarity
score, considering only matches with a minimum
similarity of 0.4. Since WordNet senses are ranked
by estimated frequency of use (Miller, 1994), this
mapping allowed us to assess which senses the
model most frequently aligns with and whether it
covers the full range of senses.

3.6 Direct Preference Optimization

To improve the completeness of homonym defini-
tions, we fine-tuned the Llama 3.1 8B using DPO
(Rafailov et al., 2023). DPO aligns model outputs
with desired behavior by training on preference

2sentence-transformers/all-MiniLM-L6-v2
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pairs. In our case, we favor complete responses
over incomplete ones. We constructed a training
set from the HOWN dataset with simple prompts,
comparing Llama 3.1 8B’s responses to more com-
plete responses from other models to create 116
preference pairs across 63 words.

We chose HOWN as it evaluates whether a re-
sponse captures all possible definitions of a word,
ensuring completeness is not solely driven by
HeSA. Due to limited data, we did not create a
validation set and trained once on the full data, aim-
ing to show feasibility of aligning models for more
complete definitions rather than optimizing peak
performance.

4 Results

In this section, we analyze the HOWN dataset, fo-
cusing on completeness, sense coverage, and sense
distribution. Additionally, we present the results
from our DPO fine-tuning, followed by the results
of the ML-WIC dataset.

4.1 HoWN

100
90
80
70
60
50
40
30
20
10

Llama 3.1 8B
GPT-40 mini
Qwen3-30B A3B
Llama 4 Maverick
DeepSeek v3

RERR

Completeness (%)

0
Normal Simple ELI5

Prompt Type

Figure 2: Definition completeness for each model under
three stylistic constraints: Normal, Simple, and ELI5

To assess the impact of stylistic constraints on
model performance, we evaluated response quality
using the HOWN dataset across the three prompt
types. Figure 2 illustrates the variation in response
completeness across these prompt types, highlight-
ing the drastic influence of stylistic constraints.

For the Normal prompt, all models achieve rel-
atively high completeness, ranging from 68.63%
for DeepSeek v3 to 83.66% for Qwen3-30B A3B.
Completeness falls sharply under Simple and ELIS5.
In the Simple setting, completeness ranges from
22.22% for GPT-40 mini to 37.25% for Llama 4
Maverick, while in the ELIS setting, it ranges from



Model FKGL Sense Aware Multi. Def. HeSA Full Both Complete Covered
Prompt: Normal
Llama 3.1 8B 10.51 97.39 97.39 67.97 3725 26.14 79.08 65.93
GPT-40 mini 10.70 95.42 95.42 62.09 49.02 32.68 78.43 74.22
Qwen3-30B A3B 8.87 93.46 90.20 77.78 44.44  38.56 83.66 70.20
Llama 4 Maverick  10.76 94.77 94.12 60.13  45.10 25.49 79.74 71.70
DeepSeek v3 10.08 92.81 92.16 2288 5359 7.84 68.63 77.04
Prompt: Simple
Llama 3.1 8B 8.35 71.24 70.59 1895 17.65 5.23 31.37 51.89
GPT-40 mini 8.00 61.44 61.44 7.84  16.99 2.61 2222 52.88
Qwen3-30B A3B 7.20 83.01 82.35 22.88 30.72 9.15 44.44 60.79
Llama 4 Maverick 8.52 73.20 71.90 26.14 19.61 8.50 37.25 55.29
DeepSeek v3 8.77 61.44 61.44 523 2026  0.00 25.49 54.98
Prompt: ELIS
Llama 3.1 8B 4.26 13.73 11.11 3.92 1.31 0.65 4.58 3341
GPT-40 mini 5.27 8.50 8.50 0.00 1.31 0.00 1.31 31.79
Qwen3-30B A3B 5.11 35.95 33.33 9.80 850  2.61 15.69 40.08
Llama 4 Maverick 4.03 11.11 9.80 2.61 0.65 0.00 3.27 34.99
DeepSeck v3 5.50 11.11 10.46 1.31 0.65 0.00 1.96 31.67

Table 1: Performance metrics for models on the HOWN dataset across Normal, Simple, and ELIS prompt types.
Metrics include Flesch—Kincaid grade level (FKGL), percentage of responses classified as Sense Aware, Multiple
Definitions, HeSA, Full (covering all meanings), Both (HeSA and Full), Complete, and the average percentage of
coarse-grained definitions covered. Best scores for each prompt type are highlighted in bold.

1.31% for GPT-40 mini to 15.69% for Qwen3-30B
A3B. Among the models, Qwen3-30B A3B ex-
hibits the smallest drop in completeness across
prompt types, while GPT-40 mini shows the largest.
We detail these findings in Table 1. These re-
veal that simpler prompt types (Simple and ELIS)
lead to fewer covered definitions and lower HeSA
scores. This suggests that stylistic simplification
not only reduces the number of definitions gener-
ated but also impairs models’ ability to acknowl-
edge multiple word senses. We further report Sense
Awareness and the percentage of responses con-
taining multiple definitions. Both metrics show a
marked decline from Normal to Simple to ELI5
prompts, reinforcing the trend. Additionally, we
calculate the Flesch-Kincaid grade level (FKGL)
(Kincaid et al., 1975) to measure the readability
of the generated definition. ELIS responses have
the lowest FKGL (4.03-5.27), followed by Simple
(7.20-9.37), and Normal (8.87-10.76). A lower
value indicates simpler language, confirming that
the models adhere to the simplicity constraints.

4.1.1 Sense Coverage and Distribution
Analysis

As discussed in Section 3.3, incomplete responses
are less desirable due to their potential to mislead
users. To evaluate their impact, we analyze the
coverage of coarse-grained WordNet senses, as de-
fined by Proietti et al. (2024), for these responses.

Figure 3 shows that all prompt styles exhibit a high
density of sense coverage around 50%. For the Nor-
mal prompt, there is an additional pronounced peak
at 100% coverage, indicating that many responses
capture the full range of senses. The Simple prompt
also displays a peak at 100% coverage, though it is
less prominent, with greater density in lower cov-
erage ranges compared to the Normal prompt. In
contrast, ELIS shows less density at higher cov-
erage levels and a greater concentration in lower
ranges, suggesting that ELI5-style responses tend
to cover fewer senses comprehensively.

Additionally, we analyzed which definitions are
most likely to appear in model responses when
not all coarse synsets are covered. As expected,
more prominent senses tend to be included more
frequently than less common ones across all models
and prompt types.

4.1.2 Multi-Sense-Aware Analysis

We evaluate the impact of prompt types on model
performance in a multi-sense-aware setting. We
focus on completeness and average synset coverage.
Results are presented in Table 2.

Context-aware prompting consistently improves
completeness across all prompt types, with larger
gains for Simple and ELI5 compared to Normal.
For instance, Llama 4 Maverick shows substantial
improvements: +50.68 in ELI5, +39.19 in Simple,
and +15.54 in Normal. Synset coverage likewise
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Prompt / Model Complete Covered Metric Normal Simple ELIS
Prompt: Normal FKGL 10.59 -0.34  9.71 +1.04 5.07 +0.61
Llama 3.1 8B 83.78 +4.05 7397 +8.18 Sense Aware 98.98 +3.06 86.73+10.20 35.71+21.43
GPT-40 mini 63.51 —-16.89  78.34 +3.64 Multi. Def. 98.98 +3.06 86.73 +11.22 32.65+21.43
Qwen3-30B A3B  91.22 +5.41 7847 +7.93 HeSA 84.69 +18.37 67.35+36.73 13.27 +9.18
Llama 4 Maverick  95.95 +15.54 77.72 +5.28 Full 4490 +10.20 29.59 +2.04 10.20 +8.16
DeepSeek v3 7635 +6.76  84.72 +7.45 Both 38.78 +17.35 21.43+13.27 4.08 +3.06
Prompt: Simple Complete  90.82+11.22 75.51+25.51 19.39+14.29
Llama 3.1 8B 4189 +10.14 6055 +8.93 Covered 7097 +6.32 61.29 +3.28 3997 +6.79
GPT-40 mini 5743 +35.14  66.71 +13.73
Qwen3-30B A3B 6622 +21.62  72.69 +11.87 Table 3: Performance metrics for DPO-optimized Llama
Llama 4 Maverick  77.70 +39.19  73.30 +17.83 3.1 8B on unseen words across Normal, Simple, and
DeepSeek v3 56.08 +30.41  73.49 +18.68 ELI5 prompts. Metrics include Flesch—Kincaid grade
Prompt: ELI5 level, Sense Awareness, Multiple Definitions, HeSA,
Llama 3.1 8B 39.86 +35.14  54.40 +21.21 Full responses, Both (Full and HeSA), Completeness,
GPT-40 mini 3041 +29.05  52.98 +21.13 and percentage of coarse-grained definitions covered.
Qwen3-30B A3B 59.46 +43.24  62.52 +22.43 Ch t L int diff
Llama 4 Maverick ~ 54.05 +50.68  61.44 +26.96 anges represent percentage point ditlerences com-
DeepSeek v3 50.00 +47.97  62.96 +31.24 pared to the non-DPO model.

Table 2: Performance metrics for models on the HOWN
dataset under the Multi-Sense-Aware setting across Nor-
mal, Simple, and ELIS prompt types. Metrics show the
percentage of Complete responses and average percent-
age of coarse-grained definitions covered, with best
scores for each prompt type in bold. Deltas to the
non-Multi-Sense-Aware setting are in percentage points,
with the largest delta for each prompt type in italic.

increases across all models and prompt types, with
stronger gains in Simple and ELIS settings.

Interestingly, despite these improvements, com-
pleteness still declines from Normal to Simple
to ELIS. However, the multi-sense-aware setting
substantially mitigates this drop compared to the
non-multi-sense-aware baseline. Notably, GPT-4o-
mini exhibits a unique decline in completeness (-
16.89) under the Normal prompt, indicating model-
specific challenges in this setting.

4.2 Direct Preference Optimization

We assess the impact of DPO fine-tuning on the
Llama 3.1 8B model, evaluating its ability to gener-
alize to unseen words. Table 3 reports performance
metrics on the HOWN dataset, focusing on an eval-

uation subset of 98 out of 164 words (59.76%) that
were not included in the DPO training set. This
subset was obtained by excluding three words from
the 101 words unseen during training, for which
we could not obtain a valid judgment or response
from Qwen3-30B A3B, the original Llama 3.1 8B,
or its fine-tuned variant.

Despite fine-tuning only on responses to Simple
prompts, DPO substantially boosts performance
across all prompt types: completeness (+11.22 Nor-
mal, +25.51 Simple, +14.29 ELIS), HeSA (+18.37,
+36.73, +9.18), and coverage (+6.32, +3.28, +6.79).
This shows DPO improves handling of multiple
word senses beyond training data.

The FKGL decreases by 0.34 for Normal, indi-
cating simpler language, while increasing by 1.04
for Simple and 0.61 for ELIS. It yet remains compa-
rable to other models in each setting. These results
demonstrate that DPO fine-tuning enhances com-
pleteness, generalizing effectively to unseen words
across diverse prompt types.

On the test subset, our model surpasses Qwen3-
30B A3B, the best-performing base model across
all prompt types, with completeness improvements
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of +11.23 (90.82 vs. 79.59) for Normal, +25.51
(75.51 vs. 50.00) for Simple, and +14.26 (19.36 vs.
5.10) for ELIS. Trained only on Simple prompts,
DPO fine-tuning enables Llama 3.1 8B to outper-
form larger models, demonstrating its potential to
enhance sense-aware definition generation for un-
seen homonyms in context-free queries.

4.3 ML-WIC

We evaluate prompt type sensitivity across lan-
guages using the ML-WiC dataset. Since we do not
have dictionary data for all languages, we report
Sense Awareness instead of Completeness. Fig-
ure 4 shows Sense Awareness scores for Arabic,
English, French, Russian, and Chinese across the
Normal, Simple, and ELI5 prompt types.

We observe a general trend across all languages
and models: Sense Awareness declines from Nor-
mal to Simple to ELIS. English shows the lowest
inter-model variance in Sense Awareness, while
also strictly following this trend. Notably, Chinese
stands out, as Llama 3.1 8B and Llama 4 Maver-
ick achieve higher Sense Awareness with Simple
prompts than with Normal ones, which is an excep-
tion to the overall pattern. Among all languages,
Chinese also shows the smallest decline from Nor-
mal to Simple prompts.

Interestingly, Llama 3.1 8B shows poor Sense
Awareness in non-English languages, even with
Normal prompts. Our DPO model consistently
outperforms all others across prompt types and lan-
guages, whereas Llama 3.1 8B, its base model, ex-
hibits the lowest performance. However, except for
Russian, our model responded in English despite
being prompted in the respective language.

5 Discussion

Our findings reveal that simple language, particu-
larly through Simple and ELIS prompts, drastically
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reduces the completeness of homonym definitions.
Yet, even Normal prompts yield suboptimal results.
In the HOWN dataset, completeness for Normal
prompts ranges from 68.63% (DeepSeek v3) to
83.66% (Qwen3-30B A3B), falling short of ideal
performance (see Table 1). Under ELIS, complete-
ness drops dramatically, falling as low as 1.31%
(GPT-40 mini) to 15.69% (Qwen3-30B A3B). Sim-
ilarly, definition coverage is lower in simpler set-
tings, indicating a loss of nuanced meanings.

We observe a similar trend in Sense Awareness
across all languages in the ML-WIC dataset. Fur-
ther, inter-model variance differs across prompt
types and languages in the multilingual setting.
This variance likely reflects the influence of each
language during training. Additionally, Llama 3.1
8B demonstrates notably low performance in non-
English languages. Here, its smaller model size
probably contributes to this limitation.

The tendency of LLMs to provide only one or a
subset of definitions in simpler settings may first
seem intuitive, as it reduces complexity. However,
this reflects a misunderstanding of simplification.
Simplification should enhance understandability
without sacrificing information. While it may be
reasonable to present fewer senses in simpler set-
tings, responses should still incorporate HeSA to
ensure completeness. These findings align with
prior work by Trienes et al. (2024), highlighting
simplification-induced information loss in question-
answering tasks. Similarly, Kong et al. (2022) ana-
lyzed context-dependent definitions and found that
simplified versions achieve lower BLEU scores and
sentence similarity than complex ones, further sup-
porting the trade-off between simplification and
information retention.

To address these challenges, we employed DPO
and Multi-Sense-Aware Prompting, which both
showed promising improvements in definition qual-



ity. However, we did not evaluate these meth-
ods on single-definition words, where they might
have unintended effects, such as overcomplicat-
ing responses. An alternative can be Steering Vec-
tors, used by Rimsky et al. (2024). These can en-
hance model behavior at inference time without
increasing prompt length (as in Multi-Sense-Aware
Prompting) or requiring fine-tuning (as in DPO).

In the multilingual setting, the performance of
our DPO model reveals intriguing patterns. The
base model exhibits by far the weakest performance
in non-English languages, whereas the DPO-tuned
model consistently outperforms others across all
scenarios. Notably, the DPO model frequently re-
sponds in English, even when prompted in other
languages, which may reflect its training bias. As
we did not verify the factual accuracy of responses,
some outputs may include hallucinations. Never-
theless, the success of DPO fine-tuning remains
evident: Despite training a relatively small model
on a limited English dataset in the simple prompt
setting, it achieved superior performance across all
prompt types and languages. We thus argue that
LLMs are capable of giving complete homonym
definitions. However, they are limited by the ex-
pected model behavior.

6 Conclusion

In this paper, we analyze how LLMs behave in
homonym definition generation without additional
context, a setting that requires context-independent
understanding. We have shown that LLLMs have an
overall reduced multi-sense awareness, especially
for simplified outputs, indicating an oversimplifica-
tion of contents.

These findings highlight the need for LLMs to
better serve diverse users, particularly marginal-
ized groups like non-native speakers and individ-
uals with cognitive impairments. These groups
encounter challenges due to linguistic exclusion,
underscoring the importance of inclusive design
(Freyer et al., 2024). Improving LLM inclusivity is
essential for building more accessible and effective
language technologies.

To support reproducibility and enable future re-
search, we provide a repository’® containing our
code, scripts, data preprocessing routines, evalua-
tion tools, additional results, and model outputs.

3https://github.com/lukasellinger/homonym-eval

7 Limitations

LLM Judge The evaluation scores of our LLM
judge are sensitive to scoring prompt wording, po-
tentially introducing variability. Inherent LLM bi-
ases may also cause systematic differences from
human judgments (Rimsky et al., 2024). Addi-
tionally, prior work suggests LLMs underperform
in simplified settings, which may affect automated
evaluation reliability (Anschiitz et al., 2024; Anony-
mous, 2025). Nonetheless, our human evaluation
closely mirrors LLM judge scores. The differences
observed between prompt types far exceed any po-
tential error margin, strongly reinforcing our find-
ings’ robustness.

Selected Prompts Our study employed three
predefined prompts to elicit definitions, reflecting
choices a typical user might make without opti-
mizing for prompt variation. However, LLMs are
highly sensitive to prompt phrasing, which can im-
pact response quality (Brown et al., 2020). While
our approach mirrors realistic user behavior, it does
not account for potential gains from prompt opti-
mization. Future research could systematically in-
vestigate the effects of varied or optimized prompts
on LLM performance.

Factuality of Definitions We did not explicitly
verify the factual accuracy of the definitions gen-
erated by the models. As a result, a response may
be structurally complete and fully adhere to the
HeSA framework, yet still contain definitions that
are factually incorrect or misleading.

Reliance on WordNet Our analysis of defini-
tion completeness and returned definitions relied
solely on WordNet. Although WordNet is a widely
adopted resource, this choice may not capture defi-
nitional nuances in other databases. Future studies
could incorporate alternative resources, such as
ConceptNet (Speer et al., 2017) or Wiktionary, to
validate our findings across diverse lexical datasets.
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