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Abstract

In this work, we propose a Multi-LLM summa-
rization framework, and investigate two differ-
ent multi-LLM strategies including centralized
and decentralized. Our multi-LLM summariza-
tion framework has two fundamentally impor-
tant steps at each round of conversation: gener-
ation and evaluation. These steps are different
depending on whether our multi-LLM decen-
tralized summarization is used or centralized.
In both our multi-LLM decentralized and cen-
tralized strategies, we have k different LLMs
that generate diverse summaries of the text.
However, during evaluation, our multi-LLM
centralized summarization approach leverages
a single LLM to evaluate the summaries and
select the best one whereas k LLMs are used
for decentralized multi-LLM summarization.
Overall, we find that our multi-LLM summa-
rization approaches significantly outperform
the baselines that leverage only a single LLM
by up to 3x. These results indicate the effec-
tiveness of multi-LLM approaches for summa-
rization.

1 Introduction

Large language models (LLMs) have been shown
to have the potential to produce high-quality sum-
maries (Chowdhery et al., 2022; Zhang et al., 2023;
Goyal et al., 2023; Pu et al., 2023b). However, de-
spite the remarkable progress in LLM-based sum-
marization, limitations still exist for documents
where useful information may be sparsely dis-
tributed throughout the text. Research by (Liu et al.,
2023) highlights that a naive application of LLMs
may overlook critical details or fail to grasp the
holistic meaning of a document, indicating the need
for more refined methods.

To address this, recent efforts have explored
prompt-engineering techniques to guide LLMs to-
wards producing better summaries (Adams et al.,
2023). These techniques, while promising, still

face limitations in consistently delivering high-
quality summaries across different document types
and structures. We show that by combining the
capabilities of multiple models with a diverse set
of knowledge bases it’s possible to achieve more
robust summaries across domains.

Summary of Main Contributions.

* We propose the first framework for multi-
LLM text summarization and investigate two
topologies: centralized and decentralized.

* We find that multi-LLM text summarization
often performs better than using a single LLM
for summarization, and we show that the best
performing method in the framework aligns
with human judgments.

* We conduct experiments on how prompting,
number of LLLMs, and various combinations
of generating and evaluating LLMs can affect
quality of summaries in the multi-LLM setup.

2 Related Work

2.1 Summarization

Recent advancements in summarization have
increasingly leveraged large language models
(LLMs), moving beyond fine-tuned transformer
models like Pegasus, BART, and T5. Studies con-
sistently show that LLMs can generate summaries
with higher coherence, relevance, and factual ac-
curacy, often rivaling or surpassing human-written
summaries (Goyal et al., 2023; Zhang et al., 2023;
Pu et al., 2023b).

For example, Goyal et al. (2023) demonstrated
that GPT-3 (text-davinci-002) produced summaries
preferred by human evaluators over fine-tuned mod-
els like Pegasus and BRIO on structured datasets
such as CNN/DM (Nallapati et al., 2016) and
XSUM (Narayan et al., 2018). Similarly, Zhang
et al. (2023) emphasized the importance of instruc-
tion tuning in achieving superior zero-shot perfor-
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mance for summarization tasks. Pu et al. (2023b)
further highlighted improved factual consistency
and reduced hallucinations when using LLMs.

While these studies validate the potential of
LLMs in summarizing well-structured texts, they
may falter for inputs lacking clear structural cues
and exhibiting greater complexity. In Keswani
et al. (2024), semantic clustering and multi-stage
summarization with LLaMA?2 are used to man-
age lengthy inputs, and in Chhibbar and Kalita
(2024), middle truncation, “skimming”, and redun-
dancy removal show better performance for texts
longer than 70,000 words. However, some past
approaches rely on predefined hierarchical process-
ing strategies that oversimplify the nuanced rela-
tionships within the text. Moreover, as Liu et al.
(2023) noted, LL.Ms tend to neglect content from
the middle sections of longer documents, resulting
in incomplete or unbalanced summaries.

Our work aims to improve performance for both
long and short text summarization, and it builds
upon aforementioned foundations by proposing a
multi-LLM framework designed to overcome these
shortcomings through information exchange and
collaborative synthesis.

2.2 Multi-LLM

The concept of leveraging multiple LL.Ms collab-
oratively has gained traction in recent research,
particularly for tasks requiring complex reasoning
and factual accuracy. For instance, Liang et al.
(2024) introduced the Multi-Agent-Debate (MAD)
framework, where LLMs engage in iterative de-
bates to refine their reasoning. This framework
demonstrated that a multi-agent GPT-3.5-Turbo
setup outperformed GPT-4 on reasoning datasets.
Similarly, Chen et al. (2024) proposed RECON-
CILE, a framework where LLMs collaboratively
refine answers and explanations, achieving signifi-
cant improvements over single-agent systems. Li
et al. (2024) extended this line of research by op-
timizing agent connections, showing that sparse
networks can maintain performance while reduc-
ing computational overhead.

Although these studies reveal the potential of
multi-LLM approaches, their focus remains on
structured reasoning tasks, such as question an-
swering and fact-checking. They have not been
adequately explored in the context of synthesizing
distributed information, addressing content imbal-
ances, and preserving the coherence of summaries
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across extended texts.

We hope to bridge this gap by adapting multi-
LLM frameworks to the domain of document sum-
marization, addressing limitations of both single
LLM and traditional hierarchical techniques, and
positioning multi-LLM summarization as a promis-
ing solution.
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Figure 1: Centralized and Decentralized approaches us-
ing a 5-LLM example. Similar topologies can be applied
to any ("k") number of LLMs. In centralized interac-
tions, all models communicate with a central model;
in decentralized interactions, each model communicate
with every other model and also itself.

3 Multi-LLLM Summarization
Framework

In this work, we propose a novel multi-LL.M sum-
marization framework that leverages multiple large
language models to enhance summarization qual-
ity of long document input. Through the distri-
bution of generation and evaluation of candidate
summaries across multiple models, our framework
aims to provide better summaries than single LLM
methods, leveraging expertise from different mod-
els. We present two interaction topologies, cen-
tralized and decentralized, to guide the collab-
oration, evaluation, and refinement of summaries
between LLMs. Visually these two methods can
be represented at a high level in Figure 1. In the
datasets we test, articles are typically tens of thou-
sands of words long and exceed the context window
of most standard LLMs. To handle this, we estab-
lish a two stage process that involves chunking the
source document, independently summarizing each
chunk of the source document, and then applying a
second round of chunking and summarization on
the concatenated intermediate results. Throughout
both these stages, both frameworks allow multiple
LLMs to collaborate and converge on a single final
high quality summary of the entire original refer-
ence document. Table 1 provides an overview of
our framework’s four main variations.



Multi-LLM Summarization
Framework

General Mechanism

Stage

Single-Round (Sec. 4.1)

CENTRALIZED (Sec. 4)

Generation (§ 4.1)
Evaluation (§ 4.1)

Conversational (Sec. 4.2)

Generation (§ 4.2)
Evaluation (§ 4.2)

Single-Round (Sec. 5.1)

DECENTRALIZED (Sec. 5)

Generation (§ 5.1)
Evaluation (§ 5.1)

Conversational (Sec. 5.2)

Generation (§ 5.2)
Evaluation (§ 5.2)

Table 1: Overview of Multi-LLM Framework (Sections 4-5).

Algorithm 1 Centralized Multi-LLM Summary

Require: ordered set S = {Si,...,Sm} of summaries,
set M = {M;,..., My} of k LLMs, a central agent
C' € M, max number of conversational rounds ¢ax, ini-
tial summarization prompt P (e.g., Figure 2), evaluation
prompt Pe.c (e.g., Figure 5) for centralized version
Ensure: summary S™ of the text
1: S = CREATESUMMARY(S)
2: for i = 1 to tmax do
: for each model M; € M do
S§" = M, (P, 5)
Let S; = {S{", 85", ...
EW = C(Pe, S:)
r = AGGRRESULTS(E(")
J argmax ;¢ aq 7
Set §* + S
if CONVERGED(r) then return S*
Set P to prompt in Figure 3.

> conversation rounds
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Algorithm 2 Decentralized Multi-LLM Summary

Require: ordered set S = {S1,...,Sm} of summaries, set
M = {M,..., My} of k LLMs, max number of con-
versational rounds ¢max, initial summarization prompt P
(e.g., Figure 2), evaluation prompt P, (e.g., Figure 4)

Ensure: summary S* of the text

1: S = CREATESUMMARY(S)

2: for i = 1to tmax do

3: for each model M; € M do
S = M;(P,S)

LetS; = {5,557 ... s

for each model M; € M do
E]<'l) = Mj(PEv Sy)v A SI(:))

Set& = {EY,EY, ... B}

9: r = AGGRRESULTS(E", .. ., E,(j))

10: J 4 argmax . c a7

> conversation rounds

® Fan s

11: Set§* « S
12: if CONVERGED(r) then return S*
13: Set P to prompt in Figure 3.

4 Centralized Multi-LLM Summarization

The steps for centralized summarization can be
found in Algorithm 1. This method leverages mul-

Provide a concise summary of the text in
around 160 words. Output the summary text
only and nothing else.

[text]

Figure 2: Prompt for generating the initial summary in
the first round.

Given the original text below, along with
the summaries of that text by [k] LLMs,
please generate a better summary of the
original text in about 160 words.
ORIGINAL:

[text]
Summary by M;:

[LLM 1’s summary]

Summary by Mjy:

[LLM k’s summary]

Figure 3: Generation prompt that is used after the initial
round of conversation among the multiple LLMs. Note
that the above prompt is for generating the final sum-
mary, however, for the chunk-level generation, it would
just be the actual chunk.

tiple LLMs to generate candidate summaries and
uses a central LLM to evaluate their quality and
guide iterative refinements.

4.1 Single Round

In the simplest case, we prompt each LLM once,
gather their summaries, and then perform a single
evaluation step to select the best final summary.
This is the initial process before we extend it to
multiple rounds.
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Given the original text below, along with
the summaries of that text by [k] agents,
please evaluate the summaries and output the
name of the agent that has the best summary.
Output the exact name only and nothing else.
ORIGINAL:

[chunk or concatenated chunk summaries S]

Summary by agent_1:

[LLM 1’s summary]

Summary by agent_k:

[LLM k’s summary]

Figure 4: Evaluation prompt for evaluating the sum-
maries generated by different LLMs using our conversa-
tional (decentralized) multi-LLM framework. "k" is a
parameter reflecting the number of LLMs that generate
summaries.

Given the initial text below, along with the
summaries of that text by [k] LLMs, please
evaluate the generated summaries and output
the name of the LLM has the best summary. On
a separate line indicate a confidence level
between @ and 10.

ORIGINAL:

[text]
Summary by M;:

[LLM 1’s summary]

Summary by Mj:
[LLM k’s summary]

Remember, on a separate line indicate a
confidence level between @ and 10

Figure 5: Evaluation prompt for evaluating the sum-
maries generated using our conversational (centralized)
multi-LLM framework. More specifically, we have
added an instruction for centralized multi-LLM sum-
marization approach that in addition to providing the
best summary, it also outputs the confidence level be-
tween 0 and 10. "k" is a parameter reflecting the number
of summary-generating LLMs.

Generation Phase: In the single-round setting,
each LLM from the list of participating models
M = {My,..., M} independently generates a
summary of the same input text using a common
prompt P. The prompt P is illustrated in Figure 2.
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Provide a concise summary of the text in
around 160 words. Output the summary text
only and nothing else.

[concatenated chunk summaries S]

Figure 6: Generation prompt for generating the final
summary from the summarized chunks using our con-
versational (decentralized) multi-LLM framework. This
prompt is the same as the one for the initial summary.

Formally, for each LLM M; € M, the output
is S; = M;(P,S) where S represents the input
text. Running this step for all M; yields a set of
summaries S = {51, ..., Sk}

This initial generation stage corresponds to line 4
of Algorithm 1. Conceptually, each model con-
tributes its unique perspective, leading to a diverse
pool of candidate summaries, which is important
for robust summary selection in the following eval-
uation phase.

Evaluation Phase: After collecting the set of
candidate summaries S, we select a central agent
C € M to evaluate these summaries. The central
LLM C uses an evaluation prompt P,., as shown
in Figure 5, to assess the quality of each summary.
To reduce potential bias arising from authorship
attribution, we use anonymized identifiers for sum-
maries like agent_1, agent_2, etc. during evalua-
tion.

Formally, we obtain £ = C( P, S), where E is
the central LLM’s evaluation of all candidate sum-
maries. This includes the choice for the best sum-
mary (expressed as its anonymized identifier) and
a confidence score for that evaluation (expressed
as an integer from O to 10), denoted together as
r = AGGRRESULTS(FE) in Algorithm 1. We de-
anonymize the identifier to recover the text of the
selected summary .S; and set this as our final output
S*. In the single-round regime, this terminates the
process as no further iterations are performed.

In the evaluation prompt, we include the prompt
to output a confidence score so there is a variable
on which to impose a stopping condition. This
allows us to extend the centralized process to mul-
tiple rounds of generation and evaluation using that
condition. This process is explained in subsequent
sections.

4.2 Conversational

In the conversational approach, we repeat the gen-
eration and evaluation phases multiple times. We



define each generation-evaluation process as one
round and define conditions under which the pro-
cess ends or a new round should begin, up to a
maximum number of rounds.

Generation Phase: The first round of the con-
versational approach mirrors the single-round pro-
cedure (Section 4.1). Each LLM M generates
an initial summary Sj(l) = M;(P,S) from the
original input text S using the prompt P. If the
evaluation result from the previous round has a
confidence score less than the threshold or, if the
LLM fails to output a readable confidence score,
the pipeline proceeds to the next round. For the
second and subsequent rounds, we use the prompt
P® shown in Figure 3. LLMs in the second and
subsequent rounds have access to both the text
to be summarized and summaries from the pre-
vious round. Concretely, in round 7 > 1 we have
S\ = M;(P®), 5). The hope is that LLM is able
to iteratively improve summarization based upon
previous outputs from itself and other models.

Evaluation Phase: The evaluation phase in
round ¢ > 1 is conceptually similar to the single-
round setting (Section 4.1), but now operates on
candidate summaries generated immediately before
in the generation phase S; = {S%Z), e S,(;)}. The
central LLM C evaluates these candidates like so:
EW =C (Pec, Si), where P, is the prompt. If the
confidence level meets the threshold, the process
terminates, and the summary chosen by the central
LLM is accepted as S*. Otherwise, we proceed to
the next round of summary generation and evalua-
tion. For the confidence scores we have chosen the
range 0-10 as it is fine-grained but also is one of
the most common rating scales.

5 Decentralized Multi-LLM
Summarization

In Section 4 we introduced the summarization pro-
cedure for centralized approach. We now extend
the paradigm for the evaluator as well. In the de-
centralized approach, multiple LLMs also partici-
pate in the evaluation process with the hope that a
best summary decided on consensus is more robust
compared to a single model’s decision.

5.1 Single Round

Generation Phase: Generation procedure is the
same as that in the centralized approach described
in Section 4.1. As before, multiple LLMs inde-
pendently generate summaries for the input text,

obtaining the list of summaries S = {S1,..., Sk}

Evaluation Phase: For evaluation, each model
that authored a summary is prompted with a new
evaluation prompt (Figure 4) which does not in-
clude a confidence level and receives the text to be
summarized along with summaries authored by all
agents incl??ing itself. More formally, model pref-
1

erences I}, ... ,E,?) are collected, where each

Ej(»l) represents model M;’s choice of the best
summary among Sy), oS ,(;). These preferences
are aggregated into a result vectorr € 1,..., k¥,
where each element r; indicates which model’s
summary was chosen by model M;. Conver-
gence is achieved when a majority of models se-
lect the same summary, formally expressed as
dnel,...;k:|j:rj=m|> % ! When no ma-
jority choice emerges, the single-round approach
(tmax = 1) the algorithm selects the summary
from a designated tie-breaker model M;, where
t € 1,..., k. Since the tie-breaker model can be
any model in the multi-LLM setup, we run ex-
periments with different choices of evaluator and
tie-breaking models. Formally, the final summary
S* is determined as:

1 . . 1
o S,(,i) 1fE|m:\{]:EJ(.1):m}]>§
StV if max {7 : BV =1} < &

i k
wherem € 1,...,k:[j:r; =m|> 3.

5.2 Conversational

The conversational approach extends the decentral-
ized framework by introducing multiple rounds of
generation and evaluation phases. Each generation-
evaluation cycle constitutes a round, with iterations
continuing until either consensus is achieved or a
maximum number of rounds (¢,.x) is reached.

Generation Phase: Generation follows the
methodology in Section 4.1, producing the set of
summaries S = S51,...,5;. A key distinction
from the single-round approach lies in the condi-
tional regeneration mechanism: when consensus
fails in the first round, subsequent rounds use a
new prompt (Figure 3) which includes generated
summaries from previous evaluations.

Evaluation Phase: The first round of evaluation
is identical to that in the single-round approach,
but enters additional rounds with new generation

"Here our implementation requires votes exceeding abso-
lute majority for a summary to be immediately selected. In

the case of 2 LLMs, this is equivalent to a unanimous decision
because one vote does not satisfy absolute majority.
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prompts. Formally, let EJ@ represent model M;’s
choice in round i. In the single-round case, non-
consensus (when max,, |{j : Ej(-l) =m}| < %)
triggers an immediate fallback to a tie-breaker
model. In contrast, the conversational approach
initiates a new generation-evaluation round with an
updated prompt (Figure 3). This process continues
until either a majority consensus emerges or ,ax
rounds are exhausted. After ¢,,,x rounds without a
consensus, the algorithm defaults to the tie-breaker
mechanism described in Section 5.1.

6 Experiments

6.1 Experimental Setup

We use test sets of ArXiv (Cohan et al., 2018) and
GovReport (Huang et al., 2021) to evaluate our
summarization methods. Due to limited resources,
we select only the first 20% or the first 1,288 docu-
ments from ArXiv. These documents range from
241 to 44,489 words long, averaging 5,950 words.
Their summaries range from 46 to 290 words long,
averaging 164 words. The GovReport dataset con-
tains 973 articles ranging from 396 to 31,371 words
long, averaging 7,379 words long, while their sum-
maries range from 67 to 1,363 words long, aver-
aging 571 words. We assess the quality of LLM-
generated summaries using ROUGE-1, ROUGE-L,
BLEU-1, and BLEU-4 metrics. For comparison
with our multi-LLM approach, unless otherwise
mentioned, we leverage GPT-3.5, GPT-40, GPT-
40 mini, and LLaMA?3-8B as baselines. For these
models, we perform the same chunking across all
models, and the summarization prompt is identical
to that in the first round of the multi-LLM process
(Figure 6). Unless otherwise mentioned, all models
use 4K-character chunk-size, and the final sum-
mary represents a concatenation of the generated
summaries. Finally, unless otherwise mentioned,
we set W = 160 for all the models.

6.2 Main Results

Our multi-LLM framework outperforms single-
LLM baselines by up to 3%, as seen in Table 2.
The fact that both precision- and recall-focused
metrics improved means the multi-LLM approach
is robust. On average the centralized method im-
proves the scores by 73%, and the decentralized
method outperforms baselines by 70%.

We see that additional rounds of generation and
evaluation do not further improve scores. This
shows that even with just 2 LLMs and a single
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round of generation and evaluation we observe
performance gains, meaning that the least costly
version of the multi-LLM system is still able to
deliver better summaries compared to single-LLM
approaches. We suspect a reason multiple rounds
of summaries do not outperform single round sum-
maries is that models tested perform relatively con-
sistently for an input text while a multi-round ap-
proach absent conversation history (and therefore a
model’s previous summaries) relies on fluctuations
in model performance to produce better summaries
that is selected by the judge LLM.

6.3 Ablation Studies

We also assess the performance of the multi-LLM
framework with alternative setups, which again pro-
duce competitive results compared to the first de-
centralized and centralized setup and higher scores
than single-LLLM baselines. It shows that our pro-
posed framework applies to these setups as well.

Varying Model Combinations: In Table 2 we
use GPT-3.5 and GPT-40 mini as the participating
models in the multi-LL.M framework. We further
experiment with alternative combinations of mod-
els in the framework. As shown in Table 3 we again
observe improvements across the board compared
to the single-LLM baselines in Table 2, regardless
of default model and number of rounds and type of
interaction (decentralized vs. centralized).

Varying the Number of LLLMs: In this experi-
ment we use 3 LLMs in the setup instead of 2. We
observe a 54% improvement for the decentralized
method and 59% for the centralized method on
average over single-LLM summaries, and for indi-
vidual scores we see improvements of up to 2.9x.
More detailed results are presented in Table 4.

While the 3-LLM system still outperform the
single-LLM baseline, increasing the number of
LLMs from 2 to 3 does not improve performance
upon the 2-LLLLM system, contrary to the trend ob-
served in the previous sections where 2-LLLM sys-
tem outperform single-LLM baselines.

We offer two possible explanations for this find-
ing. First, adding an additional LLM increases
the complexity of the pipeline, which may lead to
propagation of noise or redundancy in intermediate
summaries. This added complexity could dilute the
strengths of individual LLMs and reduce overall
coherence and relevance in the final output. Sec-
ond, the integration of a third LLM introduces a
greater risk of inconsistencies in summarization



ArXiv GovReport
ROUGE-11t ROUGE-Lt BLEU-11 BLEU-41 ROUGE-17 ROUGE-Lt BLEU-11 BLEU-47%1

LLaMA3-8B 0.180 0.106 0.084 0.021 0.403 0.177 0.242 0.079
GPT-3.5 0.193 0.114 0.093 0.026 0390 0.178 0.226 0.084

GPT-40 mini 0217 0.118 0.108 0.020 0384 0.156 0.224 0.058

GPT-40 0.165 0.095 0.073 0.015 0372 0.155 0211 0.059

Decentraligeq  MUliLLM 3 round max 0313 0.163 0.200 0.029 0.447 0.180 0.458 0.098
€0 Multi-LLM 1 round max  0.339 0.180 0.224 0.043 0.468 0.190 0.477 0.112
Contralieq  Muli-LLM 3 round max 0329 0.168 0217 0.031 0.468 0.189 0.470 0.109
entrafize Multi-LLM 1 round max  0.333 0.173 0.219 0.036 0.479 0.197 0.485 0.121

Table 2: Results for the decentralized and centralized Multi-LLM approaches. For the multi-LLM pipelines partic-
ipating models are GPT-3.5 and GPT-40 mini. The results use GPT-3.5 for the evaluator in the centralized approach,
and summaries from GPT-3.5 are chosen in tie-breaking for both centralized and de-centralized approaches.

Max Rounds Multi-LLM Model Combination ROUGE-11 ROUGE-L1 BLEU-11 BLEU-41

GPT-3.5 & GPT-40 mini 0.313 0.163 0.200 0.029

3 Rounds GPT-40 & GPT-3.5 0.313 0.159 0.197 0.025

. GPT-40 & GPT-40 mini 0.302 0.152 0.185 0.022
Decentralized

GPT-3.5 & GPT-40 mini 0.339 0.180 0.224 0.043

1 Rounds GPT-40 & GPT-3.5 0.328 0.170 0.212 0.033

GPT-40 & GPT-40 mini 0.305 0.153 0.189 0.023

GPT-3.5 & GPT-40 mini 0.329 0.168 0.217 0.031

3 Rounds GPT-40 & GPT-3.5 0.325 0.166 0.214 0.029

. GPT-40 & GPT-40 mini 0.304 0.153 0.188 0.022

Centralized

GPT-3.5 & GPT-40 mini 0.333 0.173 0.219 0.036

1 Rounds GPT-40 & GPT-3.5 0.339 0.177 0.228 0.039

GPT-40 & GPT-40 mini 0.306 0.155 0.190 0.022

Table 3: Varying the combination of models in our Multi-LLM approaches. Note rounds is the max number of
rounds allowed and all results are for ArXiv. Bolded numbers are best scores for each round-model combination.
Underlined numbers are overall best scores for each metric in this table. Furthermore, the central LLM is highlighted
in blue and for the decentralized multi-LLM approaches, we highlight the LLM used for tie-breaking in green.

ArXiv GovReport
ROUGE-11 ROUGE-Lt BLEU-11T BLEU-41 ROUGE-11 ROUGE-Lt BLEU-17 BLEU-41
Decentralized 3 rounds 0.313 0.163 0.200 0.029 0.447 0.180 0.458 0.098
2-LLMs 1 rounds 0.339 0.180 0.224 0.043 0.468 0.190 0.477 0.112
GPT-3.5 Evaluator
. 3 rounds 0.329 0.168 0.217 0.031 0.468 0.189 0.470 0.109
Centralized
1 rounds 0.333 0.173 0.219 0.036 0.479 0.197 0.485 0.121
Decentralized 3 rounds 0.301 0.154 0.184 0.024 0.445 0.178 0.449 0.095
3-LLMs 1 rounds 0.299 0.152 0.184 0.023 0.442 0.178 0.447 0.094
GPT-40 mini Evaluator
Centralized 3 rounds 0.300 0.153 0.185 0.023 0.443 0.178 0.447 0.094
1 rounds 0.300 0.152 0.186 0.023 0.442 0.178 0.449 0.093
Decentralized 3 rounds 0.300 0.154 0.184 0.024 0.446 0.179 0.443 0.094
3-LLMs ¢ 1 rounds 0.309 0.159 0.193 0.027 0.451 0.182 0.459 0.099
GPT-3.5 Evaluator
. 3 rounds 0.294 0.151 0.177 0.023 0.451 0.181 0.440 0.095
Centralized
1 rounds 0.329 0.172 0.214 0.036 0.460 0.189 0.451 0.104

Table 4: Multi-LLM framework with three models. We bold the best results for each combination of the experimental
variables, and we underline the best results overall. For ease of comparison, we reproduce the best-performing
2-LLM results obtained in Table 2

Input Tokens Output Tokens Average Tokens Total Tokens

Decentralized Multi-LLM 3 round max 383.73M 25.63M 14.62M 409.37TM
ceentralized  \fulti-LLM 1 round max 129.36M 11.89M 11.77M 141.25M
Contraligeq  MUliFLLM 3 round max 216.65M 19.55M 14.76M 236.2M
entrafize Multi-LLM 1 round max 77.69M 6.77M 10.56M 84.46M

Table 5: Cost Analysis of our Multi-LLM Decentralized and Centralized Summarization Methods. Note M=
millions of tokens.

358



ArXiv GovReport

ROUGE-11 ROUGE-L1 BLEU-11 BLEU-41 ROUGE-11 ROUGE-L{ BLEU-11 BLEU-41

Decentraliged  MUli-LLM 3 round max 0317 0.160 0.206 0.026 0.445 0.178 0452 0.094
- Multi-LLM 1 round max ~ 0.326 0.163 0.221 0.027 0438 0.175 0446 0.089
GPT-40 mini Evaluator
Contraliged  MuG-LLM3roundmax 0315 0.158 0.201 0.027 0.441 0.176 0.447 0.092
entralized  Multi-LLM 1 round max  0.330 0.165 0222 0.028 0.439 0.175 0.446 0.090
Decentralized MULLM 3 round max 0313 0.163 0.200 0.029 0.447 0.180 0458 0.098
GPLAS Eval Multi-LLM 1 round max ~ 0.339 0.180 0.224 0.043 0.468 0.190 0477 0.112
Contralied  Muli-LLM 3roundmax  0.329 0.168 0217 0.031 0.468 0.189 0.470 0.109
entratize Multi-LLM 1 round max ~ 0.333 0.173 0219 0.036 0479 0.197 0485 0.121
Decentralized Muli-LLM 3round max  0.326 0.166 0214 0.030 0.446 0.179 0456 0.098
GPTdo Eval ccentralized  Mult-LLM I round max 0325 0.165 0211 0.030 0.456 0.183 0.461 0.100
Contralied  Muli-LLM 3roundmax 0318 0.162 0.206 0.027 0.449 0.181 0452 0.096
Multi-LLM 1 round max ~ 0.327 0.167 0215 0.031 0.461 0.186 0.467 0.105

Table 6: Results for different evaluating and tie-breaking models for Multi-LLM approaches. The choice of the
tie-breaker models is the same as the choice of evaluator model. We bold the best results for each combination of
the experimental variables, and we underline the best results overall. For ease of comparison, we reproduce the

best-performing 2-LLM results obtained in Table 2

styles, which may negatively affect evaluation met-
rics like ROUGE that rely on lexical overlap.

6.4 Cost Analysis

Table 5 presents the cost analysis for both decentral-
ized and centralized methods based on the results
in Table 2. The input and output token counts for
evaluation for the decentralized method are twice
those for the centralized method, which reflect the
number of LLMs in the setup.

On a more theoretical note, let I denote the num-
ber of input tokens in the original text and Opax
represent an upper bound on summary length. In
each conversation round ¢ (up to tyax rounds), we
prompt k£ LLMs with I input tokens (we ignore
instruction texts here since they are often short and
constant in length). Each LLM then produces up to
Omax output tokens. We consider input and output
tokens separately since they often incur different
costs.

For the generation phase in the centralized
method, the input token cost per round is O(k - I),
and the output token cost is O(k - Omax). For
evaluation, the central LLM processes k candidate
summaries, i.e. the input token cost is O (k- Opax)-
The output cost for evaluation is O(1): since we
instruct the central LLM to output only an anony-
mous identifier for the chosen summary, we reduce
output token length in evaluation, thereby reduc-
ing the chance of hallucination and enabling more
straightforward cost accounting.

Over tmax rounds, the total input token usage is
in the order of O(tmax - k - ({ + Omax)). Output
tokens i8 O(tmax - k - Omax). Although this com-
plexity may appear large, tax 1S typically small
(e.g., 2 or 3), and Oy, is usually constrained (e.g.,
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a brief 160-word summary).

For the decentralized approach, the worst-case
generation token cost from generation remains the
same as the centralized method. However, evalu-
ation cost scales to O(tmay - k? - Omax) because
all k£ models now receive O(k - Opayx) input to-
kens. This results in the new total input token us-
age in the order of O(tyax - k- (I + k- Omax)), Or,
O(tmax - k- T + k% - Omax). Since k2 - Opax may
dominate for large k, this term can become the
bottleneck. However, in practical scenarios, k (the
number of LLMs) is often small (e.g., 2-5), making
the decentralized evaluation overhead manageable.
The output token for generation remains the same,
but for evaluation, it scales to O(tyax - k- 1), since
now all £ models are evaluating. The total out-
put token cost, therefore, is still dominated by the
generation phase, giving O(tmax * k - Omax). In
other words, for both centralized and decentralized
methods, output tokens scale in the same way. This
highlights the advantage of only outputting identi-
fiers in the evaluation phase as API costs per token
are often higher for output than for input.

7 Conclusion

We presented a multi-LLM framework for text sum-
marization, and proposed two strategies, decentral-
ized and centralized summarization. We demon-
strated that the proposed multi-LLM summariza-
tion techniques lead to better generated summaries.
Our results indicate that multi-LLM approaches are
useful for improving text summarization. Although
the scope of this study is limited to few and mostly
proprietary models due to resource constraints, we
hope future works expand upon the diversity of
models for more robust results.
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