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Abstract

We investigate lightweight and easily applica-
ble data augmentation techniques for dialectal
audio classification. We evaluate four main
methods, namely shifting pitch, interval re-
moval, background noise insertion and inter-
val swap as well as several subvariants on
recordings from 20 German dialects. Each
main method is tested across multiple hyperpa-
rameter combinations, inlcuding augmentation
length, coverage ratio and number of augmen-
tations per original sample. Our results show
that frequency-based techniques, particularly
frequency masking, consistently yield perfor-
mance improvements, while others such as time
masking or speaker-based insertion can nega-
tively affect the results. Our comparative analy-
sis identifies which augmentations are most ef-
fective under realistic conditions, offering sim-
ple and efficient strategies to improve dialectal
speech classification.

1 Introduction

Audio data augmentation (DA) has been widely
studied, with methods typically targeting either raw
waveforms (Ko et al., 2015), where speed changes
are recommended for speech recognition, or spec-
trogram representations. Spectrogram-based ap-
proaches such as SpecAugment (Park et al., 2019)
and SpecMix (Kim et al., 2021) apply image-based
transformations but lack reversibility and constrain
feature extraction. In contrast, raw-audio augmen-
tation preserves full signal content and allows flex-
ible downstream processing. Our work focuses on
simple, interpretable waveform-level techniques,
affecting both time and frequency dimensions.

Previous research in domains such as environ-
mental sound classification (ESC) and automatic
speech recognition (ASR) has shown varied effects
of different DA methods. For instance, Salamon
and Bello (2017) find pitch shifting most effective

for ESC, while Fukuda et al. (2018) show speed
perturbation improves ASR performance and noise
addition contributes the least in both cases. How-
ever, as we demonstrate, such findings do not nec-
essarily generalize to dialect classification, where,
for example, noise addition shows stronger benefits.
This highlights the need for domain-specific evalu-
ations. We address this by adapting the four simple
text-based methods from Wei and Zou (2019) to the
audio domain for speech classification, evaluating
their effect on dialectal audio through isolated and
systematic parameter studies.

Previous research includes SpliceOut (Jain et al.,
2022), which shows that removing time intervals
from audio works better and is more efficient than
traditional time masking. In Mixing Signals (Xu
et al., 2022), the authors show that randomly mix-
ing audio from the same class helps the model
generalize better. Additionally, Braun et al. (2017)
introduce Accordion Annealing, a curriculum learn-
ing method where training starts with very noisy
audio (e.g., 0dB signal-to-noise ratio) and gradu-
ally includes cleaner audio, up to 50dB SNR. While
some surveys, such as Ferreira-Paiva et al. (2022),
cover a broad range of DA techniques, many focus
on spectrograms or evaluate only combined DA se-
tups without analyzing individual effects (Mushtaq
and Su, 2020; Mushtaq et al., 2021). In contrast,
our study provides a detailed, isolated evaluation of
each method in the context of dialect classification.

2 Experimental Framework

This section outlines the experimental setup: used
data and data preparation, classification pipeline,
augmentation techniques and evaluation setup.

2.1 Data
The audio data used originates from the REDE
project (Schmidt et al., 2020ff.), a large-scale
project on regional linguistic variation in Germany.
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Specifically, we focus on a subset in which speakers
were asked to translate 40 standard German sen-
tences into their local dialect. To ensure strong di-
alectal features, only recordings from older speak-
ers were selected. The 17.64-hour dataset consists
of spoken audio from 198 speakers, covering 20
distinct German dialects classified according to
Wiesinger (1983). All audio files were normalized
to mono, 16-bit and 16kHz.

2.2 Classification Pipeline
First, audio files are segmented into fixed-length
10-second samples with our experimental pipeline1.
Incomplete final segments are discarded to main-
tain consistency. For feature extraction, we utilize
the Trillsson4 model (Shor and Venugopalan, 2022)
to generate embeddings from raw audio. These
serve as input to a lightweight CNN (two hidden
layers with LeakyReLU + dropout, softmax output)
for dialect classification.

To ensure a fair evaluation, all models are trained
and validated on the same speaker-independent
data split. Specifically, for each dialect, 10% of
speakers are assigned to the validation set and 10%
to the test set. The remaining speakers are used
for training. Importantly, each speaker appears in
only one of the subsets (train, validation, or test) to
prevent the model from learning speaker-specific
characteristics rather than dialectal features.

To account for stochastic effects, each experi-
ment is run 50 times using fixed splits but varying
initializations and data order; the median weighted
F1-score over these runs is reported. Augmentation
strategies were compared via a two-sided Mann-
Whitney U test (Mann and Whitney, 1947) (imple-
mented via SciPy (Virtanen et al., 2020)) on the
distributions of weighted F1-scores, with Holm-
Bonferroni correction (Holm, 1979) (implemented
via statsmodels (Seabold and Perktold, 2010)) for
multiple comparisons (α=0.05, 231 tests).

2.3 Experimental Setup
Intervals are randomly selected subparts of each
10-second segment for augmentation. To explore
granularity and coverage, their size and portion are
controlled by two parameters: interval length laug
(duration of each subpart to augment) and augmen-
tation ratio α (portion of the segment to modify).
Given an audio segment of length laudio, the num-
ber of intervals naug applied per segment is then

1https://github.com/WoLFi22/
DialectClassificationPipeline

Figure 1: Example augmentation process: a 10-second
segment with laug=4s and α=1.0. Two non-overlapping
intervals (center) are augmented (right), leaving 2s un-
changed.

computed as: naug =
⌊
α·laudio
laug

⌋
.

A function selects naug non-overlapping inter-
vals randomly within each segment (see Figure 1).
Start positions for the intervals are sampled from a
shrinking valid range to ensure disjoint placement
within each 10-second segment.

To span a range from local to full-segment
changes, we use different sets of interval lengths
depending on the augmentation method. Meth-
ods requiring an even number of intervals use
lengths of {0.1, 0.3, 1, 4, 5} seconds; other meth-
ods use {0.3, 1, 4, 5, 10} seconds. Each original
audio yields up to six augmented versions nver to
remain computationally efficient. Augmentation
is implemented in Python using Praat (Boersma
and Weenink, 2021), Praat Vocal Toolkit (Corretge,
2012-2024) and Parselmouth (Jadoul et al., 2018).

2.4 Data Augmentation Techniques

The augmentation strategies in this work are in-
spired by the four basic operations of the EDA
framework for text classification (Wei and Zou,
2019): Synonym Replacement, Random Dele-
tion, Random Insertion, and Random Swap. Each
forms the basis of one main audio-based aug-
mentation technique, systematically tested across
all previously described parameter combinations.
Additional lightweight audio transformations are
grouped according to the four main methods and
evaluated using the best-performing settings (laug,
α, nver) of their main category.

Synonym Replacement is realized through Shift-
ing Pitch (SP), which alters pitch while preserving
timing and semantics. The target pitch is drawn
from the typical male vocal range (80–170Hz)
(Berg et al., 2017; Andreeva et al., 2014), with
an added variation of ±10 Hz. Related methods
include Time Reversing (TR), which reverses the
sample order; Loudness Confusion (LC), which
sets the peak amplitude of the interval to a ran-
dom value in the range [0.2, 0.8]; Time Stretch-
ing (TS) (pitch-preserving) and Speed Confusion

https://github.com/WoLFi22/DialectClassificationPipeline
https://github.com/WoLFi22/DialectClassificationPipeline
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(a) Shifting Pitch (b) Interval Removal

(c) Background Noise (d) Interval Swap

Figure 2: Mean weighted F1-scores for the four main augmentation methods across parameter settings. Cell
colors indicate absolute deviation from the non-augmented baseline (colorbar right). Text color denotes significant
improvement or decline relative to the baseline (green = better, red = worse, black = not significant), based on the
two-sided Mann–Whitney U test with Holm–Bonferroni correction (see Section 2.2).

(SC), which modifies both pitch and speed via re-
sampling. The last two use a factor in the range
[0.8, 1.2], as supported by other works (Mushtaq
et al., 2021; Salamon and Bello, 2017; Nanni et al.,
2020; Ko et al., 2015). These methods preserve
speaker identity and content but increase acoustic
variation, analogous to lexical substitution in text.

Random Deletion is implemented as Interval
Removal (InR), which deletes intervals before re-
segmenting the remaining audio, similar to Splice-
Out (Jain et al., 2022). A related approach is Time
Masking (TM), which zeroes out segments instead
of deleting them. Both reduce local information
density, akin to removing words in text.

Random Insertion is modeled by Background
Noise (BN), injecting noise from the MUSAN
dataset (Snyder et al., 2015) with a random signal-
to-noise ratio (SNR) between 0–30dB, reflecting
a wide range of acoustic conditions. Additional
techniques in this group include Frequency Mask-
ing (FM), which applies band-stop filters to re-
move energy in 1-3 randomly chosen frequency
bands between 100 Hz and 2500 Hz; Frequency
Swap (FS), where two frequency bands within the
segment are swapped and Frequency Insertion
(FI), where selected frequency bands are replaced
with corresponding bands extracted from another
speaker of the same dialect class. FM, FS and FI
are always applied over the entire segment. These
methods introduce noise-like perturbations into the
signal, analogous to random word insertions in text.

Random Swap is realized through Interval

Swap (InS), which exchanges two intervals of
same length within a segment. Speaker Insertion
(SI) follows a similar idea, replacing one interval
with one from another speaker of the same class, as
seen in related work (Xu et al., 2022). Like random
word swaps in text, these methods alter sequence
order while maintaining class identity.

3 Results

This section reports results for all evaluated aug-
mentation methods. We first present the four
main methods across parameter settings, followed
by submethod analysis. The baseline (no aug-
mentation) yields a median weighted F1 of 0.221
(±0.011), reflecting the difficulty of dialect classi-
fication and aligning with prior work (Stucki and
Randjelovic, 2021; Jokisch and Dobbriner, 2019).

3.1 Main Augmentation Techniques
Figure 2 shows the results for the main methods.
The best configuration per method is highlighted in
the text and used for evaluating the corresponding
submethods.

For Shifting Pitch (SP), the best result is
reached with laug=4, α=0.5, nver=2, yielding a
non-significant 0.5% improvement over the base-
line (see Figure 3). Overall, 4-second intervals per-
form best, whereas shorter and 5-second intervals
tend to degrade performance, suggesting limited
benefit of pitch shifting.

For Interval Removal (InR), configurations
with α=0.5, laug={0.1,1,5}, nver=6 degrade per-
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formance. This is likely due to identical segment
start points. Introducing a small offset (0.25–1.5s
in 0.25s steps), where each augmented version of
a sample receives a different fixed offset before
segmentation, significantly improves performance
(adjusted p < 0.0001). The best setting, laug=0.3,
α=0.5, nver=6, yields a 1.7% gain.

Background Noise (BN) performs best with one
inserted noise interval per segment. The top con-
figuration (laug=5, α=0.5) yields gains of 3.3%
(nver=6), 3.2% (nver=4) and 2.7% (nver=2) over
the baseline. Due to marginal differences between
nver=4 and 6, the added cost of 6 may be unjus-
tified. Short intervals (e.g. 0.3s) perform poorly,
which may be due to shorter noise samples being
used from the MUSAN dataset. Using only longer
MUSAN samples of at least 5 seconds improves
performance to 0.211, which remains below the
baseline, though no longer statistically significant.

For Interval Swap (InS), only laug=0.1, α=1.0
performs clearly worse, likely because the inter-
vals are too short to capture meaningful linguis-
tic content. This aligns with Zihlmann (2020),
who report that vowels and consonants in Swiss
Standard German typically last around 0.1s, with
none exceeding 0.3s and dialectal vowels up to
0.25s. The best result is achieved with laug=0.3,
α=0.5, nver=6, or alternatively at laug=0.3, α=0.3,
nver=1, both yielding a 1.1% improvement. The
choice of latter is particularly attractive, as it con-
sistently improves performance across all tested
file counts (nver={1, 2, 4, 6}) while being compu-
tationally more efficient than the 6-file setup.

3.2 All Augmentation Techniques

LC and TR showed no effect on model perfor-
mance, likely because DL-models ignore such low-
level variations (Fischbach et al., 2025). TM and
SI significantly worsened performance. For TM,
the observed degradation appears linked to reduced
information per segment: for a 10-second segment
length, only 5.2 seconds remain unmasked. When
increasing the segment length to 19.9 seconds to
preserve 10 seconds of information, performance
aligns with the baseline (adjusted p = 1.0). Ap-
plying an offset has no measurable effect, suggest-
ing that TM, unlike InR, fails to introduce suffi-
cient structural variation. SI, expected to reduce
speaker bias, surprisingly performed poorly. Ap-
plying an offset mitigated the effect, resulting in
a non-significant difference from the baseline (ad-

Figure 3: Relative improvement in weighted F1-score
(%) over the baseline. Colors indicate augmentation
groups; asterisks (*) mark statistically significant differ-
ences compared to baseline (two-sided Mann–Whitney
U test with Holm–Bonferroni correction

justed p = 1.0). This suggests that the initial drop
was due to a lack of segment diversity, while SI
itself introduces no beneficial variation.

All other methods performed significantly better
than the baseline. TS and SC slightly outperformed
SP, likely due to added temporal variation. The
best results overall were achieved by FM, followed
by FS, BN and FI. All belong to the same group,
suggesting that frequency-based augmentation is
highly effective for dialectal audio.

To reduce the computational cost, FM was com-
bined with InR. This matched FM’s performance
while halving processing time due to fewer result-
ing augmented samples. Further combinations,
such as with SC, offered only marginal (0.1%)
improvements and were omitted for efficiency.
Combining overlapping methods like FM+FS or
SeS+SeR was avoided due to likely redundancy or
fragmentation.

4 Conclusion

The best result was achieved using Frequency
Masking, yielding a 4.7% improvement in
weighted F1-score over the unaugmented baseline.
When combined with Interval Removal (InR), the
performance remained the same, while computa-
tional effort was significantly reduced by halving
the number of augmented training samples. Al-
though InR on its own did not improve perfor-
mance, its efficiency benefits make it a valuable ad-
dition in combination. Future work should explore
fine-grained tuning of submethod hyperparameters
and investigate whether increasing the number of
augmented files per original leads to saturation or
further gains.
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tomática-CBA, volume 3.

Lea Fischbach, Caroline Kleen, Lucie Flek, and Alfred
Lameli. 2025. Does preprocessing matter? An anal-
ysis of acoustic feature importance in deep learning
for dialect classification. In Proceedings of the Joint
25th Nordic Conference on Computational Linguis-
tics and 11th Baltic Conference on Human Language
Technologies (NoDaLiDa/Baltic-HLT 2025), pages
159–169, Tallinn, Estonia. University of Tartu Li-
brary.

Takashi Fukuda, Raul Fernandez, Andrew Rosenberg,
Samuel Thomas, Bhuvana Ramabhadran, Alexander
Sorin, and Gakuto Kurata. 2018. Data augmentation

improves recognition of foreign accented speech. In
Interspeech, September, pages 2409–2413.

Sture Holm. 1979. A simple sequentially rejective mul-
tiple test procedure. Scandinavian Journal of Statis-
tics, 6:65–70.

Yannick Jadoul, Bill Thompson, and Bart de Boer. 2018.
Introducing Parselmouth: A Python interface to Praat.
Journal of Phonetics, 71:1–15.

Arjit Jain, Pranay Samala, Deepak Mittal, Preethi Jyothi,
and Maneesh Singh. 2022. Spliceout: A simple and
efficient audio augmentation method. In Interspeech,
pages 2678–2682.

Oliver Jokisch and Johanna Dobbriner. 2019. Text-
independent dialect classification in read and spon-
taneous speech. In Proceedings of the 1st Interna-
tional Conference on Language Technologies for All,
pages 350–354, Paris, France. European Language
Resources Association (ELRA).

Gwantae Kim, David K. Han, and Hanseok Ko. 2021.
Specmix: a mixed sample data augmentation method
for training with time-frequency domain features. In
22nd Annual Conference of the International Speech
Communication Association, INTERSPEECH 2021,
Proceedings of the Annual Conference of the Interna-
tional Speech Communication Association, INTER-
SPEECH, pages 6–10. International Speech Commu-
nication Association.

Tom Ko, Vijayaditya Peddinti, Daniel Povey, and San-
jeev Khudanpur. 2015. Audio augmentation for
speech recognition. In Interspeech, volume 2015,
page 3586.

H. B. Mann and D. R. Whitney. 1947. On a Test of
Whether one of Two Random Variables is Stochas-
tically Larger than the Other. The Annals of Mathe-
matical Statistics, 18(1):50 – 60.

Zohaib Mushtaq and Shun-Feng Su. 2020. Environ-
mental sound classification using a regularized deep
convolutional neural network with data augmentation.
Applied Acoustics, 167:107389.

Zohaib Mushtaq, Shun-Feng Su, and Quoc-Viet Tran.
2021. Spectral images based environmental sound
classification using cnn with meaningful data aug-
mentation. Applied Acoustics, 172:107581.

Loris Nanni, Gianluca Maguolo, and Michelangelo Paci.
2020. Data augmentation approaches for improving
animal audio classification. Ecological Informatics,
57:101084.

Daniel S. Park, William Chan, Yu Zhang, Chung-Cheng
Chiu, Barret Zoph, Ekin D. Cubuk, and Quoc V.
Le. 2019. Specaugment: A simple data augmen-
tation method for automatic speech recognition. In-
terspeech 2019.

http://www.praat.org/
http://www.praat.org/
https://www.praatvocaltoolkit.com
https://aclanthology.org/2025.nodalida-1.16/
https://aclanthology.org/2025.nodalida-1.16/
https://aclanthology.org/2025.nodalida-1.16/
https://api.semanticscholar.org/CorpusID:122415379
https://api.semanticscholar.org/CorpusID:122415379
https://doi.org/https://doi.org/10.1016/j.wocn.2018.07.001
https://doi.org/10.21437/Interspeech.2022-572
https://doi.org/10.21437/Interspeech.2022-572
https://lt4all.elra.info/proceedings/lt4all2019/pdf/2019.lt4all-1.88.pdf
https://lt4all.elra.info/proceedings/lt4all2019/pdf/2019.lt4all-1.88.pdf
https://lt4all.elra.info/proceedings/lt4all2019/pdf/2019.lt4all-1.88.pdf
https://doi.org/10.21437/Interspeech.2021-103
https://doi.org/10.21437/Interspeech.2021-103
https://doi.org/10.1214/aoms/1177730491
https://doi.org/10.1214/aoms/1177730491
https://doi.org/10.1214/aoms/1177730491
https://doi.org/10.21437/interspeech.2019-2680
https://doi.org/10.21437/interspeech.2019-2680


368

Justin Salamon and Juan Pablo Bello. 2017. Deep con-
volutional neural networks and data augmentation
for environmental sound classification. IEEE Signal
processing letters, 24(3):279–283.

Jürgen Erich Schmidt, Joachim Herrgen, Roland
Kehrein, and Alfred Lameli. 2020ff. Regional-
sprache.de. Forschungsplattform zu den modernen
Regionalsprachen des Deutschen. Forschungszen-
trum Deutscher Sprachatlas Marburg.

Skipper Seabold and Josef Perktold. 2010. statsmodels:
Econometric and statistical modeling with python. In
9th Python in Science Conference.

Joel Shor and Subhashini Venugopalan. 2022. TRILLs-
son: Distilled Universal Paralinguistic Speech Rep-
resentations. In Proc. Interspeech 2022, pages 356–
360.

David Snyder, Guoguo Chen, and Daniel Povey. 2015.
MUSAN: A Music, Speech, and Noise Corpus.
ArXiv:1510.08484v1.

Samuel Stucki and Patrik Randjelovic. 2021. Automatic
detection of swiss german dialects using wav2vec.
Project Thesis, ZHAW School of Engineering, Centre
for Artificial Intelligence. Accessed: July 17, 2025.

Pauli Virtanen, Ralf Gommers, Travis E. Oliphant, Matt
Haberland, Tyler Reddy, David Cournapeau, Ev-
geni Burovski, Pearu Peterson, Warren Weckesser,
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