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Abstract

This study evaluates the resilience of large lan-
guage models (LLMs) against adversarial at-
tacks, specifically focusing on Flan-T5, BERT,
and RoBERTa-Base. Using systematically de-
signed adversarial tests through TextFooler and
BERTAttack, we found significant variations
in model robustness. RoBERTa-Base and Flan-
T5 demonstrated remarkable resilience, main-
taining accuracy even when subjected to so-
phisticated attacks, with attack success rates of
0%. In contrast, BERT-Base showed consider-
able vulnerability, with TextFooler achieving
a 93.75% success rate in reducing model ac-
curacy from 48% to just 3%. Our research
reveals that while certain LLMs have devel-
oped effective defensive mechanisms, these
safeguards often require substantial computa-
tional resources. This study contributes to the
understanding of LLM security by identifying
existing strengths and weaknesses in current
safeguarding approaches and proposes practi-
cal recommendations for developing more effi-
cient and effective defensive strategies.

1 Introduction

Large language models (LLMs) represent a trans-
formative deep learning approach for handling
diverse natural language processing (NLP) tasks.
These models, trained on vast datasets using trans-
former architectures, possess the ability to identify,
interpret, forecast, and generate text. LLMs func-
tion as a form of artificial intelligence that under-
stands, summarizes, generates, and predicts new
material through extremely large datasets and deep
learning methods (Abdali et al., 2023).

Language, which humans have developed over
millennia to communicate, provides the foundation
for all human and technical interactions. In artifi-
cial intelligence, language models serve a similar
function, providing a framework for expression and
idea generation. LLMs consist of multiple neural

network layers, including recurrent, feedforward,
embedding, and attention layers, which process
input text and generate output (Dong et al., 2023).

As LLMs become increasingly integrated into
critical systems and applications, understanding
their security vulnerabilities and defensive capabil-
ities becomes paramount. This research aims to
systematically evaluate the robustness of popular
LLMs against sophisticated adversarial attacks and
to identify pathways for enhancing their security.

2 Background

LLMs are built on transformer architecture, func-
tioning through a process of receiving input, en-
coding it, and then decoding it to provide output
predictions. For an LLM to effectively process
text input and generate predictions, it undergoes
pre-training on massive textual datasets to develop
fundamental capabilities, followed by fine-tuning
for specific tasks (Hassanin and Moustafa, 2023).

When adapting an LLM for specialized tasks
such as translation, it requires task-specific fine-
tuning. This process enhances the effectiveness of
particular functions and helps train the model for
specific tasks using few-shot or zero-shot prompt-
ing approaches (Sakib et al., 2023). With few-shot
prompting, the model learns to predict outcomes
through examples provided in a prompt.

For organizational implementation of LLMs, re-
sistance to manipulation is a critical security re-
quirement. Modern LLMs are typically constructed
on transformer architectures that have revolution-
ized NLP by enabling parallel text processing.
Within this architecture, attention mechanisms as-
sign varying degrees of relevance to different parts
of phrases or sentences, allowing models to acquire
contextual information effectively.

LLMs have significantly improved NLP capabil-
ities in areas such as sentiment analysis, transla-
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tion, and text generation. However, the rapid ad-
vancement and increasing use of these models have
raised concerns about their robustness and vulnera-
bility to adversarial manipulation. Various attack
vectors threaten LLMs, including data poisoning,
adversarial perturbations, and model inversion, po-
tentially reducing their reliability and dependability
(Sun et al., 2023).

3 Formulation of the Problem

3.1 LLM as a Function

We formalise an LLM as a function fθ : X → Y
that maps from an input space X (typically se-
quences of tokens) to an output space Y (labels,
probabilities, or generated text). The parameter
θ represents the model’s weights learned during
training. For classification tasks, fθ(x) produces a
probability distribution over possible classes, and
the predicted class is:

ŷ = argmax
y∈Y

fθ(x)y (1)

3.2 Adversarial Attack Definition

Adversarial attacks are techniques where carefully
crafted changes are made to input data to fool a
model into making a wrong prediction even though
the changes might be invisible or meaningless to
humans. It aims to find a perturbed input x′ that
causes the model to make an incorrect prediction
while maintaining similarity to the original input x.
Formally, we define:

Find x′ such that: fθ(x′) ̸= fθ(x) and d(x, x′) ≤ ϵ
(2)

where d(·, ·) is a distance function measuring sim-
ilarity between inputs, and ϵ is the maximum al-
lowable perturbation. In the context of NLP, this
distance often considers semantic similarity and
preserves grammatical structure.

3.3 Attack Success Rate

We quantify the effectiveness of an adversarial at-
tack using the Attack Success Rate (ASR):

ASR =
1

|D|
∑

(x,y)∈D

1[fθ(x
′) ̸= y and fθ(x) = y]

(3)
where D is the test dataset, (x, y) is an input-

label pair, x′ is the adversarially perturbed version
of x, and 1[·] is the indicator function.

3.4 TextFooler Attack Formulation

TextFooler(Jin et al., 2020) identifies important
words in the input and replaces them with semanti-
cally similar alternatives to cause misclassification.
For an input text x = [w1, w2, ..., wn], the algo-
rithm:

1. Computes word importance score I(wi) for
each word wi:

I(wi) = fθ(x)y − fθ(x \ wi)y (4)

where x \ wi is the text with wi removed or
replaced with a placeholder.

2. Identifies candidate replacements with similar
embeddings:

S(wi, wj) =
emb(wi) · emb(wj)

||emb(wi)|| · ||emb(wj)||
(5)

where emb(w) is the word embedding of w.

3. Iteratively replaces words in order of impor-
tance until the model prediction changes.

3.5 BERTAttack Formulation

BERTAttack(Li et al., 2020) leverages the bidirec-
tional context from BERT to generate substitution
candidates. For an input text x = [w1, w2, ..., wn]:

1. For each position i, it masks the token wi and
uses BERT to predict potential replacements:

P (w′|w1, ..., wi−1, [MASK], wi+1, ..., wn)
(6)

2. It selects the top-k candidates with highest
probability and filters for semantic similarity.

3. It greedily replaces tokens in order of impor-
tance until the attack succeeds or a maximum
number of replacements is reached.

3.6 Model Robustness Measure

We define the robustness score R of a model against
a specific attack as:

R = 1−
∑N

i=1 1[Attacki succeeds]
N

(7)

where N is the total number of attack attempts.
Higher values indicate greater robustness.
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4 Methods

4.1 Experimental Setup
We employ a mixed-methods approach, combining
qualitative literature review and quantitative testing.
For the quantitative analysis, we utilized Prompt-
Bench(Zhu et al., 2024) to evaluate the robustness
of Flan-T5(Chung et al., 2024), BERT-base(Devlin
et al., 2019), and RoBERTa-base(Liu et al., 2019)
models against TextFooler(Jin et al., 2020) and
BERTAttack(Jin et al., 2020) methods. Specifi-
cally, Flan-T5 and BERT-base were tested on the
SST-2 dataset (Socher et al., 2013) for sentiment
classification tasks, while Flan-T5 and RoBERTa-
Base were evaluated on SQuAD v2(Rajpurkar et al.,
2018) for question-answering capabilities (Özkurt,
2023). The data collection protocol was approved
by an ethics review board. No personally identify-
ing information was used in the study. The SST-2
and SQUAD v2 datasets both contain English lan-
guage examples, and a comparison is presented in
Table 1 The base models of BERT, RoBERTa and
FLAN-T5 were used in the study with 110m, 125m
and 250m parameters, respectively. Less than 50
GPU hours were used for running the models and
datasets within the Google Colab Pro A100 cloud
infrastructure.

4.2 Algorithm for Attack Evaluation
We formalise our evaluation methodology in Algo-
rithm 4.2:

EvaluateRobustnessModel fθ, Dataset D, At-
tack A success ← 0, fail ← 0, skip ← 0
original correct ← 0 perturbed tokens ← []
query counts← [] for (x, y) ∈ D do
ŷ ← argmax fθ(x) {Original prediction}
if ŷ = y then

original correct← original correct + 1
(x′, is success, queries, perturbed) ←
A(fθ, x, y)
if is success then

success← success + 1
Append perturbed to perturbed tokens
Append queries to query counts

else
fail← fail + 1

end if
else

skip← skip + 1
end if

end for
original accuracy← original correct/|D|

attack success rate← success/(success + fail)
accuracy under attack ← original accuracy −
(original accuracy × attack success rate)
avg perturbed←Mean(perturbed tokens)
avg queries←Mean(query counts)
return {success, fail, skip, original accuracy,
accuracy under attack, attack success rate,
avg perturbed, avg queries} =0

4.3 Metrics for Evaluation
For each model and attack combination, we define
the following metrics:

• Original Accuracy: Acco =
1
|D|

∑
(x,y)∈D 1[fθ(x) = y]

• Accuracy Under Attack: Acca =
1
|D|

∑
(x,y)∈D 1[fθ(x

′) = y]

• Attack Success Rate: ASR =
Successful Attacks

Total Attack Attempts =
∑

(x,y)∈D′ 1[fθ(x
′ )̸=y]

|D′| ,
where D′ is the subset of examples correctly
classified originally

• Average Perturbed Word Percentage:
PWP = 1

|S|
∑

(x,x′)∈S
HammingDistance(x,x′)

Length(x) ×
100%, where S is the set of successful attacks

5 Results and Discussion

5.1 BERT-Base Under TextFooler Attack
Table 2 provides an overview of BERT-Base’s per-
formance under TextFooler attack, revealing sig-
nificant vulnerability. Out of 100 test instances,
TextFooler achieved a 93.75% success rate in mis-
leading the model, reducing accuracy from 48% to
merely 3%. This finding underscores BERT-Base’s
sensitivity to adversarial attacks.

Mathematically, the robustness score of BERT-
Base under TextFooler attack is:

RTextFooler
BERT = 1− 0.9375 = 0.0625 (8)

This extremely low robustness score indicates
high vulnerability.

5.2 RoBERTa-Base Under BERTAttack
Table 3 demonstrates that RoBERTa-Base exhib-
ited remarkable robustness when subjected to
BERTAttack, with an attack success rate of 0%.
Despite multiple attack attempts, RoBERTa-Base
maintained its original accuracy of 35%, highlight-
ing its exceptional resilience against this particular
adversarial technique.
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Table 1: Comparison of SST-2 and SQuAD v2.0 Datasets

Feature SST-2 SQuAD v2.0

Size 67,349 labeled phrases with 11,855
sentences from 2,210 reviews

150,000 question-answer pairs on
505 articles (including 50,000 unan-
swerable questions)

Task Binary sentiment classification (pos-
itive/negative)

Question answering with no-answer
detection

Domain Cov-
erage

Narrow: Movie reviews from Rotten
Tomatoes

Broader: Wikipedia articles span-
ning history, science, geography, cul-
ture, etc.

Language
Coverage

English only (primarily American
English)

English only (formal, encyclopedic
style)

Linguistic
Phenomena • Sentiment expression

• Evaluative language
• Figurative language (metaphors,

hyperbole)
• Varying sentence complexity
• Short text snippets

• Various question forms
• Factoid extraction
• Paraphrasing
• Simple inference
• Unanswerable questions
• Limited complex reasoning

Demographic
Representa-
tion

• Limited diversity (professional
critics)

• Western-centric cultural perspec-
tives

• Temporal bias of review period
• Under-representation of minority

viewpoints

• Wikipedia contributor bias (pre-
dominantly male, Western, edu-
cated)

• Western/Global North perspective
dominance

• Academic knowledge prioritiza-
tion

• Geographical and temporal skew

Common Lim-
itations • Monolingual (English-only)

• Cultural bias toward Western perspectives
• Limited demographic diversity
• Domain restrictions
• Temporal limitations
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Table 2: TextFooler Attack on BERT Model

Metric Value

Successful attacks 45
Failed attacks 3
Skipped attacks 52
Original accuracy 48.00%
Accuracy under attack 3.00%
Attack success rate 93.75%
Avg perturbed word % 21.93%
Avg words per input 9.01
Avg queries 48

Table 3: BERTAttack on RoBERTa-Base Model

Metric Value

Successful attacks 0
Failed attacks 7
Skipped attacks 13
Original accuracy 35.00%
Accuracy under attack 35.00%
Attack success rate 0.00%
Avg perturbed word % N/A
Avg words per input 8.70
Avg queries 240

The robustness score for RoBERTa-Base under
BERTAttack is:

RBERTAttack
RoBERTa = 1− 0 = 1.0 (9)

This perfect score indicates complete resilience
to this attack.

5.3 Computational Efficiency Analysis

We define a computational efficiency metric C that
balances robustness and computational cost:

C =
R

Avg. Query Count
× 100 (10)

For RoBERTa-Base under BERTAttack:

CBERTAttack
RoBERTa =

1.0

239.71
× 100 = 0.417 (11)

This indicates that while RoBERTa is perfectly
robust, it comes at a high computational cost, re-
quiring an average of 239.71 queries per attack
attempt.

5.4 Summary of Results
Table 4 summarizes the results of all attacks on the
tested models. The data reveals significant vari-
ance in LLM resilience, with RoBERTa-Base and
Flan-T5 demonstrating notable resistance to both
TextFooler and BERTAttack. These performance
discrepancies highlight the need for enhanced pro-
tective measures in models like BERT-Base, which
exhibited substantial vulnerabilities to adversarial
manipulation.

We can mathematically compare the overall ro-
bustness of each model by averaging their robust-
ness scores across different attacks:

R̄model =
1

|A|
∑
a∈A

Ra
model (12)

where A is the set of attacks tested. This gives
us:

R̄BERT =
RBERTAttack

BERT +RTextFooler
BERT

2
=

0 + 0.0625

2
(13)

R̄Flan-T5 = RTextFooler
Flan-T5 = 1.0 (14)

R̄RoBERTa = RBERTAttack
RoBERTa = 1.0 (15)

This quantitative comparison clearly illustrates
the superior robustness of Flan-T5 and RoBERTa-
Base compared to BERT-Base.

6 Ethical Considerations

Our research on LLM vulnerabilities to adversarial
attacks raises several important ethical considera-
tions that must be acknowledged:

6.1 Dual-Use Concerns
The techniques and metrics developed in this study
for evaluating model robustness could potentially
be misused to develop more effective adversarial at-
tacks. We recognize this dual-use nature and have
taken care to focus our discussion on defensive
applications rather than exploitative ones. We ad-
vocate for responsible disclosure of vulnerabilities
and emphasize that our goal is to improve model
robustness, not to facilitate attacks.

6.2 Societal Implications
As LLMs become increasingly integrated into criti-
cal systems (healthcare, finance, legal, etc.), their
vulnerability to adversarial manipulation raises sig-
nificant societal concerns. System failures due to



400

Table 4: Results Summary for All Attacks

Metric BERTAttack TextFooler BERTAttack
on BERT on Flan-T5 on RoBERTa

Successful attacks 7 0 0
Original accuracy 35.00% 35.00% 20.00%
Accuracy under attack 0.00% 35.00% 20.00%
Attack success rate 100.00% 0.00% 0.00%
Avg perturbed word % 27.56% N/A N/A
Avg words per input 8.7 8.7 8.6
Avg queries 59.57 167.57 240

adversarial attacks could lead to harmful outcomes,
including:

• Misinformation propagation through compro-
mised language models

• Privacy violations through model manipula-
tion

• Safety risks in automated systems relying on
LLM outputs

• Erosion of trust in AI systems

6.3 Accessibility and Resource Considerations
Our findings regarding the computational inten-
sity of effective defensive mechanisms (up to 240
queries per attack attempt) highlight potential ac-
cessibility concerns. Organizations with limited
computational resources may struggle to imple-
ment adequate safeguards, potentially creating a
security divide between well-resourced and under-
resourced entities. We emphasize the importance
of developing efficient defensive measures that are
widely accessible.

6.4 Transparency in Vulnerability Reporting
We believe in transparent reporting of model vul-
nerabilities to foster trust and enable collective im-
provement of LLM security. However, we have
carefully balanced this transparency with responsi-
ble disclosure practices, avoiding detailed descrip-
tions of attack implementations that could be im-
mediately weaponized.

6.5 Environmental Impact
The computational resources required for robust ad-
versarial defense mechanisms have environmental
implications due to increased energy consumption.
Future work should consider how to optimize de-
fensive strategies not only for effectiveness but also

for energy efficiency to minimize environmental
impact.

Through acknowledging these ethical dimen-
sions, we hope to contribute to the development
of LLM security measures that are not only techni-
cally sound but also aligned with broader societal
values and needs.

7 Conclusion

This study assessed the robustness and vulnerabil-
ity of large language models including Flan-T5,
BERT-base, and RoBERTa-Base against adversar-
ial attacks. Our findings indicate that while certain
LLMs demonstrate significant resilience under ad-
versarial conditions, substantial vulnerabilities re-
main, especially in models like BERT-base. The re-
search confirms that even minor alterations to input
data can substantially impact model predictions, un-
derscoring the importance of enhanced safeguard-
ing mechanisms for LLMs (Özkurt, 2023).

Although models such as Flan-T5 and RoBERTa-
Base withstood adversarial attacks with remarkable
effectiveness, maintaining their original accuracy
levels with 0% attack success rates, our results
highlight the need for refinement in current LLM
defensive strategies. We observed that effective
adversarial defenses currently demand significant
processing power, with some models requiring up
to 240 queries on average per attempted attack.
This computational intensity points to the need for
developing more efficient protective measures that
maintain robust security while reducing resource
requirements for practical applications.

Our research contributes to the growing body
of knowledge on LLM security by quantifying
model-specific vulnerabilities and identifying ar-
chitectures that demonstrate superior resistance to
common attack vectors. These insights can guide
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the development of more secure and reliable lan-
guage models for deployment in sensitive and high-
stakes applications.

8 Recommendations

Based on our findings, we propose several recom-
mendations to improve LLM robustness and re-
silience against adversarial attacks:

8.1 Strengthening Adversarial Robustness
with Adversarial Training

We propose an enhanced adversarial training objec-
tive that incorporates multiple attack types:

minθ E(x,y)∼D

[
L(fθ(x), y) +

∑k
i=1 λi · L(fθ(Ai(x)), y)

]
(16)

where Ai represents different attack methods, and
λi balances the weight of each attack type.

8.2 Improving Token Embedding and
Vocabulary Management

For token embeddings E ∈ R|V |×d, we propose a
regularization term that encourages robustness:

Lembed = Ltask + α ·
∑

wi,wj∈S max(0, cos(Ewi , Ewj )− τ)

(17)
where S is the set of semantically similar words,

cos is cosine similarity, and τ is a threshold that
maintains semantic distinctiveness.

8.3 Implementing Data Augmentation
Techniques

The augmentation process can be formalised as
a transformation function T (x, ϕ) where ϕ repre-
sents augmentation parameters. The training objec-
tive becomes:

minθ E(x,y)∼D[L(fθ(x), y) + β · Eϕ∼Φ[L(fθ(T (x, ϕ)), y)]]

(18)

where Φ represents the distribution of augmen-
tation parameters.

8.4 Leveraging Hybrid Defenses
For an ensemble of m models {fθ1 , fθ2 , ..., fθm},
the prediction can be computed as:

fensemble(x) =

m∑
i=1

wi · fθi(x) (19)

where wi are model weights that can be adjusted
dynamically based on confidence scores or histori-
cal performance against specific attack types.

8.5 Theoretical Framework for Future
Defenses

We propose a multi-objective optimization ap-
proach that balances accuracy, robustness, and com-
putational efficiency:

min
θ

[(1−α−β)·Lacc(fθ)+α·Lrob(fθ)+β·Lcomp(fθ)]

(20)
where:

Lacc(fθ) = E(x,y)∼D[L(fθ(x), y)] (21)

Lrob(fθ) = E(x,y)∼D max
δ∈∆

[L(fθ(x+ δ), y)]

(22)

Lcomp(fθ) = ω · CompMetric(fθ) (23)

Limitations of Study

Our study faced some limitations that future re-
search should address. First, our reliance on pre-
trained LLMs like Flan-T5, BERT-base-uncased,
and RoBERTa-Base limited our ability to examine
internal defense mechanisms. While these models
perform well on many NLP tasks, they require fur-
ther refinement in their adversarial resilience. The
limitation can be expressed mathematically as a
constraint on the parameter space exploration:

θ ∈ Θpretrained ⊂ Θall (24)

This restricts our analysis to a subset of possible
model configurations.

Second, our use of established benchmark
datasets like SST2 and SQuAD v2, while providing
standardized evaluation frameworks, may not fully
capture the complexity of real-world data and ad-
versarial scenarios. Performance under controlled
testing conditions might not translate directly to
less structured environments.

Third, although we employed sophisticated at-
tack methods like TextFooler and BERTAttack, our
approach did not cover the full spectrum of po-
tential adversarial techniques. More advanced or
semantically-driven attacks might reveal additional
vulnerabilities not identified in this study.
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