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Abstract

In this paper, we investigate the role of large
language models in predicting innovation. We
contrast two main paradigms: i) narrow ex-
perts: which consists of supervised and semi-
supervised models trained or fine-tuned on
a specific task and ii) competent generalists:
which consists of large language models with
zero-shot and few-shots learning. We define
the task of innovation modeling and present
the first attempt to understand the transforma-
tion from research to innovation. We focus
on product innovation which can be defined
as the process of transforming technology to
a product or service and bring it to the mar-
ket. Our extensive empirical evaluation shows
that most existing pretrained models are not
suited and perform poorly on the innovation
modeling task. We also show that injecting
research information helps improving the align-
ment from technology to the market. Finally,
we propose a new methodology and fine-tuning
strategies that achieve significant performance
boosts over the baselines!

1 Introduction

In order to stay competitive, companies have to be
innovative and are in perpetual need of new ways
to improve and extend their product portfolio. Un-
derstanding innovation process is a challenge for
industries and scholars, as it is viewed as a catalyst
for competitiveness (Kline and Rosenberg, 2009).
Innovation is commonly defined as the introduc-
tion of something new (idea, method or device) or a
change made to an existing product or field (Kahn,
2018). Invention represents the first occurrence of
a new idea” while innovation is about the commer-

'Our dataset, code and appendices are available here:
https://github.com/AmirHazem/Prim

2We adopt the admitted definition of innovation in the
business and management field and make a clear distinction
between ideation which consists in elaborating new ideas,
from the innovation process which starts from the validation

of an idea as a technology (granted patent) to its use on the
market as a new product.
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Figure 1: Innovation representation from research and
technology to the market

cialization of this idea, i,e. bringing it to the market
(Kalogeras and Anagnostopoulos, 2012).

Figure 1 illustrates the innovation workflow in
which company’s technology is represented by its
granted patents and company’s market is repre-
sented by its commercialized products. The interac-
tion between technology and the market is reflected
by the patents that have led to the release of new
commercial products. While the interaction be-
tween technology and research captures the extent
to which patents are based on scientific knowledge
of the cited academic papers. Finally, the inter-
action between research and the market reflects a
direct link between science and industry bypassing
technology (i.e. no granted patent is available for a
released product) 3.

The main purpose of the innovation modeling
task is to align, for a given company, its technology
and its market. i, e. matching companies’ granted
patents with their corresponding products. It is not
rare that many patents remain unused or can be
applied in different fields to produce new products.

3In this paper we investigate both direct and indirect links
between research papers and commercialized products.
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A direct application of innovation modeling is to
build a recommendation system for patents without
specific commercial products or by extending their
application to other domains.

If innovation modeling has been extensively
studied in the business and management fields
(Kahn, 2018), it is still a recent and rarely addressed
task for the nlp community*. To the best of our
knowledge, there has been no established bench-
mark or comprehensive empirical evaluation of the
role of research in innovation that has been con-
ducted so far. In this work, we leverage innovation
modeling and establish new baselines that can be
used for future research in innovation modeling
and prediction.

Innovation is essentially driven by science and
technology. If the role of technology in innovation
can be derived from the relation between its granted
patents and the released products, it is unclear how
research contributes to this process. In this work,
we first evaluate innovation modeling under its pri-
mary workflow which consists in the transforma-
tion from technology to the market. Then, we in-
vestigate the role of research papers in the trans-
formation process based on the patent to paper ci-
tation information and propose new strategies to
improve the alignment performance. More specif-
ically, we investigate the role of large language
models in predicting innovation. We contrast two
main paradigms: i) narrow experts: which consists
of supervised and semi-supervised models trained
or fine-tuned on a specific task and ii) competent
generalists (Radford et al., 2019): which consists
of LLMs with zero-shot and few-shots learning.

Our first contribution is to propose an evaluation
framework that includes a benchmark and a dataset
for innovation modeling. The dataset comprises: (i)
a set of 1,638 stock market companies; (ii) a tech-
nology corpus of 60,722 English granted patents;
and (iii) a market corpus represented by companies’
products. In addition, we introduce (iv) a scientific
corpus comprising 65,356 research papers cited by
the granted patents of the technology corpus. Our
second contribution is an extensive evaluation of
LLM:s and the proposition of a simple but yet effec-
tive fine-tuning method that combines science and
technology to match its corresponding products on
the market.

“Two works we are aware of, that addressed technology
with no empirical evaluation and no incorporation of research
in innovation Lee et al. (2020); Motohashi and Zhu (2023).

2 Related Work

The invention of the perceptron (Rosenblatt, 1958)
showed that for the first time, a machine could per-
form a given task based on some examples. This
paradigm, reinforced by the introduction of back-
propagation (Rumelhart et al., 1986; Lecun, 1986)
certainly marked the beginning of the long jour-
ney of neural networks from its birth with the per-
ceptron to the nowadays large language models.
Later on, the development of machine capacity
allowed to train powerful models such as RNNs
LSTMs, and CNNs on a specific task. The com-
mon paradigm of all these models is that they were
meant to be narrow experts. Which means trained
for a specific task. The introduction of the trans-
former (Vaswani et al., 2017) however, marked
another shift in paradigm. Instead of training a
model for each specific task, transformers have
shown that it is possible to train a model for multi-
ple tasks. Eventually, this model can be fine-tuned
for a downstream task. Nowadays, LLLMs are meant
to be competent generalists (Radford et al., 2019).

Large language models (LLMs) are transformer-
based generative models trained on massive text
collections (Vaswani et al., 2017). They demon-
strate remarkable accuracy and generalization abil-
ity when fine-tuned on downstream applications
(Devlin et al., 2019). They are also capable zero-
and few-shot learners, able to generalize to tasks
unseen during training (Brown et al., 2020). The
Transformer (Vaswani et al., 2017) is the founda-
tional architecture for most modern LLMs includ-
ing ChatGPT. It is solely based on attention mech-
anisms and is composed of an encoder of bidirec-
tional attention blocks and a decoder of unidirec-
tional attention blocks. LLMs can be grouped into
three categories: 1) encoder-only LLMs such as
BERT (Devlin et al., 2019), 2) decoder-only LLMs
such as GPT family (Generative Pretrained Trans-
former) (Radford et al., 2018, 2019; Brown et al.,
2020) and 3) encoder-decoder LLMs such as T5
(Text-to-Text Transfer Transformer) (Raffel et al.,
2020) and BART (Lewis et al., 2020) (Bidirectional
and AutoRegressive Transformers).

Despite the performance of encoder-only and
encoder-decoder models, they have the downside
that requires significant amount of task-specific
data for fine-tuning. GPT-3 (Brown et al., 2020), a
decoder-only based model has demonstrated that
extremely large autoregressive language models
can be used for few-shot predictions, where the
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model is only given a natural language task descrip-
tion and optionally a handful of examples (few-
shots) demonstrating how the task should be per-
formed. Nowadays, LLMs have predominantly
adopted the decoder-based architecture and a num-
ber of powerful models have been developed such
as PaLM (Chowdhery et al., 2022), Galactica (Tay-
lor et al., 2022) and GPT-4 (Achiam et al., 2024).

The performance of LLMs scales predictably as
a power-law with the number of parameters (Ka-
plan et al., 2020). This outcome has led to an abun-
dance of research focusing on scaling Transformer
models up to ever-larger scales that surpass 500B
parameters (Smith et al., 2022). The overall im-
provements in LLMs come from: i) scaling the size
of the models in both depth and width; (ii) increas-
ing the number of tokens that the model is trained
on; and (iii) training the model on cleaner datasets
and from diverse sources (Chowdhery et al., 2022).

Addressing a specific task using LLMs follows
two paradigms: 1) Fine-tuning and 2) Prompt-
based learning (Brown et al., 2020). Fine-tuning
has been the most common approach and involves
updating the weights of a pretrained model by train-
ing on a supervised dataset (Devlin et al., 2019;
Raffel et al., 2020). If this approach achieves
strong performance, it is task-dependent and ex-
hibits poor generalization. Furthermore, it can not
be applied to the very recent LLMs with billions
of parameters>. Prompt-based learning also called
in-context learning via zero-shot, one-shot or few-
shot prompting (Brown et al., 2020), is more effec-
tive in leveraging the knowledge encoded in LLMs
and only requires few shots learning. It consists
of adding natural language text like short phrases
to the input or output to encourage the pretrained
model to perform a specific task. Prompting does
not require updates to LLM’s parameters reducing
computational requirements as compared to fine-
tuning approaches.

Applying LLMs to innovation modeling can
be addressed following the two above described
paradigms (fine-tuning and prompting) under cer-
tain conditions. While most recent LLMs are task
agnostic, we consider innovation modeling as a spe-
cific task and expect fine-tuning to be more appro-
priate than a general purpose model. If LLMs with
billions of parameters can not be fine-tuned, the
increase of open-source LLLMs that provide smaller

SFine-tuning alternatives exist such as bitfit (Ben Zaken
et al., 2022) and Lora (Hu et al., 2022).
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versions of the same model with moderate number
of parameters (few millions) such as OPT (Zhang
et al., 2022) and MoE (Artetxe et al., 2022), make
it possible to perform fine-tuning if needed.

3 Technology to Market Alignment Task

We address innovation modeling as a sentence
similarity task where technology and market em-
beddings are matched using the cosine similar-
ity (Hazem et al., 2024). The representation of
technology is based on patent abstracts® while the
market representation is based on product descrip-
tion. Each company C; (i € [1,n] where n in the
number of companies) is represented by a tech-
nology/market pair (C?, C!™) where C! represents
the technology of the company and C]" represents
its market. Hence, C! = {pati, pata, ..., pat,}
where pat; for instance is a given patent of the
company C; and C]" = {prody, prods, ..., prody }
where prod; is its corresponding market product.

The alignment of technology and market of com-
panies is conducted as follows: 1) compute the
technology centroid embedding of all the compa-
nies (cf equationl); 2) compute their market cen-
troid embedding (similarly to equation 1), and 3)
rank the market candidates for each technology
according to the cosine similarity.

P
ci=1 > _(Bmb(pat;)) (1
P
p is the number of patents of C!. To compute
the embedding of a given patent, we replace Emb
of equation 1 by any sentence embedding model.
When using SBERT (Reimers and Gurevych, 2019)
for instance, the centroid computation of technol-
ogy is given by:

p
Ci= »S (SBERT(pat)) @
j=1

4 Proposed Method

To incorporate research into the technology to mar-
ket alignment, we investigate three combination
strategies: 1) direct embedding combination; 2)
combination during fine-tuning and 3) Eventually,
the fine-tuned embeddings obtained from the fine-
tuning combination, can be used for direct embed-
ding combination as defined in the first strategy.

SPatent abstract is a common use to represent technology

in the literature (Lee et al., 2020) as it contains the main
information about the developed technology.



In the following sections, we describe the three
proposed strategies.

4.1 Embedding Combination

A company usually holds several patents. Eventu-
ally, each patent can cite one or several research
papers. Given the technology centroid embedding
of the company C, and its research centroid rep-
resentation (noted C7'), we simply average the two
embeddings and obtain the combined technology
and research embedding vector C!* as follows:

1
Ci' = 5(Ci+ C) (3)

We assume that the two embedding representations
(C! and CT) can be complementary and evaluate
this straightforward but yet necessary approach in
our experiments.

4.2 Combination during Fine-Tuning

To improve the embedding representation of tech-
nology and market pairs of each company, we use
SBERT architecture at inference (Figure 2). We
take advantage of the siamese network and fine-
tune SBERT. Our training data comprises triplets of
(patent, paper, product). To encoded the direct link
(signal) between each pair of the innovation work-
flow, we use the Multiple Negative Ranking Loss
(Henderson et al., 2017) of sentence-transformers’
represented as (anchor, positive, negative), we gen-
erate for each training triplet, 3 inputs as illustrated
in Table 1.

Triplet Input

Anchor Positive Negative

patent  paper

product

paper

patent product

product product

paper

Table 1 Input representation for SBERT fine-tuning.

Our model is fine-tuned with positive input pairs
of patents and cited papers or products as well as

randomly selected negative pairs®.

4.3 Combination after Fine-Tuning

Our third and final strategy is to combine patent
and research paper embeddings as described in

"https://sbert.net/docs/package_
reference/sentence_transformer/losses.
html#multiplenegativesrankingloss

8We let the exploration of hard negatives for future work.
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Figure 2: SBERT architecture using research, technol-
ogy and market information as inputs for fine-tuning.

section 4.1. However instead of using existing
pretrained models, we use our fine-tuned model as
described in section 4.2. This can be represented
in the following equation:

) k
e 11 t 1 T
Ci = 5(5 E 1 FT(pat;) + ¢ E 1 FT(papj)) (4)
— i=

where F'T is our fine-tuned model; p is the number
of patents (pat') held by company 7 and k is the
number of the corresponding papers (pap”) cited by
p patents. It is to note that our method is not limited
to SBERT. Any compatible transformer model can
be used. We report in our experiments several other
pretrained models (as shown in Table 6).

5 Experiments

To comprehend the role of research in innovation,
we consider 3 scenarios: i) technology to market
alignment; ii) research to market alignment; and
finally iii) the combination of research and tech-
nology to market alignment. The combination is
addressed in 3 ways: 1) direct embedding combi-
nation, 2) combination during fine-tuning and 3)
direct embedding combination after fine-tuning.


https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss
https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss
https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss

5.1 Dataset

The innovation modeling dataset comprises: (i)
1,638 stock market companies extracted from
Crunchbase’ database; (ii) a technology corpus
of 60,722 English granted patents extracted from
the United States Patent and Trademark Office
(USPTO)'%; and (iii) a market corpus represented
by companies’ products description extracted from
Crunchbase. In addition, we use (iv) a scientific
corpus comprising 65,356 research papers cited
by the granted patents''. In order to evaluate the
impact of research in innovation, we only keep
companies that have both patents and research pa-
per citations. Overall, 990 companies out of 1,638
have patents that cite papers. Table 2 shows the
training, development and test size.

train  dev test

Company | 590 100 300
Patent | 6,691 797 3,493
Paper | 47,927 5,036 16,983

Table 2 Dataset evaluation statistics.

Table 3 shows patents distribution per company.
On average, a company has approximately 26
patents. The companies with a maximum patents
of 2,502 is vimware and a minimum patent of 1 is
accolade for instance'?. The total number of cited
papers is 65,356 papers and the total number of
patents is 10,981 patents as shown in Table 4.

#Total
43,900

Min Max I o
2,502 26.80 21.23

Table 3 USPTO granted patent statistics per com-
pany (out of 1,638 companies)

Patent 1

5.2 Baseline Methods

We evaluate sentence-level and document-level
embedding representations as well as generative
LLMS. As sentence level representation we evalu-
ate: Sentence-T5 (Ni et al., 2022), Sentence-BERT
(Reimers and Gurevych, 2019) and e5 (Wang et al.,

Crunchbase provides information about private/public
companies: https://www.crunchbase.com/

"https://patentsview.org/download/data-download-tables

"'Marx and Fuegi (2020) describe the procedure to get the
citation information.

12Search engine systems for matching medical providers
and patients. This patent was granted in 2020-12-08.
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Min Max I o #Total
Number of patents per organization
Patent 1 310  11.09 7.74 10,981
Number of cited papers by organization
Paper 1 14,792 282.74 58.74 65,356
Number of patents citing the same paper
Patent 1 304 428 3.50 10,981
Number of cited papers per patent
Paper 1 495 2549 10.27 65,356

Table 4 Data distribution statistics for patents and
cited papers. #Total is number of patents for all the
companies and for the total number of cited papers.

2022). As document level representation, we eval-
uate, Specter (Cohan et al., 2020), a method which
generates document-level embedding of scientific
documents based on the pretrained transformer
SciBERT. Specter encode the citation information
between signals. We consider this method as a
strong baseline as it is fine-tuned on paper cita-
tion pairs. We also use the recent Specter2 ver-
sion (Singh et al., 2022). Furthermore, we evaluate
Instructor (Su et al., 2022), an instruction based
model for embedding representation which was
fine-tuned on 300 tasks including science represen-
tation. As generative models, we experiment with
Llama3.1 (8B) (Touvron et al., 2023) and Gemma2
(9B) (Gemma, 2024) with zero-shot and few-shots
learning. Our prompts consist of asking the model
to provide a similarity score between -1 and 1 for a
pair of input sentences (Patent and product for in-
stance). In the few-shots learning configuration we
provide pairs of positive and negative examples'>.
Finally, we evaluate Sentence-GPT (SGPT) (Muen-
nighoff, 2022), a GPT-based sentence embedding
model for semantic search.

6 Results

Table 5 reports the results of existing pretrained
sentence-level embedding models, as well as
document-level and generative LL.Ms.

Overall, we observe that the best performing
model is the document-level approach Specter
(Map = 48.07) which was fine-tuned on research
paper citations. The second best performing model
is e5-7B-instruct (Map = 47.27) which was fine-
tuned on a curated dataset and initialized with Bert-

3We varied the number of shots from one to six but did not
observe significant difference in the results.


https://www.crunchbase.com/

Tech—Market

Model Acl Ac5 Acl0 MAP
ST5-Base 21.00 39.67 46.67 30.02
STS-Large 22.00 39.67 48.33 31.23
ST5-XL 2533 44.00 54.00 34.79
ST5-XXL 27.00 47.33 57.00 37.21
SBERT-Base 09.00 23.67 30.33 17.01
SBERT-Large 10.33 26.33 3833 18.96
SBERT-MiniLM 32.00 51.00 60.33 41.62
SBERT-MPNet 32.67 57.67 6633 44.67
e5-Base 27.67 48.00 5833 38.19
e5-Large 25.67 47.67 54.00 36.64
e5-7B-instruct 36.00 60.33 70.00 47.27
Specter 36.33 61.33 72.00 48.07
Specter2 36.00 57.67 70.33 46.97
SGPT-125M 15.67 29.00 37.00 23.08
SGPT-1B 19.00 36.67 44.67 27.95
SGPT-5B 21.00 43.33 56.00 31.63
Instructor-Base 22.00 44.00 49.00 31.71
Instructor-Large 29.33 55.00 66.67 41.68
Instructor-XL 27.00 52.67 6233 38.56
Llama3.1 (0-shot) | 27.33 49.00 59.00 37.69
Llama3.1 (n-shots) | 29.66 43.66 48.66 36.09
Gemma2 (0-shot) | 33.00 52.33 60.00 42.21
Gemma?2 (n-shots) | 29.33 55.33 64.33 41.78

Table 5 LLM'’s performance on the innovation (tech-
nology to market) alignment task (Test set). The per-
formance is measured in terms of accuracy (Ac@1, 5
and 10) and Mean Average Precision (MAP%)).

MiniLLM. It is to note that e5-base and e5-large per-
form poorly, which suggests that e5 effectiveness
is due to scaling with instruction learning. How-
ever, we remark that the Instructor model, including
its very large (XL) version also performs poorly.
This suggest that this generalist model which was
trained on 300 tasks can not adapt to our specific
task. We note the same observation for the two
generative models Llama3.1 and Gemma?2. The
third best performing model after Specter?2 is SBert-
MPNet followed by Gemma?2. Finally, sentence-T5
(ST5) which is based on the T5 encoder-decoder
fails to provide efficient representation of technol-
ogy and market even by scaling with the ST5-XXL.
This may suggest that the initialization of STS with
encoder-decoder word representation such as TS is

not suited, at least in our task. We finally observe
that SGPT which uses GPT transformer to repre-
sent sentences, also failed in providing a good inno-
vation prediction, even at scale. This suggests that
decoder-only based LLLMs (unless fine-tuned) can
not be applied to innovation modeling where the
relation between technology and market does not
solely rely on semantics but there must be some un-
derlying signal that can not be captured only from
a general purpose sentence pair training.

We report in Table 6 the results of selected base-
lines as well as our proposed strategies. We first
observe that most of the tested baselines show
improvements when only combining technology
and research embeddings. For instance among the
baselines, SBERT-MPNet obtained the best com-
bination score (Map = 51.79), closely followed by
Specter (Map = 50.17). It is also interesting to
notice that Specter performs better than SBERT-
MPNet when no combination is performed (Map
= 48.07 for Specter vs Map = 44.67 for SBERT-
MPNet). It is also worth noticing that embedding
combination does not always improve the align-
ment score. For instance Instructor-Large obtains
almost no gain while e5-base and SBERT-base per-
formance drops.

The second part of Table 6 shows the obtained
results after fine-tuning our models. We fine-tuned
using SBERT-base, e5-base, and SBERT-MiniLM.
We observe that our models exhibit improvements
before and after embedding combination where pre-
trained models such as e5 and SBERT-Base failed.
This finding suggests that our methodology of in-
jecting research by first fine-tuning and then em-
bedding combination is effective to improve inno-
vation modeling. We see for instance a boost by a
large margin of our fine-tuned model with SBERT-
MiniLLM (Ours (SBERT-MiniLLM)) before embed-
ding combination with an increase from MAP =
41.62 to 50.92 for the technology to market align-
ment for instance. After embedding combination,
this model achieves a Map score of 52.30, while it
only achieved 42.57 before fine-tuning. Our best
model'* obtains 55.02 of MAP.

7 Ablation Study

We investigate the impact of different loss functions
and fine-tuning inputs. All the reported results in
this section are based on the pretrained SBERT-

“SBERT-MPNet fine-tuned using the entire training data
with research papers only.
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Baselines

Proposed Combination

Tech—Market Res—Market Tech+Res—Market

Model Acl  AcS Acl0|MAP| Acl  Ac5 Acl0| MAP| Acl  Ac5 Acl0| MAP
SBERT-Base 09.00 23.67 30.33 | 17.01 | 04.33 13.00 20.67 | 10.33 | 08.67 22.33 29.67 | 15.66 |
SBERT-Large 10.33 26.33 38.33 | 18.96 | 06.33 19.33 26.67 | 13.67 | 11.00 25.00 37.67 | 19.331
SBERT-MiniLM 32.00 51.00 60.33 | 41.62 | 25.67 45.33 54.00 | 35.47 | 32.00 52.0 66.00 | 42.57 1
SBERT-MPNet 32.67 57.67 66.33 | 44.67 | 29.67 56.33 64.67 | 42.22 | 39.67 64.33 7233 | 51.79 1
e5-base 27.67 48.00 58.33 [ 38.19 | 17.33 35.00 42.67 | 26.20 | 27.67 46.67 54.67 | 37.05 ]
Specter 36.33 61.33 72.00 | 48.07 | 28.00 58.67 68.67 | 41.02 | 37.33 65.67 76.00 | 50.17 1
Specter2 36.00 57.67 70.33 | 46.97 | 32.00 59.00 69.00 | 44.08 | 35.67 64.67 74.67 | 48.53 1
Instructor-Large 29.33 55.00 66.67 | 41.68 | 22.00 43.00 55.33 | 33.42 | 30.00 55.00 67.33 | 41.807
Proposed Fine-tuning + Embedding Combination
Ours (SBERT-base) 24.33 50.33 60.33 | 36.18 | 20.00 44.00 55.67 | 31.63 | 25.67 51.67 62.67 | 37.96 1
Ours (e5-base) 33.67 56.33 63.67 | 44.62 | 30.00 49.33 62.00 | 40.08 | 37.67 58.67 69.67 | 48.33 1
Ours (SBERT-MPNet) 39.67 59.33 71.00 | 49.61 | 32.67 55.67 66.67 | 43.75 | 41.00 65.00 74.33 | 52.14 1
Ours (SBERT-MiniLM) 39.67 64.33 75.33 | 50.92 | 30.67 57.33 69.33 | 43.23 | 40.67 65.33 77.67 | 52.30 1
Ours (BEST) 42.00 69.33 77.00 | 53.95 | 32.67 58.33 73.33 | 44.79 | 41.67 72.33 78.67 | 55.02

Table 6 Evaluation on the test set of baselines and our proposed combination strategies on the innovation
alignment task (Accuracy (Ac@1, 5 and 10) and Mean Average Precision (MAP%)).

MiniLLM model that we fine-tuned.

Tech—Market
Loss Acl Ac5 Acl0 MAP
MNRank |46.0 78.0 86.0 60.45
Cosine 29.0 68.0 79.0 4544
Contrastive | 32.0 64.0 81.0 47.32

Table 7 Development results with different Loss
functions. MNRank: Multiple Negative Ranking Loss.

In Table 7, we contrast the Multiple Negative
Ranking Loss with the Cosine loss and the Con-
trastive Loss. We observe that both Cosine and the
Contrastive loss performs poorly while compared
to the Multiple Negative Ranking loss.

Tech—Market
Model Acl Ac5 Acl0 MAP
MNRank | 46.0 78.0 86.0 60.45
-product | 37.0 70.0 82.0 52.11
-paper 490 77.0 84.0 62.53
-patent 52.0 78.0 87.0 63.12

Table 8 Development results removing patent, prod-
uct or paper from the training inputs. This results in
fine-tuning using (anchor, positive) pairs by leaving
one out for each ablation experiment.

Table 8 shows that removing product informa-
tion from the fine-tuning process results in a signifi-
cant decrease in performance. Surprisingly, remov-
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ing patents or papers leads to some improvement
in MAP score but only due to an improve in ac-
curacy at 1 (Acl) which has a higher impact on
the MAP score. This behavior can be explained
by the overlap that may exhibit some patents and
papers. Further investigations on the proximity and
overlap between patents and products should be
carefully addressed for better representation. We
let this investigation for our future work.

8 Discussion

As LLMs are trained on a huge amount of data of
different domains, it is reasonable to question if
there is still a need for fine-tuning or better follow
the new trend of prompt-based approaches. An-
other question is: whether it is necessary to use
huge general purpose LLMs for a task that can
be addressed with smaller models adapted for a
downstream application? In innovation modeling,
the underlying link between patents and there cor-
responding products represent a strong signal that
may not be captured only by general semantic train-
ing. Models such as SGPT for instance, which is
trained for semantic search failed to predict innova-
tion. To better apprehend LLMs performance, it is
necessary to have a closer look at there architecture.
If LLMs are based on the transformer, each model
has its own specificity. In the following we will
discus architecture similarities and differences.
Existing LLMs are based on encoder-only (such



as BERT), encoder-decoder (such as T5) and de-
coder only architecture (such as GPT3 and Llama).
In our experiments, sentence-based models (such
as SBERT) based on the Siamese BERT-Networks
showed the best performance, however not all
SBERT models were successful. The two best per-
forming models were the small SBERT-MiniLM
(Map = 41.62) and SBERT-MPNet (Map = 44.76)
while the original SBERT models (SBERT-base,
SBERT-large and later SRoberta)(Reimers and
Gurevych, 2019) showed lower performance. All
these models have in common the use of encoder-
only architecture for word representation and the
Siamese network for sentence representation. The
main differences lie in the used training data and
more importantly the pretraining objective. BERT
is based on masked language model pretraining and
SRoBERTa is based on XLNET. Finally, BERT-
MPNet is based on masked and permuted pretrain-
ing objective. If training data plays an important
role in the quality of the training model, we believe
that for SBERT, training objective with both XL-
NET or MPNET as well as token sequence length
play a crucial role in providing higher performance.

An interesting finding is that our best combi-
nation models were obtained based on the small
SBERT-MiniLLM. This result shed light on the fact
that bigger models do not necessarily mean better
performance on one hand, and on the other hand
that the fine-tuning strategies matter and can dras-
tically impact the performance. If further investi-
gations are certainly needed, using a small model
such SBERT-MiniLM on larger data is greatly bene-
ficial for both: training and inference time. We note
that token sequence length for SBERT-MiniLLM is
512 while SBERT-MPNet is only 128. Further in-
vestigations are certainly needed, by conducting
for instance a controlled evaluation for patents and
research papers as well as products of a length that
fits the model or by developing new strategies that
leverage truncated texts in their model.

Finally, the two generative LLM models
(Llama3.1 and Gemma?2) showed mitigated per-
formance on zero-shot and few-shots learning. It it
to note that the inference time of these models may
increase with the number of shots. Our prompt
strategy was to ask the LLM to provide a similarity
score between -1 and 1 of two input sentences for
zero-shot, and by presenting one positive sentence
pair and one negative sentence pair for one-shot
learning. We also conducted few shots learning

but did not observe any significant improvement.
Considering the complexity and size (billions of
parameters) of these models, we believe that they
are not a strategic choice for our task. We however,
do not exclude the evaluation of smaller distilled
versions of generative models in the future.

9 Conclusion

This work is the first attempt for modeling innova-
tion by mapping research to the market. We con-
ducted an extensive evaluation of a wide range of
LLMs and showed under which conditions research
paper information can be injected to improve the
technology to market alignment. A thorough evalu-
ation of sentence embedding models revealed that
using SBERT with our fine-tuning strategies signif-
icantly improve the alignment performance. Fur-
thermore, we showed that it is possible to map
research with the market without using the technol-
ogy information which is encouraging for building
models able to recommend market products out of
research papers. We hope that our findings and pre-
liminary results will encourage new investigations
in modeling innovation.

10 Limitations

If comparing several pretrained sentence embed-
ding models on the technology to market alignment
task has shown SBERT to be the most appropriate
model for this task, it is worth noticing that the pur-
pose or pretrained objective of several compared
models was not semantic similarity. Which may
indicate that this comparison is somehow unfair,
and a better way to compare these models is to first
fine-tune them on a semantic similarity training
data before applying them to our task. Specter, a
strong baseline should also be fine-tuned on our
training dataset. We let this comparison for future
work.

Also, our evaluation has been conducted on En-
glish only. If the results are promising, there is a
need for evaluation on other languages. This is also
part of our near future agenda. Finally, this work
is a first attempt to model innovation. If we pre-
sented a methodology that can match research to
innovation, the centroid representation of products
does not allow a direct alignment with individual
products. A further step is needed to extract each
product from the market description. This post
processing is part of our ongoing research.
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