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Abstract

Named entity recognition from financial text is
challenging because of word ambiguity, huge
quantity of unknown corporation names, and
word abbreviation compared to nonfinancial
text. However, models often treat named enti-
ties in a linear sequence fashion, which might
obscure the model’s ability to capture complex
hierarchical relationships among the entities.
In this paper, we proposed a novel named en-
tity recognition model BiGCAT, which inte-
grates large language model (LLM) embed-
dings with graph-based representation where
the contextual information captured by the lan-
guage model and graph representation learning
can complement each other. The method builds
a spanning graph with nodes representing word
spans and edges weighted by LLM embeddings,
optimized using a combination of graph neu-
ral networks, specifically a graph-convolutional
network (GCN) and a graph-attention network
(GAT). This approach effectively captures the
hierarchical dependencies among the spans.
Our proposed model outperformed the state-
of-the-art by 10% and 18% on the two publicly
available datasets FiNER-ORD and FIN, re-
spectively, in terms of weighted F1 score. The
code is available at: https://github.com/
Akram1871/BiGCAT-RANLP-2025.

1 Introduction

Background. Named entity recognition (NER)
is a classical information extraction problem in
natural language processing. Accurately identify-
ing named entities can benefit information access
tasks such as question answering, recommenda-
tion systems, and ranking systems. With the rapid
growth of E-financing activities that generate vast
amounts of unstructured financial data, financial
NER (FinNER) research becomes salient to un-
derstand the dynamics of the financial landscape.
FinNER poses some unique challenges compared

to traditional NER problems, including (1) finan-
cial texts feature complex structures with nested,
long-range dependencies such as multi-word enti-
ties spanning different sentence segments, (2) large
volume of organizational entities which are often
used in short form and become arduous for extrac-
tion, and (3) variable length of spans and ambiva-
lent semantic meaning of financial data (Swaileh
et al., 2020; Feng et al., 2020; Sumithra and Sridhar,
2021). Although NER is an active area of research,
FinNER is a less explored domain.

Problem Definition. Some studies have shown
that graph–based representations can capture long-
distance unstructured information via graph neural
network (GNN), while LSTMs or LLMs effectively
capture sequential contextual information (Cetoli
et al., 2017; Xu et al., 2021; Zaratiana et al., 2022).
Although integrating these features has the poten-
tial to enhance NER models, the mechanism of
their interaction remains unclear, and the perfor-
mance gains have been modest. Moreover, the
effectiveness of this integration in the context of
financial documents remains an open question. In
this paper, we address this question and focus on
exploring the impact of Graph neural networks
on the FinNER task. We propose an integrated
graph neural network model, BiGCAT, combining
the benefits of two popular GNN models includ-
ing graph-convolution network and graph-attention
network.

Our contributions are as follows; (i) We in-
troduce a novel model BiGCAT for recognizing
named entities from financial documents fusing
the PLMs with BiLSTM-GCN and GAT where
we design span-based graph input representation
rather than tokens. (ii) We evaluate our proposed
method on two benchmark datasets (i.e., FiNER-
ORD and FIN) and report the state-of-the-art per-
formance. We compare our proposed BiGCAT with

https://github.com/Akram1871/BiGCAT-RANLP-2025
https://github.com/Akram1871/BiGCAT-RANLP-2025
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several baselines to demonstrate its effectiveness.
(iii) To ensure reproducibility and facilitate further
research, we make our code, experimental details,
and a publicly available pretrained model 1 on Hug-
gingface accessible to the community.

We organize the remaining content of this pa-
per as follows: Section 2 includes a comprehen-
sive background study. Section 3 introduces our
proposed BiGCAT method for the FinNER task.
Section 4 explains detailed experiments and evalu-
ation along with the performance comparison with
related approaches. We also provide an insightful
discussion in Section 4.3. We conclude our work
and draw future directions in Section 5.

2 Related Work

Feature-based methods either exploit hand-crafted
lexical resources and fit them into a rule-based clas-
sifier (Farmakiotou et al., 2000; Collobert et al.,
2011; Ju et al., 2018) or encode the input text us-
ing Neural network architectures like BiLSTM and
then pass the embeddings to the conditional ran-
dom field (CRF) (Sutton et al., 2004) to capture
the dependencies between the adjacent labels (e.g.,
whether “New” and “York” should be labeled to-
gether as a single entity like “New York”) using the
sequence transition probabilities of the labels (Zhao
et al., 2018). However, these models heavily de-
pend on feature engineering that hampers the ro-
bustness and fails to model complex contexts like
the financial domain.

These methods utilized transformers in two ways.
In one approach, open domain pre-trained lan-
guage models (PLMs) such as BERT, RoBERTa,
and GPT4. are employed on FinNER task (Li
et al., 2023). Another method introduces the BiL-
STM layer after the Transformer to create con-
textual representations of words in the input se-
quence (Wang et al., 2022). The other focused on
the fine-tuned PLMs on financial documents like
FinBERT (Huang et al., 2023) to get better per-
formance on FinNER tasks. Transformer-based
models are superior to the sequence-based methods
but still suffer in short text and domain-specific
complex context problems. For this reason, their
contextual representations need to pass an effective
deep neural network (DNN) to compare the seman-
tic relations for extracting entities (Gupta et al.,
2023).

Graph neural network (GNN) based methods
1https://huggingface.co/mrx71/BiGCAT

have gained attention in financial NER tasks. Guo
et al. (2020) proposed a knowledge graph embed-
ded approach by integrating the GNN and Trans-
former that performs well for the financial NER
task. Zaratiana et al. (2022) proposed a GNN-based
method to reduce overlapping spans during train-
ing that shows promising performance. This work
motivates us to incorporate GNN methods after the
Transformer embeddings for the financial named
entity extraction task.
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Figure 1: An overview of our proposed BiGCAT frame-
work. The input text is tokenized and represented using
the pre-trained transformer. We generate the representa-
tion of span from its token representation, construct a
span-based homogeneous interval graph (E), and split
it into two variants E+ and E- based on their value of
edge.

3 Proposed BiGCAT Framework

The overview of our proposed BiGCAT framework
is depicted in Figure 1. It consists of three stages,
including contextual modeling for input representa-
tion, GNN layers, and integration of multiple GNN
layers to predict the label of tokens.

3.1 Contextual Modeling

We modeled our contextual input representation
into two phases. In the first phase, we ex-
ploit a pre-trained DistilRoBERTa-base 2 (Sanh
et al., 2019) Transformer model for word-based
contextual representation to learn low-level fea-
tures from the text. For example, given an in-
put sentence x, we tokenized it into n words
{t1, t2, t3, · · · , tn} and pass it to the transformer
layer and exploit sequential embedding vector of
each token {h1, h2, h3, · · · , hn}.

2https://huggingface.co/philschmid/distilroberta-base-
ner-conll2003
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Prior studies found that the first subtoken rep-
resentation of the transformer model works better
than the other for token classification tasks; there-
fore, we use the first subtoken representation (Ken-
ton and Toutanova, 2019). In the second phase,
following the sliding window mechanism we build
the spans over the tokens and represent a span us-
ing the contextual representation of its token from
the first phase. Inspired by Zaratiana et al. (2022),
we employ this span representation to reduce the
overlapping span problem. It also facilitates us in
designing graph neural network models to exploit
long-range nested dependency of entities, which is
crucial for FinNER tasks.

We use the AllenNLP library (Gardner et al.,
2017) to establish end-to-end represention be-
tween the spans and the embeddings. We build
k length of spans over the tokens, such as si,j =
Concat{hi, hj , ek}. Where si,j denotes the span
representation of index i and j. hi and hj denote
the endpoints word representation of those indices,
and ek the corresponding embedding vector of span
width of k.

3.1.1 Graph Structure
We construct an undirected weighted graph, G =
(S,E), with S = {s1, s2, · · · , sm} as the set of
spans and E ∈ S × S as the set of edges. The
neighbor set of span s is denoted as N(s) = {u :
(s, u) ∈ E}. The span features are represented by
a feature matrix X ∈ R|S|×d, where the i-th row
xi ∈ Rd is the feature vector of span si and d is
the dimension of the feature. The weight of an
edge between two spans si and sj , ai,j is defined
as follows:

ai,j =


1, if si = sj

0, if |si ∩ sj |
−1 otherwise

To reduce the span overlap, we use contextual
representation where the weight of edge 1, 0, and -1
denote self-connected span, non-overlapping span,
and overlapping span, respectively. It avoids the
recalculation of candidates and helps to learn better
semantics among the tokens, especially between
the neighbor tokens.

3.2 Graph Neural Network Framework

Our graph neural network (GNN) model combines
two popular GNN architectures, graph convolu-
tion network (GCN) and graph attention network

(GAT) (see Figure 1). We feed the input graph to
a GAT, a single-layer GCN (SLGCN), and a two-
layer GCN network (TLGCN). Moreover, we also
plug a Bi-LSTM layer on top of the TLGCN. We
concatenate all layer’s outputs and pass them to
the Max-pooling, Dropout, and Linear layers for
predicting the label of the token.

3.2.1 Graph-Convolution Network (GCN)
We utilize vanilla GCN (Kipf and Welling, 2016) as
one of the backbone components of our proposed
BiGCAT method to extract global word-word rela-
tionships from tokens. Then split the span-based
graph into two signed graphs, based on the pos-
itive edge E+ and negative edge E−, then pass
them to SLGCN and TLGCN, respectively. We
consider two intuitions for employing TLGCN on
E− graph, i) following 3.1.1 negative weight edges
represent the dissimilar spans; GCN weight prop-
agation mechanism considers positive edges as a
similar neighbour and often ignore negative edges
which are considered as dissimilar neighbours due
to its bias nature, but in our case, we only pass
E− graph and it contains salient node features
which can help GCN aggregation mechanics to
exploit better semantic features, ii) the TLGCN
outperforms in several graph classification tasks
compared to the SLGCN (Malekzadeh et al., 2021;
Hanh et al., 2021). The edges of the positive signed
graph are self-connected; hence, we utilize SLGCN
from the intuition that it can learn local neighbour-
hood features better than TLGCN. For the negative
edge E− span, we compute the propagation matrix
of GCN as follows:

H(l+1) = σ(D̃− 1
2 ÃD̃− 1

2H(l)W (l))

Ã = A+ IM
(1)

where A is the adjacency matrix of constructed
graph, G defined in Section 3.2.1 and IM denotes
an identity matrix of M spans. Here, D is the de-
gree matrix, D̃i =

∑
j Aij , the trainable weighted

matrix of each layer denoted as W (l). Neverthe-
less, σ(.) denote the activation function and H(l)

denotes the activation matrix of lth layer where
H(0) initialize by the input span representation.

3.2.2 Graph-Attention Network (GAT)
We utilize the GAT network (Veličković et al.,
2017) but exploit the multi-head attention mecha-
nism (Vaswani et al., 2017) since it can learn better
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semantic contextual representation. For the self-
attention, we compute our queries, keys, and values
packed into the matrix Q, K, and V, respectively,
where we extract those matrices from span repre-
sentation using a two-layer feedforward network.
We compute the attention for every single span si
as follows:

fatt(Q,K, V ) = (
QKT

√
dmodel

⊙A)V (2)

H ′ = Concat(S1, S2, ...Sr)W
0 (3)

Si = fatt(QWQ
i ,KWK

i , V W V
i ) (4)

where ⊙ denotes the element-wise dot operation
between the matrices. In the above equations 3
and 4, we present a representation of our estimated
multi-head attention over all spans in a sentence.
Here, H ′ denoted the final calculated attention of
a sentence. The projections of trainable weight
matrices are WQ

i ϵRdmodel × dq , WK
i ϵRdmodel × dk ,

W V
i ϵRdmodel × dv , and WOϵRrdv × dmodel where

r = m denotes the number of spans in the sentence.

3.2.3 BiLSTM
Bidirectional long short-term memory (BiL-
STM) (Brueckner and Schulter, 2014), an extended
version of recurrent neural network. Individual
GCN modules are limited to learning sequential
dependency information from the text because it
does not consider word order (Malekzadeh et al.,
2021). We employ a BiLSTM module over a two-
layer GCN to overcome this shortfall and extract
the long-term inter-relational dependencies among
the tokens.

3.3 Integration of GNN Layers
To integrate the GAT, single-layer GCN (SLGCN),
and two-layer GCN (TLGCN) with BiLSTM lay-
ers, we utilize the early fusion technique (Ebers-
bach et al., 2017). We fuse them using
Concat(Rdew×dp , S

dew×dp
1 , S

dew×dp
2 ) where R,

S1, and S2 denote the outputs feature matrix from
GAT, SLGCN, and TLGCN layer, respectively.
dew denotes the maximum embedding width, and
dp is the projection embedding dimension in our
task.

4 Experiments

In this section, we report our experimental evalu-
ation by first describing the experimental settings
and then presenting and discussing the results.

4.1 Experimental Setup

Dataset. We use two benchmarks datasets: FiNER-
ORD (Shah et al., 2023) and FIN (Alvarado et al.,
2015). FiNER-ORD dataset contains a total of
201 articles that are collected from financial news.
However, it has a total of 1,16,721 tokens where
the percentages of the entities of location (LOC),
organization (ORG) and person (PER) are 1. 25%,
2. 44% and 1. 10%, respectively. On the other
hand, the FIN dataset contains an additional entity,
miscellaneous (MISC). Alvarado et al. (2015) uti-
lized eight publicly available loan agreements to
build this corpus where they randomly split them
in 5: 3 and used these five agreements for the train
split, namely FIN5 and the rest three for the test
split, namely FIN3. FIN5 and FIN3 contain a total
of 1014, 336,306,686, 4 and 150, 79, 114, 236, 7
articles, LOC, ORG, PER, and MISC tag, respec-
tively. We considered various standard evaluation
measures including F1-score (Chinchor and Sund-
heim, 1993), Precision, and Recall (Powers, 2011)
to validate our proposed system performance where
the primary evaluation metric is the Weighted aver-
age of F1-scores (W-F1) for the FiNER-ORD and
FIN dataset, following Shah et al. (2023).

We used pre-trained DistilRoBERTa-base lan-
guage model from the HuggingFace library (Wolf
et al., 2019) and used 768-dimensional embedding
features. We packed our word’s input representa-
tion into spans utilizing the max span length is 8,
and span embedding width is 128 (section 4.3.2).
Later, for the GNN layer, features were down-
projected from (768*2 + 128) to 256. To calcu-
late the overall loss of the model, we utilize a
cross-entropy loss algorithm (De Boer et al., 2005).
We set the learning rate 2.3e-5, batch size 16, and
Adam optimizer (Kingma and Ba, 2014) to learn
the weights and train our proposed BiGCAT model.
However, we set the epoch numbers for FiNER-
ORD and FIN datasets is 30. We searched the
best hyperparameters using Weight&Bias (Biewald,
2020) sweep configuration and reported the aver-
age results from three seeds: 5, 42, and 1871.

4.2 Experimental Results

We compare our proposed BiGCAT model with
the following baselines: SpacyNER (Honnibal and
Montani, 2017), GLiNER (Zaratiana et al., 2023),
Llama-3.1 (Llama Team, AI @ Meta, 2024), GPT-
4o (OpenAI, 2023), BERT (Devlin et al., 2019),
FinBERT (Araci, 2019), and RoBERTa (Liu et al.,
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Table 1: Comparative performance of our proposed BiG-
CAT with related baselines on the FiNER-ORD test split.
The models with * symbol are retrieved from (Shah
et al., 2023). The best result is highlighted in bold, and
the second best is underlined.

Model PER LOC ORG Weighted Average

BiGCAT .9429 .8495 .7912 .8400

Performance of the fine-tuned PLMs baselines

RoBERTa-large* .9263 .7717 .6769 .7648
BERT-large-cased* .8954 .7289 .6272 .7216
BERT-base-cased* .8811 .6820 .6013 .6931
FinBERT-base-cased* .7456 .6836 .6002 .6589
RoBERTa-base* .9050 .7154 .6304 .7220

Performance of the zero-shot baselines

SpacyNER .7824 .1714 .6134 .5499
GLiNER .6884 .6208 .5841 .6159
Llama-3.1-70B-Turbo* .6706 .5919 .4981 .5661
Llama-3.1-405B-Turbo* .7413 .6587 .5751 .6389
GPT-4o* .8004 .6651 .6036 .6692

Table 2: Comparative performance of our proposed
BiGCAT with related baselines on the FIN test split.
The best result is highlighted in bold, and the second
best is underlined.

Model PER LOC ORG MISC Weighted Average

BiGCAT .9489 .3011 .5217 .0000 .6989

Performance of the fine-tuned PLMs baselines

BERT-base-cased .7028 .0241 .0342 .0000 .3929
DistilRoBERTa-base .8258 .4056 .2500 .0000 .5899

Performance of the zero-shot baselines

SpacyNER .6104 .3310 .1477 .0000 .4290
GLiNER .4864 .6709 .3142 .0000 .4670

2019). In Table 1, we presented the compera-
tive study our BiGCAT method of FiNER-ORD in
terms of weighted F1 score (W-F1) following Shah
et al. (Shah et al., 2023). Our proposed BiGCAT
model outperforms the baseline methods across
each entity, improving the W-F1 score by approxi-
mately 10% compared to the second-best perform-
ing system, the fine-tuned RoBERTa-large. Fine-
tuned PLMs show dominance in performance com-
pared to zero-shot models due to domain-specific
training. As discussed in Section 1, FinNER con-
tains several syntactical and semantical unique chal-
lenges, which require more financial knowledge for
the models. We fine-tuned the hybrid GNN layers
over a financial corpus, which helped the model
learn financial contextual cues more effectively.

In Table 2, we compared the performance of
our BiGCAT model with several other models, in-
cluding SpacyNER and GLiNER as zero-shot base-
lines, and BERT and DistilRoBERTa as fine-tuned
PLMs baseline models. The experimental results
show that our method consistently outperforms all

Transformer models across entities except for LOC.
However, all models failed to identify the MISC
entity due to its very low density in both the train-
ing and test splits of the FIN (Alvarado et al., 2015)
dataset. The test dataset contains only 7 MISC
entities, and the validation dataset does not con-
tain a single MISC entity, which led the models
to underfit on this entity. Our BiGCAT model im-
proved over the state-of-the-art baselines as fol-
lows: BERT: 78%, DistilRoBERTa: 18%, Spa-
cyNER: 63%, GLiNER: 50% in terms of W-F1.
This consistent performance justifies the inclusion
of the GNN method for the financial named entity
recognition task.

Although our evaluation was limited to the
FinNER task, our model may also perform well
in general NER tasks, as it outperformed the SOTA
GLiNER model, which had previously outper-
formed 20 NER benchmarks.

4.3 Empirical Analysis

In this section, we perform qualitative and quantita-
tive analyses, including the counting of overlapping
spans, error analysis, and an ablation study to eval-
uate the robustness of the proposed BiGCAT model
for named entity recognition.

4.3.1 Ablation Study
We conducted an ablation study and discussed
the individual component’s performance of our
proposed BiGCAT method, as illustrated in Ta-
ble 3. The comparative performance of our system
against other settings validates the effectiveness
of the integration approach of our model. How-
ever, the DistilRoBERTa+GCN+BiLSTM perfor-
mance compared to DistilRoBERTa+GAT in Ta-
ble 3 shows that it achieves lower precision but
higher recall, indicating that the GCN+BiLSTM

module often makes false positive errors than the
GAT module. Contrarily, DistilRoBERTa+GAT
model improves precision but reduces recall, mak-
ing the model more cautious and leading to missed
correct entities. This validates our fusion strategy
of the GNN modules, and BiGCAT proves to be
the most effective balanced approach for this task.

4.3.2 Overlapping Spans
The number of overlapping spans is one of the key
parameters that indicate how well a GNN model is
on the NER task because overlapping spans may
conflict in prediction and provide different labels
for a single token. We analyze the relationships be-
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Prediction Gold Label

PER LOC ORG

Figure 2: Some successful and unsuccessful examples of our proposed BiGCAT from the FiNER-ORD test set.
Here, the green, red, and blue colored tokens represent the person, location, and organization entities, respectively.

Table 3: Ablation study of our proposed BiGCAT model
in its different variants: results on the validation split of
Finer-ORD.

Model W-F1 Prec. Rec.

BiGCAT .9220 .9182 .9220
DistilRoBERTa+GAT .8916 .8972 .8883
DistilRoBERTa+GCN+BiLSTM .8857 .8776 .8949

tween the number of overlapping spans, maximum
span length (max span), and weighted F1 scores
of the top three BiGCAT runs at max span values
of 4, 8, and 16. Our proposed BiGCAT model
has the lowest number of overlapping spans when
max span = 4, which is close to 0. However, its
w-F1 score on the FiNER-ORD test set is 0.7972,
indicating that the model may be overfitted. For
max span = 8, we observe that the number of over-
lapping spans is below the average line, so we used
this for training the rest of our model settings. The
results are shown in Table 1, indicating how well
our model fits this task.

4.3.3 Qualitative Results

In Figure 2, we illustrated an insightful qualitative
analysis of our BiGCAT model using the FiNER-
ORD test dataset. The first three examples were the
successful ones where our method identified all the
entities correctly, especially when token’s length
are relatively long, which is crucial for FinNER
task. The last example of Figure 2 show that our
model sometimes misidentified long multi-word
entities because of LLM’s sub-tokenization and the

imbalanced training dataset contains almost 92.5%
of “O (other)” tokens.

5 Conclusion

In this paper, we propose BiGCAT for named entity
recognition, which integrates graph-based represen-
tation learning for the first time specifically in the
financial domain. First, we construct a span graph
from the input text, weighting the graph with em-
beddings from LLMs to capture sequential context
among the words of the span. Next, we develop a
multi-layered graph neural network (GNN) frame-
work that utilizes graph-convolutional networks
and graph-attention networks to exploit global se-
mantic dependencies among spans. Finally, we
pass the GNN outputs through a max-pooling layer
and a dense layer to obtain token-label predictions.

Results of experiments conducted on the FiNER-
ORD and FIN datasets demonstrate that the pro-
posed model achieves state-of-the-art performance
in the primary evaluation metric and in the F1 score
for each individual entity, compared to baseline
models. This indicates that span-based represen-
tations are more suitable for the NER task than
token-based representations. Additionally, we pro-
vide a detailed qualitative and quantitative analysis
of the model, including error analysis, the rate of
overlapping spans, and an ablation study of differ-
ent settings. In our future work, we plan to investi-
gate the use of heterogeneous graph representations
and graph embeddings to develop more robust and
lightweight models for named entity recognition.



439

References
Julio Cesar Salinas Alvarado, Karin Verspoor, and Timo-

thy Baldwin. 2015. Domain adaption of named entity
recognition to support credit risk assessment. In Pro-
ceedings of the Australasian Language Technology
Association Workshop 2015, pages 84–90.

Dogu Araci. 2019. Finbert: Financial sentiment
analysis with pre-trained language models. ArXiv,
abs/1908.10063.

Lukas Biewald. 2020. Experiment tracking with
weights and biases. Software available from
wandb.com.

Raymond Brueckner and Björn Schulter. 2014. Social
signal classification using deep blstm recurrent neural
networks. In 2014 IEEE international conference on
acoustics, speech and signal processing (ICASSP),
pages 4823–4827. IEEE.

Alberto Cetoli, Stefano Bragaglia, Andrew D O’Harney,
and Marc Sloan. 2017. Graph convolutional net-
works for named entity recognition. arXiv preprint
arXiv:1709.10053.

Nancy Chinchor and Beth M Sundheim. 1993. Muc-5
evaluation metrics. In Fifth Message Understanding
Conference (MUC-5): Proceedings of a Conference
Held in Baltimore, Maryland, August 25-27, 1993.

Ronan Collobert, Jason Weston, Léon Bottou, Michael
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