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Abstract
Large vision language models (VLMs) increas-
ingly claim reasoning skills, yet current bench-
marks evaluate them in single-turn or question
answering settings. However, grounding is an
interactive process in which people gradually
develop shared understanding through ongoing
communication. We introduce a four-metric
suite (grounding efficiency, content alignment,
lexical adaptation, and human-likeness) to sys-
tematically evaluate VLM performance in inter-
active grounding contexts. We deploy the suite
on 150 self-play sessions of interactive refer-
ential games between three proprietary VLMs
and compare them with human dyads. All three
models diverge from human patterns on at least
three metrics, while GPT4o-mini is the closest
overall. We find that (i) task success scores do
not indicate successful grounding and (ii) high
image-utterance alignment does not necessar-
ily predict task success. Our metric suite and
findings offer a framework for future research
on VLM grounding.

1 Introduction

To build collaborative AI systems, it is not enough
to produce locally correct answers; agents must
establish common ground efficiently through inter-
action, as humans do in situated dialogue (Clark
and Brennan, 1991).1 Human partners achieve
this via rapid lexical entrainment (Brennan and
Clark, 1996; Krauss and Weinheimer, 1964; Bren-
nan, 1996; Garrod and Anderson, 1987), and multi-
level interactive alignment (Pickering and Garrod,
2004), that yields shorter, more precise utterances
over time. These are shown to both increase task
success (Reitter and Moore, 2007) and reduce cog-
nitive load.

1Following Clark (1996), we use common ground to mean
the set of propositions that all interlocutors mutually believe,
know that the others believe, and recognize as a basis for
subsequent action.

Figure 1: This figure shows our VLM evaluation suite
using the Photobook Task to test the grounding capabili-
ties and human-likeness of language models, in addition
to two other metrics. Our benchmarking strategy clearly
identifies the differences between VLM and human in-
teractions.

Despite growing support for multi-turn in-
teraction, contemporary training and evaluation
pipelines for large language and vision language
models (VLMs) still prioritize single-turn answer
quality, through supervised fine-tuning, RLHF
(Ouyang et al., 2022), or DPO (Rafailov et al.,
2023). As a result, they neither measure nor re-
ward the interactive skills that underpin grounding,
such as reusing a partner’s words or pruning redun-
dant detail once mutual understanding is achieved.
Recent evidence also points to low communication
efficiency and degraded multi-turn performance rel-
ative to single-turn settings (Hua and Artzi, 2024;
Laban et al., 2025).

In this paper, we operationalize grounding for
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multimodal dialogue and evaluate it directly. We
introduce a task-agnostic evaluation metric suite
that captures grounding efficiency, content align-
ment, lexical adaptation, and human-likeness—and
instantiate it on the PhotoBook referential game
(Haber et al., 2019), which features five-round di-
alogues to identify shared images (Fig. 1; §4). 2

While the original Photobook corpus studied the
common ground formulation and referring expres-
sion generation using LSTM models, they did not
(i) test with contemporary billion-scale VLMs, (ii)
allow model-model self-play, or (iii) quantify dis-
tributional human-likeliness. We benchmark con-
temporary VLMs in model-model self-play and
compare against human transcripts to ask:

1. How efficiently do VLM pairs reach common
ground compared to humans? (grounding effi-
ciency)

2. Do VLMs describe the exact visual cues and
is that predictive of task success? (content
alignment)

3. Do VLM pairs form human-like conceptual
pacts, reusing each other’s terms and pruning
redundant detail over rounds? (lexical adapta-
tion)

4. To what extent do the grounding behaviors of
VLM pairs resemble human dialogue patterns
at the distributional level? (human-likeliness)

We show that VLM diverges from human base-
lines on ≥ 3 metrics, where GPT4o-mini is closest
overall (§5). Notably, high image-utterance align-
ment does not guarantee task success—there is no
correlation between CLIPScore and task outcomes
(§5.2). Finally, we show that task success does not
imply grounding. GPT4.1 often inflates its score by
mirroring partner’s preferences when ground-truth
labels coincide (§6).

2 Related Work

Common ground and lexical entrainment
Many lines of research in cognitive science and lin-
guistics have focused on modeling common ground
establishment in human-human interactions. Stud-
ies demonstrated that conversational partners con-
verge on concise, mutually understood referring
expressions across successive turns (Krauss and
Weinheimer, 1964; Clark and Wilkes-Gibbs, 1986;
Brennan, 1996; Garrod and Anderson, 1987). The
interactive alignment model (Pickering and Garrod,

2https://github.com/sakimai/
vlm-grounding-benchmark

2004) proposed that lexical, syntactic and discourse
level alignments emerge and support higher level
coordination and mutual understanding.

Computational models have attempted to repli-
cate these behaviors in task oriented dialogue sys-
tems (Stoyanchev and Stent, 2009; DeVault et al.,
2011; Visser et al., 2014; Ohashi and Higashinaka,
2022). However, much of this work has focused on
text or spoken dialogue systems. Large VLMs have
only recently been examined for lexical adaptation
(Hua and Artzi, 2024). Our work builds on these
insights by operationalizing common ground into
four concrete metrics.

Visual reference games Reference games pro-
vide a controlled environment to study grounding
processes. In these tasks, participants must iden-
tify shared referents, through dialogue (Krauss and
Weinheimer, 1964; Clark and Wilkes-Gibbs, 1986;
Hawkins et al., 2017; Monroe et al., 2017). These
tasks have been adapted for computational mod-
eling to evaluate alignment, reasoning, and visual
understanding in interactive contexts (He et al.,
2017; Hawkins et al., 2017, 2020). The PhotoBook
dataset (Haber et al., 2019), used in our study, ex-
tends this paradigm to three-round dialogues. This
offers an environment to study common ground
formation across time.

More recent work has explored reference games
for model evaluation in both abstract and grounded
domains (Ji et al., 2022; Chalamalasetti et al.,
2023; Hakimov et al., 2025). However, these ap-
proaches typically treat interaction as a means to
an end, without probing how communicative strate-
gies evolve. In contrast, we introduce a new set of
metrics and visualizations to trace the evolution of
grounding behaviors and lexical strategies across
dialogue rounds.

VLM evaluation in multimodal interactions
While large-scale VLMs have achieved impressive
zero-shot accuracy on static benchmarks (Liu et al.,
2023; Achiam et al., 2023; Liu et al., 2024), we
still lack an understanding of how they behave in
extended, collaborative interaction (Sicilia et al.,
2022). Recent work suggests that VLMs fall short
of interactive human behaviors. Hua and Artzi
(2024), for example, show that even the most ca-
pable multimodal models struggle to adapt to their
partner’s word choices in-context, and tend to pro-
duce verbose but low-efficiency utterances. Our
study simulates VLM-VLM dialogues in the Photo-

https://github.com/sakimai/vlm-grounding-benchmark
https://github.com/sakimai/vlm-grounding-benchmark
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Figure 2: This figure shows a comparative example of human-human and VLM dyadic conversations on the same
Photobook game. Human dialogues are more incremental, contain shorter utterances, and have more turns, while
VLMs engage in long explanations for each image, with fewer turns, and with sycophancy. The images are from the
MSCOCO dataset (Lin et al., 2014).

Book game, comparing them to human interactions.
This approach, unlike prior work using synthetic
or asymmetrical dialogue, quantifies how VLMs
build common ground, not just if they do.

3 Grounding Evaluation Suite

This section details the controlled setting we use
to examine how VLMs build common ground in
dialogue (see Figure 2 for an example scenario).

3.1 The PhotoBook Task

Task. PhotoBook is a five round referential game
in which two conversational partners must discover
which of three images they share, and which are
unique to each speaker (Haber et al., 2019). At
each round, they privately annotate every image as
common or different. The images in the game ex-
tracted from the MS COCO Dataset (Lin et al.,
2014) are deliberately structured to be visually
similar to elicit non-trivial referring expressions.
Moreover, the images appear exactly five times
throughout a game, which allow us to study the
collaborative referring expression generation and
resolution (Clark and Wilkes-Gibbs, 1986).

Human corpus. The released dataset contains
2,506 human–human dialogues (164,615 utter-
ances, 130,322 actions and spans a vocabulary of
11,805 unique tokens). This serves as an empiri-
cal upper bound baseline for grounding efficiency.
Additional work on referring expression extracted
41,340 referring utterances and 16,525 chains from

this dataset (Takmaz et al., 2020).

3.2 VLM Self-Play Protocol

Models. We study three recent proprietary VLMs
that differ in size and architecture: (i) GPT4.1 (ii)
GPT4o-mini (iii) Claude3.5-Haiku. Each VLM
dyad initialized with default parameters plays the
same set of 50 games, resulting in a total of 150
games. This setup enables a comparison of lexical
strategies, task performance, and communicative
behavior between VLMs and human.

Prompting and turn scheduling. We instantiate
two agents that alternate turns until both submit
non-null guesses. Each turn must be a valid JSON
object:
• "message" the natural-language utterance,
• "reference" either ”Image k” (k ∈ {1, 2, 3})

or null,
• "guesses" null until a player is ready, other-

wise a three-letter array such as "C","D","C"
where "C" ≡ common, "D" ≡ different.

A prompt engineered variant designed to prevent
three recurrent failure cases, (1) prematurely re-
vealing guesses, (2) comparing images one by one
rather than as a set, (3) generating fillers. Unless
stated otherwise, all results employ the original
prompt used for the human data, to mirror the
setup.

Data summary. Human speakers show clear lex-
ical convergence by round 2, as observed in Figure
2 of Haber et al. (2019). To capture this effect with-
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out excessive context length, we stopped the VLM
self-play at round 3. From 150 simulated games,
we collect 2662 utterances, 101701 tokens. These
dialogues constitute the VLM generated corpus
used in all subsequent analyses.

3.3 Extracting Referring Expressions

Our downstream metrics (§4.2, §4.3) should op-
erate only on referring expressions, not on meta
dialogue (“Ready?”, “Let’s guess”). We there-
fore processed each utterance to isolate refer-
ring expressions. While embedding based fil-
ters (BERTScore (Zhang et al., 2019), and CLIP-
Score (Hessel et al., 2021)) were considered, they
are less interpretable. Moreover, we observed
that VLMs follow highly regular patterns (“Im-
age 1 is. . . ”, “In my first image. . . ”), which made
rule-based extraction viable.

Linking utterances to images. In the human cor-
pus, the alignment between each utterance and the
image being discussed is obtained from the anno-
tation click logs. Participants indicated which im-
ages they considered common or different, which
served as a proxy for determining the referent
of each referring expression. For the VLM self-
play, we explicitly prompted the models to include
a "reference" field in their JSON responses
(§ 3.2) to indicate which image each utterance per-
tained to. However, we observed that a substan-
tial proportion of turns included a "reference"
field set to null. Nonetheless, most referring ex-
pressions were explicit within the utterances them-
selves which allowed us to leverage the textual
content to determine the referent image.

Human validation. To validate the pipeline, we
randomly sampled 50 rounds (≈ 10% of the VLM
corpus) spanning all three models. Manual annota-
tion shows 0.99 precision, recall of 0.55, yielding
F1 score of 0.66. We intentionally prioritized pre-
cision in our extraction approach to minimize false
positives. This design ensures the integrity of anal-
yses we depend on extracted referring expression,
even at the cost of recall.

4 Metrics

We formalize four families of metrics: grounding
efficiency, content alignment, lexical adaptation,
and human-likeness each grounded in psycholin-
guistic theory.

4.1 Grounding efficiency

Psycholinguistic theory suggests that efficient
grounding involves refining referring expressions
and minimizing unnecessary dialogue over time
(Clark and Brennan, 1991; Brennan and Clark,
1996). In human interactions, this is reflected in
both reduced lexical effort (fewer words) and more
streamlined turn-taking (fewer turns) while main-
taining or improving task performance (Hawkins
et al., 2020). To evaluate this, we compute:
• Task success: Total number of correctly identi-

fied common and different images in each round
(maximum of 18 points for 3 rounds and 3 im-
ages).

• Word count: Total number of words produced
in each round.

• Turn count: Total number of conversational
turns in each round.
We report grounding efficiency at 1) game level

to capture overall communicative cost and task suc-
cess, and 2) round level dynamics to evaluate how
grounding efficiency evolves as interlocutors accu-
mulate shared knowledge over time.

4.2 Content alignment

Assessing RQ2, we measure how closely utterances
align with the visual referents.

Absolute CLIPScore. We compute CLIPScore
of the utterance u and the image embedding of the
target imgt: CLIPSCORE(u, imgt).

Contrastive CLIPScore. Psycholinguistic stud-
ies show that humans emphasize diagnostic fea-
tures, which are properties that uniquely identify
the target among distractors (Dale, 1989; Dale and
Haddock, 1991; Sedivy, 2003). We capture this
with the contrastive score defined as

CLIPCON = CLIPScore(u, imgt)

− 1
|D|

∑
d∈D

CLIPScore(u, d) (1)

where u is the utterance (i.e., referring expression),
the divisor |D| converts the raw sum into a mean
and makes the score invariant to the number of
distractors.

4.3 Lexical adaptation

To assess RQ3, we measure whether VLM pairs
form human-like conceptual pacts, reusing each
other’s terms and pruning redundant detail.
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System Total Score (max 18) # Words # Turns

Claude3.5 12.62 ± 2.07 805.72 ± 123.85 15.48 ± 2.52
GPT4.1 15.02 ± 1.81 800.08 ± 116.87 14.68 ± 2.51
GPT-4o-mini 13.52 ± 2.34 428.22 ± 80.74 23.08 ± 2.46

Human 16.62 ± 1.14 338.10 ± 109.37 74.08 ± 12.08

Table 1: Mean ± standard deviation for total score, number of words, and number of turns per game across systems.
Humans achieve the highest task success while using fewer words but significantly more turns. In contrast, VLMs
achieve lower task success with longer word counts and fewer turns.

Word Novelty Rate (WNR). To quantify how
speakers adjust their vocabulary as common ground
builds, we adopt the Word Novelty Rate proposed
by Hua and Artzi (2024). WNR is a variant of word
error rate that counts only insertions and substitu-
tions, and ignores deletions. Past work shows that
interlocutors progressively drop previously estab-
lished material once it is mutually known (Hawkins
et al., 2020). By focusing on insertions and substitu-
tions, WNR captures the moments where a speaker
adds or changes wording, i.e. where lexical inno-
vation or repair occurs. A declining WNR across
rounds indicates that fewer novel words are being
introduced, consistent with successful adaptation.

4.4 Human-likeness
Discrete energy distance. To gauge how
human-like VLM utterances are at the distribu-
tional level, we adopt the Discrete-Energy Distance
of Sicilia and Alikhani (2022). While our previ-
ous metrics target specific grounding mechanisms,
this distributional measure captures whether the
overall distribution of VLM dialogues resemble
human interactions. We first embed each game
dialogue with all-MiniLM-L6-v2 Sentence
Transformer.3 This metric compares the average
cross group distance (human-VLM) with the aver-
age within group distances (human-human, VLM-
VLM). Lower energy distance values indicate that
the VLM distribution is closer to the human distri-
bution.

5 Results

5.1 Grounding efficiency
Addressing RQ1, we assess how efficiently VLM
pairs establish common ground compared to hu-
man speakers. We operationalise grounding effi-
ciency as the balance between communicative cost

3https://huggingface.co/
sentence-transformers/all-MiniLM-L6-v2

(measured by total words and turns) and task per-
formance (total score).

Game-level performance. Table 1 summarizes
performance across the entire game (capped at
3 rounds) for each system. Humans achieve the
highest mean score (16.62), with fewer words
(338.1) but more turns (74.08) than VLMs. GPT-
4.1 closely approaches human performance in score
(15.02) while requiring nearly double the word
count and markedly fewer turns. Claude-3.5 shows
lower task success (12.62) despite the highest word
count (805.72) and reduced turn count.

Round-level performance. Figure 3 analyzes
grounding efficiency across rounds. We present the
average total score per round, percentage change in
word count from round 1, and percentage change
in turn count from round 1.

Total score (Fig 3 left) improves with addi-
tional rounds for humans and GPT4o-mini. In
contrast, GPT4.1 and Claude3.5 exhibit declining
scores, possibly due to challenges of managing
longer context lengths. Specifically, GPT4.1 and
Claude3.5 generate nearly double the total word
count per game compared to GPT4o-mini (800 and
806 words vs. 428 words; see Table 1), which may
contribute to degraded performance. This obser-
vation aligns with prior work demonstrating that
LLM performance tends to degrade with longer
context windows (An et al., 2024).

Word count (Fig 3 middle) consistently de-
creases across rounds, and declines significantly for
humans in round 3. While all models show reduced
word count by round 3, GPT4o-mini and Claude3.5
initially increase their word count in round 2, and
this pattern contrasts with humans. This is consis-
tent with psycholinguistic theories of lexical en-
trainment and collaborative efficiency (Holler and
Wilkin, 2020), that the decrease in word count indi-
cates common ground. Further, turn count (Fig 3

https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2
https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2
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Figure 3: (Left) Average total score per round; (Middle) Average percent change in word count from round 1; (Right)
Average percent change in turn count from round 1. Shaded region indicate standard deviation. Key takeaways: (i)
Humans and GPT4o-mini improve task performance over rounds; (ii) Humans sharply reduce word count and turn
count in later rounds; (iii) VLMs show inconsistent cost reduction, with some increasing word and turn counts.

right) follows a similar trend that humans generally
reduce their turns across rounds, while VLMs tend
to increase turn count from round 1 to 2, before ex-
hibiting a slight reduction in round 3. Overall, these
patterns suggest that GPT4o-mini demonstrates a
grounding trajectory resembling human efficiency
with improved task scores with moderate commu-
nicative cost, while GPT4.1 and Claude3.5 struggle
with verbosity and performance as rounds progress.

Does prompt tuning increase grounding effi-
ciency? Motivated by these results, when we
specifically ask models to be more human-like in
the prompt, we observe that their performance, in
fact, becomes closer to humans in various metrics.
Specifically, we crafted a revised prompt that pre-
emptively mitigates three recurrent failure modes
(§ 3.2), to guide VLMs toward more concise and
targeted communication. Results suggest that tai-
lored prompting can improve efficiency metrics and
promote more adaptive behavior similar to humans,
though inherent reasoning limitations persist.

5.2 Content alignment

Figure 4 (left) shows declining absolute CLIP-
Score for humans. This aligns with prior findings
that once common ground is established, speakers
economise on explicit visual detail and drop re-
dundant description. GPT4o-mini had a consistent
description strategy with absolute CLIPScore of
around 31.5 across rounds. In contrast, CLIPScore
for Claude3.5 increases across rounds, indicating
longer context length might lead the model to pro-
vide additional descriptions than prune detail.

The contrastive variant in Fig 4 (right) separates

Figure 4: (Left) Absolute CLIPScore. (Right) Con-
trastive CLIPScore (↑ means the utterance is more di-
agnostic of the target versus distractors). Shaded re-
gion indicate standard deviation. Takeaway: Humans
steadily lower their CLIPScore while still completing
the task, suggesting that they simplify their descriptions
as mutual knowledge accrues. LLMs diverge in how
they adapt across rounds.

the systems further. GPT4.1 and Claude3.5 briefly
spike in diagnostic detail during round 2, whereas
GPT-4o-mini and humans follow a flatter, lower
trajectory with lower score in round 2.

Does alignment drive success? To test whether
raw image–utterance similarity translates into bet-
ter coordination, we relate Absolute CLIPScore
to the score actually obtained in the same round
(Fig 5). This plot makes the disconnect between
alignment and task success explicit, as high and
low CLIPScores are scattered across all outcome
bins. Results from humans illustrate the point most
clearly, as they achieve near-perfect task scores
(Table 1) despite the lowest alignment scores (Fig
4). These observations show that CLIP-based align-
ment metrics capture a surface-level resemblance
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Figure 5: Violin plots show the distribution of Absolute
CLIPScore conditioned on the total game score (0–6)
in the same round; white horizontal bars mark medians,
boxes the inter-quartile range. Takeaway: High and
low alignment scores scattered across all outcome bins
confirm that CLIP-based metrics alone do not predict
task success.

between words and pixels, but miss the pragmatic
reasoning that enables interlocutors to establish
common ground.

5.3 Lexical adaptation

Figure 6: WNR drops over rounds for all systems, but
the steepest decline occurs in human referring expres-
sions. Claude and GPT-4o-mini show moderate adapta-
tion; GPT-4 lags behind.

Word Novelty Rate. Fig 6 shows the mean WNR
for referring expressions across rounds. In referring
expressions, humans achieve the steepest decline
in WNR. This pattern reflects the formation of con-
ceptual pacts and lexical stabilization as common
ground builds. Other VLMs show moderate and
slower adaptation compared to humans.

These metrics show that VLM pairs do not fully
replicate human strategies of lexical adaptation.
While some VLMs, such as Claude, exhibit partial
human-like adaptation in lexical choices, GPT-4
models struggle to stabilize and reuse previously
grounded referring expressions.

Model Energy Distance ↓
GPT4.1 62%
Claude3.5 63%
GPT4-mini 39%

Table 2: Distributional human-likeness measured by
discrete energy distance. Lower values indicate that a
model’s utterance distribution is closer to human dia-
logue. Takeaway: GPT4o-mini is the most human-like
overall, while Claude 3.5 and GPT-4.1 remain stylisti-
cally farther from human discourse.

Figure 7: Bar chart showing the performance boost
(score difference ∆ = Same GT − Different GT) for
humans and VLMs. Humans exhibit minimal suscep-
tibility (∆ = 0.06), while GPT4.1 shows the highest
score inflation (∆ = 1.10). The prompt-tuned variant
GPT4.1* reduces susceptibility (∆ = 0.26), suggesting
that targeted instructions can mitigate imitation effects.

5.4 Human-likeliness

Table 2 lists the energy distance between human
dialogues and each VLM pair. GPT4o-mini at-
tains the smallest distance (39%), which indicates
that utterance distribution is the closest to human
data. Claude3.5 and GPT4.1 yield substantially
higher distances, suggesting that their dialogue
style diverges more from human patterns. Although
Claude3.5 matched humans in lexical adaptation
(§ 5.3), its higher energy distance reveals that its
overall dialogue style still diverges from human
discourse.

6 Case Study: Sycophantic VLM Guesses

Even though we have used total task score as
a proxy for grounding success, we observe that
high scores in VLM dialogues can stem from in-
fluences from the other interlocutor rather than
grounded mutual understanding. Unlike human
players, VLMs often exhibit sycophantic behavior,
where they adapt their guesses based on their part-
ner’s revealed responses (as illustrated in Figure 2).

Each round requires annotating three images
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with binary labels (Common or Different), yield-
ing only 23 = 8 possible label combinations. It is
possible for dyads to coincidentally receive identi-
cal ground-truth labels, even if their visual inputs
differ. In our sample of 150 rounds, 56 rounds
(˜37%) involved dyads with matching ground-truth
labels. If VLMs influence each other’s guesses,
such cases can inflate scores and create the illusion
of successful grounding.

Score inflation analysis. To test whether this was
the case, we grouped rounds based on whether the
dyad’s ground-truth labels were identical or dif-
ferent. We then computed the score difference
between these conditions to see the score boost that
is attributable to shared ground-truth labels. As
shown in Figure 7, humans were robust to shared
ground-truth conditions, with only a minor score
difference (∆ = 0.08). In contrast, despite achiev-
ing the highest average task score among VLMs,
GPT4.1 exhibited the greatest susceptibility to this
effect, with a score difference exceeding one point
(∆ = 1.10). Claude3.5 and GPT4o-mini also ex-
hibited significant susceptibility.

Mitigation experiment. To mitigate this ef-
fect, we used a prompt-tuned variant from above
(GPT4.1*) that explicitly warned against sharing
guesses during the dialogue. This intervention
significantly reduced GPT4.1’s susceptibility, to
achieve the lowest susceptibility to ground-truth
alignment among VLMs. This demonstrates that
tailored prompts can mitigate such effects.

7 Discussion

Our metric suite shows that the current VLMs
nearly reproduce the outcomes of human dialogue
(as measured with task success), without reproduc-
ing the process by which humans achieve those out-
comes. Across efficiency (§5.1), alignment (§5.2),
and human-likeliness (§5.4), GPT4o-mini consis-
tently approximates human dialogue most closely.
In contrast, while GPT4.1 and Claude3.5 exhibit
strengths in task score (§5.1) and lexical adaptation
(§5.3), respectively, both models exhibit limitations
in other metrics.

Why do the models diverge? We identify three
factors. (i) Training data mismatch. Pre-training
corpora contain millions of single image captions
but almost no multi-round collaborative dialogues.
Consequently, models optimize for listing visual

details rather than incremental efforts that charac-
terize human conversation. (ii) Reward alignment
bias. RLHF typically rewards ”agreeable” or ”help-
ful” completions. When two VLMs converse, this
can over penalise informative disagreement and
over reward mirroring. Our case study revealed
this pattern with inflated task score whenever two
VLMs share ground-truth labels (§6). (iii) Effort-
less token generation. For VLMs, generating ad-
ditional tokens is virtually costless, unlike for hu-
mans who face cognitive and temporal constraints.
In the absence of incentives for brevity, VLMs tend
to produce unnecessarily long utterances and rarely
reuse previously established shorthand. This helps
explain their limited improvement in grounding
efficiency (§4.1).

8 Conclusion

In this paper, we introduced a novel benchmarking
approach to assess how effectively VLMs estab-
lish common ground through interactive dialogue.
Unlike previous evaluations that focus solely on
task success, our four-metric suite, grounding effi-
ciency, content alignment, lexical adaptation, and
human-likeness, enables a more nuanced exam-
ination of VLM performance. Our experiments
revealed significant differences between human in-
teractions and VLM self-play, highlighting that
achieving high accuracy alone does not imply suc-
cessful grounding or human-like communicative
patterns.

These findings underscore critical areas for fu-
ture development, particularly the need for training
methods that encourage incremental, collaborative
dialogue rather than isolated, verbose responses.
Addressing the biases inherent in reinforcement
learning alignment methods and incentivizing con-
ciseness could bring VLM interactions closer to hu-
man efficiency. By emphasizing the process rather
than merely the outcome, our work provides set-
tings for future research aimed at collaborative,
human-like AI communication.

Limitations

Although our framework broadens the evaluation
of VLMs beyond single turn accuracy, several limi-
tations should be noted.

We analyze VLM–VLM dialogues to isolate
model capabilities without human guidance. In
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deployment, systems will converse with humans
who provide richer pragmatic cues, error correc-
tions, and social feedback. Whether models adapt
differently when paired with human partners re-
mains an open question.

Moreover, because we tested on proprietary
VLMs, the underlying architectures, training data,
and alignment objectives are opaque. This makes
it infeasible to determine whether the observed
behaviors arise from model scale, fine-tuning or
other design choices. Open source replications
with transparent training methods are needed to
evaluate the generality of our findings.

Ethics Statement

We use the publicly released PhotoBook dataset
(Haber et al., 2019), which contains crowd-sourced
dialogues and MS-COCO images licensed for re-
search. The dataset does not include personally
identifiable information.

All data splits, metric implementations, and anal-
ysis scripts will be made publicly available, to en-
able independent replication and extension.
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