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Abstract

Evaluating sign language generation is often
done through back-translation, where gener-
ated signs are first recognized back to text
and then compared to a reference using text-
based metrics. However, this two-step evalua-
tion pipeline introduces ambiguity: it not only
fails to capture the multimodal nature of sign
language—such as facial expressions, spatial
grammar, and prosody—but also makes it hard
to pinpoint whether evaluation errors come
from sign generation model or the translation
system used to assess it. In this work, we pro-
pose SILVERSCORE, a novel semantically-
aware embedding-based evaluation metric that
assesses sign language generation in a joint
embedding space. Our contributions include:
(1) identifying limitations of existing metrics,
(2) introducing SiLVERScore for semantically-
aware evaluation, (3) demonstrating its robust-
ness to semantic and prosodic variations, and
(4) exploring generalization challenges across
datasets. On PHOENIX-14T and CSL-Daily
datasets, SiLVERScore achieves near-perfect
discrimination between correct and random
pairs (ROC AUC = 0.99, overlap < 7%), sub-
stantially outperforming traditional metrics1.

1 Introduction

The ability to automatically evaluate sign language
generation is critical for advancing accessibility
and inclusion for the Deaf and Hard-of-Hearing
(DHH) community, where collecting large scale hu-
man judgments remains expensive and challenging
(Bragg et al., 2019; Yin et al., 2021; Huenerfauth
et al., 2008). Scalable and reliable evaluation is
necessary to ensure that generated sign language
content meets user needs. Yet, progress toward
fully automated systems is hindered by the absence
of effective evaluation methods (Liu et al., 2023).

1https://github.com/sakimai/
silverscore

Figure 1: In this example, a sign language genera-
tion model accidentally swaps the referents, generat-
ing the sign for “John gave Mary a book” instead of
“Mary gave John a book.” Traditional text-based metrics
like BLEU and ROUGE (bottom left) rely on back-
translation and fail to catch the error, assigning a perfect
score because the English output matches the reference
text, even though the meaning is incorrect. In contrast,

SILVERSCORE (top) compares the generated signing
video directly with the reference using a joint embed-
ding space, correctly identifying the error.

To ensure outputs align with human expectations,
we need robust evaluation metrics explicitly de-
signed for the linguistic nature of sign language.

Automatically evaluating generated sign lan-
guage remains challenging due to its unique mul-
timodal linguistic nature, which incorporates fa-
cial expressions, manual markers, and spatiotem-
poral relationships into its prosody, iconicity, se-
mantics, and pragmatics (Sandler, 2012; Liddell,
2003; Huenerfauth et al., 2008). Current evaluation
methods rely on back-translation from visual to
textual representations, which misaligns with the
visual nature of sign language and leads to inaccu-
racies. As illustrated in Figure 1, a back-translation
metric can assign a perfect BLEU or ROUGE score

https://github.com/sakimai/silverscore
https://github.com/sakimai/silverscore
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even when the directional verb motion in the sign-
ing reverses the intended meaning. This mismatch
motivates an evaluation paradigm that inspects the
video itself rather than its textual translation.

While embedding-based metrics such as
BLEURT (Sellam et al., 2020), BERTScore
(Zhang* et al., 2020) and CLIPScore (Hessel et al.,
2021), have shown success in natural language pro-
cessing, they have been underexplored for sign lan-
guage evaluation. This limitation is primarily due
to the scarcity and domain specificity of sign lan-
guage datasets, which restrict the generalizability
of sign embeddings. We hypothesize that these data
limitations have hindered the development of ef-
fective embedding-based metrics for sign language
generation.

To address this gap, we introduce
SILVERSCORE (Sign Language Video

Embedding Representation Score), a novel
embedding-based metric for evaluating sign
language generation. SiLVERScore directly
compares generated and reference signs within a
joint embedding space, capturing semantic and
prosodic features.

Rather than asking whether embedding-based
metrics are simply better than back-translation, our
work investigates: how embedding-based evalua-
tion can more faithfully capture the linguistic and
prosodic nuances of sign language, and under what
conditions it offers robust and generalizable perfor-
mance. Our contributions are as follows:

1. We survey existing evaluation metrics for sign
language generation and highlight their limi-
tations (§ 2).

2. We introduce SiLVERScore, a novel
semantically-aware embedding-based metric
for evaluating sign language generation in a
joint embedding space (§ 3).

3. We conduct prosodic and semantic tests to
demonstrate that SiLVERScore outperforms
traditional metrics (§ 4.2, § 4.3).

4. We perform a case study on generalization, the
challenges of applying sign language models
across different datasets and domains (§ 5).

2 Survey of Evaluation Metrics for Sign
Language Processing

The evaluation of sign language generation sys-
tems has traditionally relied on back-translation ap-
proaches, first introduced by Camgoz et al. (2018).
In these methods, a sign language translation model

(typically trained by the authors) is used to con-
vert the generated signs into text for evaluation.
However, the absence of a standardized sign-to-
text translation system complicates this approach,
introducing unknown error propagation.

To address these issues, researchers have pro-
posed several multimodal metrics. For instance,
Dynamic Time Warping Mean Joint Error (Huang
et al., 2021) aligns generated and ground truth
poses to measure spatial-temporal accuracy and
compute the mean joint error. While effective
for motion similarity, it penalizes valid linguistic
variations that differ in pose but maintain seman-
tic meaning. Similarly, Fréchet Gesture Distance
(Yoon et al., 2020), Fréchet Video Distance (Un-
terthiner et al., 2019), Fréchet Inception Distance
(Heusel et al., 2017) compare gesture distributions
but focus on physical similarity rather than seman-
tics (Hwang et al., 2022; Xie et al., 2024; Hwang
et al., 2024; Dong et al., 2024). Common video
quality scores (SSIM, PSNR, Inception Score, Tem-
poral Consistency Metric) measure image quality,
diversity, or smoothness, ignoring whether the sign
is linguistically correct (Natarajan et al., 2022).

In a visual-spatial SignWriting domain,
signwriting-evaluation (Moryossef et al., 2024)
was proposed as a metric designed for this by using
its symbol distance metric using the Hungarian
algorithm (Kuhn, 1955). A sign language transla-
tion metric, SignBLEU (Kim et al., 2024) aims
to mitigate the significant information loss due to
the simplification to a single sequence of text for
evaluation. However, despite its improvements,
both remain confined to the text-realm.

Multimodal embedding-based methods are
promising due to their ability to capture multimodal
elements and eliminate errors introduced by back-
translation. Existing sign language embeddings,
such as SignCLIP (Jiang et al., 2024), offer a foun-
dation for embedding-based evaluation. However,
their application to sign language generation evalu-
ation remains limited, primarily due to challenges
in generalizability (§ 5). This paper aims to bridge
this gap by introducing and validating a seman-
tically aware embedding-based evaluation metric
tailored to sign language generation.

3 SILVERSCORE

The objective of SiLVERScore is to evaluate gener-
ated sign language videos without requiring a ref-
erence video. This evaluation measures the align-
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ment between a sign video and its corresponding
text by comparing their similarity in a shared joint
embedding space, trained to capture multimodal
relationships. The similarities are computed using
CiCo (Cheng et al., 2023), a model that leverages
contrastive learning to align video and text repre-
sentations. This approach addresses the alignment
issues discussed in § 5 by using a sliding window
mechanism to localize alignment between modali-
ties.

We employ CiCo due to its framework that:
(i) formulates sign language retrieval as a cross-
lingual retrieval task; (ii) demonstrates state-of-the-
art performance on benchmarks such as PHOENIX-
14T, CSL-Daily, and How2Sign; (iii) avoids re-
liance on pose estimation tools, eliminating depen-
dency on pose extraction quality; and (iv) provides
accessible code for implementation.

Model Details The sign encoder processes sign
videos using a sliding window mechanism to gener-
ate embeddings. This approach enables the model
to handle continuous video streams without re-
quiring explicit segmentation at test time. This
encoder combines domain-agnostic features, cap-
tured by a pre-trained I3D network (Varol et al.,
2021) on BSL-1K, with domain-aware features
from the same network fine-tuned on PHOENIX-
14T/CSL-Daily. The features are weighted and
fused before being fed into a 12-layer Transformer
initialized with CLIP’s ViT-B encoder. The cor-
responding text is lowercased, byte pair encoded,
and translated into English using Google Trans-
late to align with the CLIP pretraining. The video
and text embeddings are aligned through a con-
trastive learning objective with the InfoNCE loss.
CiCo aligns video and text embeddings through a
contrastive learning objective based on InfoNCE
loss, which maximizes the similarity of matched
video-text pairs while minimizing the similarity of
unmatched pairs. This alignment is performed both
globally across entire videos and texts and locally
by retaining fine-grained mappings between video
segments and individual text tokens. The resulting
embeddings represent a semantically and tempo-
rally aware shared space that effectively captures
the relationships between sign videos and their cor-
responding text annotations.

Global Similarity Calculation Global similarity
is derived from a fine-grained similarity matrix

E ∈ RM×L:

E(i, j) = Si ·W T
j , (1)

where Si ∈ RD and Wj ∈ RD represent video clip
and word embeddings, respectively. To emphasize
similarities, softmax re-weighting is applied:

E′(i, j) = Softmax(E(i, j)) · E(i, j). (2)

Row-wise summation followed by averaging yields
the video-to-text similarity ZV 2T , while column-
wise operations yield the text-to-video similarity
ZT2V .

In the implementation, the ZV 2T and ZT2V sim-
ilarities are equally weighted in the loss function.
This equal weighting ensures that the global align-
ment of video-to-text and text-to-video pairs is
equivalent, making it sufficient to use either ZV 2T

or ZT2V as the similarity metric. Without loss of
generality, we use ZV 2T for our similarity metric.

Scaling for Interpretability To ensure compa-
rability with metrics like BLEU and ROUGE, we
follow a similar approach to CLIP-Score by scal-
ing the embeddings with a weighting factor of 3.5,
expanding the score distribution range to [0,100].

4 Experiments

To evaluate the effectiveness of SiLVERScore, we
conduct multiple experiments to assess the perfor-
mance compared to back-translation methods.

Datasets 1) PHOENIX-14T dataset (Camgoz
et al., 2018) is widely recognized as the bench-
mark dataset for sign language generation (Saun-
ders et al., 2020, 2021; Viegas et al., 2023; Inan
et al., 2022). It consists of German Sign Lan-
guage weather forecast videos segmented into sen-
tences, accompanied by corresponding German
transcripts and sign-gloss annotations. 2) CSL-
Daily (Zhou et al., 2021). To broaden the domain
beyond weather forecasts, we include CSL-Daily, a
dataset covering Chinese Sign Language in various
daily-life scenarios. This enables us to test the gen-
eralizability of SiLVERScore to diverse real-world
contexts.

Translation Model For the back translation
model, we use the multi-stream keypoint attention
network proposed by Guan et al., 2024, due to its
state-of-the-art performance in sign language trans-
lation. This approach minimizes the error propaga-
tion caused by inaccuracies in back translation.
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Metrics We evaluate the quality of back-
translated text using both rule-based and
embedding-based metrics. For rule-based evalua-
tion, we compute BLEU scores with sacreBLEU
(Post, 2018) and ROUGE scores. For embedding-
based evaluation, we use BLEURT (specifically
BLEURT-20, Pu et al., 2021) and BERTScore (us-
ing the bert-base-multilingual-cased
model to accommodate the German and Chinese
dataset; Zhang* et al. (2020)). These metrics
provide a benchmark for assessing the align-
ment quality of SiLVERScore in comparison to
traditional back-translation evaluation methods.

4.1 Which metric can distinguish between
correct and random video-text pairs?

4.1.1 Distribution of Metric Scores
To qualitatively evaluate the performance of differ-
ent metrics, we analyze the kernel density plots in
Figure 2. These plots illustrate the distribution of
scores for correctly matched video-text pairs (blue
curve) and randomly paired samples (orange curve).
SiLVERScore shows a clear separation between
the two distributions, with minimal overlap. This
indicates its strong ability to distinguish aligned
pairs from misaligned ones. In contrast, BLEU-2
exhibits significant overlap, particularly for lower
score ranges, suggesting reduced discriminative
power for this task. Similarly, the ROUGE shows
partial separation but retains overlap between the
two distributions. BERTScore and BLEURT show
improved separation compared to rule-based met-
rics but still exhibit some overlap. The sharp dis-
tinction and density clustering of scores in the SiL-
VERScore plot indicate its effectiveness in cap-
turing semantic alignment between video and text
representations. Figure 2 focuses on PHOENIX-
14T, but we observe similar trends on CSL-Daily.

4.1.2 Quantifying overlap and separability
To complement the qualitative insights from the
kernel density plots, we quantify the ability of each
metric to distinguish between correctly aligned and
randomly paired samples using overlap percentage
and ROC AUC (Receiver Operating Characteristic
Area Under the Curve). The results are summarized
in Table 1. BLEU-4 is omitted for CSL-Daily be-
cause consecutive 4-character n-grams in Chinese
can lead to sparse counts, producing NaN in the cal-
culation. Since each metric operates on a different
scale, we applied Min-Max normalization to scale
all metrics to the [0,1] range for a fair comparison.

Overlap percentage Overlap percentage mea-
sures how much the distributions of scores for cor-
rect and random pairs intersect. Lower overlap per-
centages indicate better discriminative power. SiL-
VERScore achieves the lowest overlap 6.85% on
PHOENIX-14T, and 7.40% on CSL-Daily. BLEU-
1 and ROUGE also show single-digit overlaps
on CSL-Daily, yet its kernel density plots show
that these distributions remain widely dispersed.
BERTScore and BLEURT remain competitive with
low overlaps, but neither is consistently smaller
than SiLVERScore.

ROC AUC ROC AUC measures the metric’s abil-
ity to distinguish between the two distributions.
Higher ROC AUC values indicate better separabil-
ity, with a maximum value of 1.0. SiLVERScore
attains 0.99 AUC for correct vs. random pairs on
both datasets, confirming the separation observed
in density plots. Overall, the results show that
learned embedding-based metrics (SiLVERScore,
BERTScore, BLEURT) outperform rule-based met-
rics in distinguishing between correctly aligned and
misaligned video-text pairs.

4.2 Which metric captures semantic
distinctions through targeted changes?

Rule-based metrics are inherently sensitive to the
exact ordering of words, even when the overall
meaning remains unchanged. To demonstrate this
sensitivity, we designed an experiment where GPT-
4o (Hurst et al., 2024) was used to reorder words
in sentences while preserving their meaning. The
exact prompt provided to GPT-4o was:

Reorder the words in the following sen-
tence while keeping the meaning the
same: {text} Reordered sentence:

Kernel density plot Figure 3 illustrates how dif-
ferent metrics respond to surface-level changes,
specifically word reordering, on PHOENIX-14T.
SiLVERScore exhibits the highest score distribu-
tion, suggesting its robustness to reordering and
its ability to capture semantic content. In contrast,
BLEU and ROUGE display sharp peaks and nar-
rower distributions concentrated in the lower score
range. This pattern exhibits a clear distinction be-
tween rule-based and embedding-based metrics.

Quantifying overlap and separability In this
experiment, the scores are computed by compar-
ing the ground-truth references with their corre-
sponding hypotheses. While these hypotheses may
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Figure 2: Kernel Density Plots for different metrics. Top row (left to right, rule-based metrics): BLEU-2, BLEU-3,
ROUGE. Bottom row (left to right, embedding-based metrics): BERTScore, BLEURT, SiLVERScore. The blue
curve represents the distribution of scores for matching indices (aligned pairs), while the orange curve represents
different indices (misaligned pairs). SiLVERScore exhibits a clear separation between the two distributions,
indicating a strong ability to distinguish aligned from misaligned pairs. In contrast, BLEU and ROUGE metrics
show more overlap, reflecting their sensitivity to surface-level variations.

Correct vs. Random (§ 4.1) Original vs. Reordered (§ 4.2)
PHOENIX-14T CSL-Daily PHOENIX-14T CSL-Daily

Overlap ↓ AUC ↑ Overlap ↓ AUC ↑ Overlap ↑ AUC ↓ Overlap ↑ AUC ↓
BLEU-1 19.78 0.95 6.04 0.99 64.49 0.65 69.28 0.45
BLEU-2 24.30 0.90 5.27 0.98 71.50 0.63 69.60 0.49
BLEU-3 38.63 0.81 23.89 0.88 66.98 0.65 76.43 0.52
BLEU-4 55.45 0.72 - - 69.47 0.63 83.91 0.53
ROUGE 19.94 0.95 6.12 0.99 67.45 0.67 70.05 0.54
BERTScore 14.17 0.97 9.27 0.98 78.19 0.55 75.18 0.51
BLEURT 21.65 0.95 11.90 0.98 81.31 0.47 70.24 0.39
SiLVERScore 6.85 0.99 7.40 0.99 83.49 0.60 87.84 0.45

Table 1: Comparison of overlap percentages and ROC AUC for various metrics across PHOENIX-14T and CSL-
Daily. In “Correct vs. Random” (left columns), lower Overlap and higher AUC reflect better discrimination, and
SiLVERScore achieves minimal Overlap (6.85–7.40%) and near-maximal AUC (0.99). In “Original vs. Reordered”
(right columns), higher Overlap and lower AUC indicate greater tolerance to meaning-preserving reorderings, where
SiLVERScore also achieves the highest Overlap (83.49–87.84%) and lower ROC AUC.

contain errors, they represent the best available
approximations of the ground truth. Lower ROC
AUC values indicate that the metric maintains its
scores despite reordering, reflecting robustness to
surface-level variations.

In Table 1, SiLVERScore demonstrates the
highest overlap across both datasets (83.49% on
PHOENIX-14T, 87.84% on CSL-Daily). This indi-
cates its ability to recognize reordered sentences as
semantically equivalent. In contrast, BLEU-1 and
BLEU-2 exhibit much lower overlaps, confirming
their strict reliance on word order rather than mean-
ing. Moreover, SiLVERScore achieves relatively
low ROC AUCs, suggesting it better maintains ro-
bustness to reordering.

It is important to note that the original distribu-

tion contains errors, which may affect the Overlap
and ROC AUC values for all metrics. This could
explain why SiLVERScore’s ROC AUC is slightly
higher than those of other metrics.

4.3 Which metric can evaluate multimodal
and pragmatic aspects more effectively?

4.3.1 Motivation and Setup

Sign languages rely heavily on prosodic markers
such as facial expressions, pauses, and intensity to
convey meaning. Evaluating the robustness of met-
rics to prosodic variations is critical, as traditional
back-translation-based methods often fail to cap-
ture such multimodal cues. We build on the work of
Inan et al., 2022, which provided human-annotated
token-level prosody intensities for the PHOENIX-
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Figure 3: Kernel Density plots comparing the score dis-
tributions of different evaluation metrics when applied
reordered hypotheses. SiLVERScore, BERTScore, and
BLEURT show broader distributions and higher overlap,
while rule-based metrics exhibit sharp peaks at lower
scores. This indicates their sensitivity to surface-level
word order changes.

14T dataset. These annotations classify tokens into
three distinct prosodic levels: (i) no intensity: 0,
indicating the absence of prosodic markers; (ii) low
intensity: 1, reflecting a low degree of intensity
markers; and (iii) high intensity: 2, representing
high-degree intensity markers.

Sentence level prosody We define sentence in-
tensity as the sum of the intensity levels of its
tokens, I =

∑n
i=1 ti, where ti is the intensity

of token i. Sentences are categorized into three
prosody levels: No Intensity I = 0, Low Intensity
1 ≤ I ≤ 4, and High Intensity I ≥ 5.

Prosody level distribution The dataset exhibits
the following distribution of sentences across these
prosody categories: 328 sentences (51.09%) fall
under No Intensity, 238 sentences (37.07%) under
Low Intensity, and 76 sentences (11.84%) under
High Intensity. This distribution indicates that the
majority of sentences either lack prosodic mark-
ers or exhibit low levels of prosody, while highly
expressive sentences are comparatively rare.

4.3.2 Distribution of Scores Across Prosody
Categories

To analyze the impact of prosody on evaluation
metrics, we categorized sentences based on the
sentence-level intensity sums defined earlier. Fig-
ure 4 shows the distributions of SiLVERScore,
BLEU-1, and ROUGE scores across the categories.

SiLVERScore Stability SiLVERScore remains
consistent across the three prosody categories,
showing minimal variation in median and interquar-
tile range. This demonstrates that SiLVERScore

effectively evaluates semantic alignment without
being influenced by prosodic intensity.

BLEU-1 and ROUGE Sensitivity BLEU-1 and
ROUGE scores decline with increasing prosody
intensity, with median scores for High Intensity
significantly lower than for No Intensity. This
trend indicates that these metrics struggle with
prosodically-rich sentences.

Score Variability Both BLEU-1 and ROUGE
display higher variability in the High Intensity cat-
egory, suggesting inconsistent performance in eval-
uating expressive signing.

4.4 Correlation with Prosodic Intensity

As shown in Table 2, traditional back-translation-
based metrics (BLEU and ROUGE) exhibit signif-
icant negative correlations with prosody intensity
(e.g., BLEU-4: -0.200, p = 3.31 × 10−7), reflect-
ing their vulnerability to prosodic variations. This
behavior reflects the limitations of traditional met-
rics, which depend on surface-level text alignment
and are vulnerable to information loss during back
translation.

Metric Correlation p-value
BLEU-1 -0.160 < 0.01
BLEU-2 -0.178 < 0.01
BLEU-3 -0.191 < 0.01
BLEU-4 -0.200 < 0.01
ROUGE -0.179 < 0.01
BERTScore -0.144 < 0.01
BLEURT -0.101 0.01
SiLVERScore -0.004 0.93

Table 2: Pearson Correlation and p-value of metrics
with sentence-level prosody intensity. SiLVERScore
demonstrates no significant correlation while other met-
rics exhibit negative correlations with prosody intensity.

In contrast, SiLVERScore exhibits no significant
correlation with prosody intensity (correlation: -
0.004, p = 0.9277), indicating its robustness to
prosodic variations. This robustness suggests SiL-
VERScore’s ability to evaluate semantic alignment
without being influenced by expressive elements.

5 The Generalization Problem

While evaluation metrics are expected to generalize
across diverse datasets, this remains a significant
challenge in sign language processing due to the
limited size and diversity of available datasets. As
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Figure 4: Box plots showing the distribution of SiLVERScore, BLEU-1, and ROUGE scores across three prosody
intensity categories (No Intensity, Low Intensity, and High Intensity). While SiLVERScore remains stable across all
categories, both BLEU-1 and ROUGE exhibit a noticeable decline in scores as prosody intensity increases. This
drop suggests that BLEU-1 and ROUGE are sensitive to prosodically-rich sentences.

highlighted by Jiang et al. (2024), one of the largest
sign language datasets, SpreadtheSign, contains
only 456,913 examples, which is orders of magni-
tude smaller than datasets in related domains (e.g.,
400M examples for CLIP and 136M for Video-
CLIP). In this section, we empirically demonstrate
that even SignCLIP, the largest contrastive learning
model to date, struggles with generalization at the
token level.

5.1 Evidence of Limited Generalization
5.1.1 Token Level Generalization
We evaluated SignCLIP on ASL Citizen (Desai
et al., 2024) and ASL Signs (Chow et al., 2023).
The results show that SignCLIP’s generalization
capability is limited without fine-tuning.

Figure 5: Heatmaps of SignCLIP embeddings cosine
similarity scores for two datasets: ASL Citizen (token
level) and WMTSLT (sentence level). Left: Finetuning
increases alignment, as indicated by the clearer diagonal
line. Right: After finetuning, the model appears to
overfit, assigning high similarity scores to many pairs.

Figure 5 illustrates the cosine similarity between
video and text embeddings. Ideally, high similar-
ity values should appear along the diagonal, in-
dicating alignment between corresponding video-
text pairs. Before fine-tuning, the heatmaps dis-

play low, diffuse similarity scores, indicating poor
video-text alignment. Fine-tuning significantly
improves alignment, indicating the necessity of
dataset-specific adaptation. A similar trend is ob-
served for ASL Signs.

5.1.2 Sentence Level Generalization
We evaluated SignCLIP’s sentence-level gener-
alization on the WMTSLT Focus News Corpus
(Mathias et al., 2022). Despite fine-tuning, Sign-
CLIP struggles to achieve strong results (R@1 =
0.0436).

5.1.3 Token Level Language Specific
Generalization

To investigate the effect of data size on general-
ization, we fine-tuned SignCLIP using combined
training samples from ASL Signs and SemLex
datasets. Despite this, SignCLIP fails to gener-
alize effectively to ASL Citizen (R@5 = 0.0005).
Even when training on all three datasets, the test
set performance on ASL Citizen did not improve
significantly. This suggests that dataset-specific
characteristics influence performance even when
substantial training data is available.

5.1.4 Representation Density
Ye et al., 2024 identified a representation density
problem, where the semantic visual representations
of different sign gestures tend to be closely clus-
tered together, making them hard to distinguish.
The proposed contrastive learning strategy, SignCL,
encourages the learning of discriminative feature
representations. However, applying SignCL to our
data yielded limited improvement in retrieval re-
sults (R@1 = 9.11× 10−5), compared to (R@1 =
3.04× 10−5) with vanilla contrastive learning.
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Fine-tuned on Tested on R @ 1 R @ 5 R @ 10
Token Level (§ 5.1.1)
- Citizen 1.40× 10−3 6.10× 10−3 1.12× 10−2

Citizen Citizen 6.39× 10−2 2.71× 10−1 4.39× 10−1

Sentence Level (§ 5.1.2)
WMTSLT WMTSLT 3.70× 10−3 1.75× 10−2 3.23× 10−2

Token Level Language Specific (§ 5.1.3)
Signs, SemLex Citizen 3.04× 10−5 5.00× 10−4 8.00× 10−4

Citizen, Signs, SemLex Citizen 4.36× 10−2 1.76× 10−1 2.88× 10−1

With SignCL (§ 5.1.4)
Signs, SemLex Citizen 9.11× 10−5 5.00× 10−4 9.00× 10−4

With Data Augmentation (§ 5.1.5)
Signs, SemLex Citizen 0.00× 100 2.00× 10−4 6.00× 10−4

Signs, SemLex Citizen 6.07× 10−5 9.11× 10−5 3.00× 10−4

Table 3: Text-to-Video Retrieval results and generalization across datasets. Results are shown for different fine-
tuning datasets and test datasets.

5.1.5 Data Augmentation
Data augmentation is a commonly employed tech-
nique to improve model generalization, especially
in domains with limited data. To this end, we exper-
imented with several data augmentation strategies
including: spatial 2D augmentation, temporal aug-
mentation, and Gaussian noise on keypoints (Jiang
et al., 2024). Results show negligible gains (R@1 =
0 with 2D-aug; 6.07×10−5 with temporal augmen-
tation), highlighting the limitations of conventional
augmentation techniques in enhancing generaliza-
tion. This suggests that limited dataset diversity
and the complexity of visual sign representations
cannot be fully addressed through conventional
augmentation techniques alone.

5.2 How SiLVERScore Addresses
Generalization Challenges

Our findings from the experiments suggest the idea
that, given current constraints in data availability,
tailoring metrics to specific datasets is necessary to
create alignment between text and sign.

We proposed a dataset-specific evaluation metric
designed to leverage the strengths of embedding-
based methods while addressing the constraints of
current sign language datasets. By optimizing for
specific domains and datasets, we can achieve more
reliable evaluations and better alignment with the
linguistic and multimodal nature of sign language.

6 Conclusion

Through the introduction of SiLVERScore, we
demonstrated the empirical strengths of embedding-
based methods, including robustness to semantic

variation, prosodic intensity, and a more holistic
multimodal evaluation. Our results show that SiL-
VERScore can overcome limitations of traditional
back-translation metrics.

SiLVERScore has the potential to reshape sign
language evaluation standards by advancing acces-
sibility for the DHH community and promoting
inclusivity in language technologies. Its robust-
ness and semantic sensitivity make it well-suited
for broader challenges in multimodal NLP, such as
cross-lingual evaluation and integration with video
generation models. To support open research and
encourage further advancements, we release the
code for SiLVERScore’s analysis and computation.

Future efforts should integrate insights from
computer graphics, such as improved modeling of
spatial relationships and prosody in sign language,
to further refine embedding-based methods. In-
corporating richer multimodal features, including
gesture dynamics and temporal coherence, could
enhance the evaluation of expressive and context-
dependent signing. Additionally, addressing the
scarcity of diverse, large-scale datasets remains
critical for improving model generalization.
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