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Abstract

Current research in speech emotion recogni-
tion (SER) often uses speech data produced
by actors which does not always best repre-
sent naturalistic speech. This can lead to chal-
lenges when applying models trained on such
data sources to real-world data. We investi-
gate the application of SER models developed
on acted data and more naturalistic podcasts
to service call data, with a particular focus on
anger detection. Our results indicate that while
there is noticeable performance degradation of
models trained on acted data to the naturalis-
tic data, weighted multimodal models devel-
oped on existing SER datasets—both acted and
natural-show promise, but are limited in ability
to recognize emotions that do not discernibly
cluster.

1 Introduction

Speech emotion recognition (SER) aims to enhance
interactive speech systems to pick up on emotional
cues in a user’s voice. The applications range in
use from customer care, robotics, and education ap-
plications among others. By being more sensitive
to a user’s emotional state, a better user experi-
ence can be provided. For example, detection of
increasing anger in an automated voice support sys-
tem can prompt an immediate transfer to a human
agent, helping to quickly de-escalate the situation
and potentially improving customer feedback.
Much SER research focuses on improving emo-
tion in a multi-class setting rather than focusing on
one emotion (Han et al., 2014; Fayek et al., 2017;
Pepino et al., 2021). More recently, efforts to gen-
eralize SER from multilingual and multi-corpus
angles have increased as well (Radford et al., 2022;
Maetal., 2024; An et al., 2024). However, the most
commonly used open-source SER dataset, [IEMO-
CAP (Busso et al., 2008), consists of improvised or
scripted speech from actors. This leaves questions
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on how generalizable the findings are as models
derived from IEMOCAP may not always match
emotional class distributions on real world data,
such as anger (Erden and Arslan, 2011; Pappas
et al., 2015), which is often more relevant from a
customer service perspective.

We focus on investigating the application of SER
strategies with noted positive performance on acted
emotion dataset to more naturalistic data. Specifi-
cally, we first replicate Chen and Rudnicky (2021)
who mainly used the IEMOCAP dataset to com-
pare a traditional fine-tuning approach to two con-
tinued pre-training techniques. We then extended
this study with additional experiments focusing on
the use of IEMOCAP in cross-corpus experiments
using the MSP dataset (which consists of podcast
recordings; Lotfian and Busso, 2019) as well as a
small set of real world data from an IT customer
service center. Different factors including model
architecture, single- vs multi-modality, and cross-
corpus training are introduced in our experiments to
thoroughly investigate how effectively techniques
can be applied to improve performance on more
naturalistic speech.

2 Related Work

2.1 Transformer Models in SER

Recent research in SER has shifted focus to us-
ing transformer-based models (Chen and Rudnicky,
2021; Wagner et al., 2022), including SOTA mod-
els such as Whisper (Radford et al., 2022), WavLM
(Chen et al., 2022), and Emotion2Vec (Ma et al.,
2023). In our pilot study however we use the
Wav2Vec 2.0 (Baevski et al., 2020) and HuBERT
(Hsu et al., 2021) models as a starting point to re-
produce prior fine-tuning approaches and explore
their generalizability to naturalistic data.
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2.2 SER Techniques

Domain Adaptive Pre-training (DAPT) is con-
tinued pre-training with the same self-supervised
objective functions as the base pre-trained model.
Such an approach has been shown to help adapt
a general LLM to the target domain with unla-
beled target data. Gururangan et al. (2020), for
example, compared performance of a base trans-
former model across various domains to its domain-
adapted (DAPT) version as well as its irrelevant
domain-adapted (-DAPT) version. The DAPT
models consistently outperformed the base model
on all domains whereas the "DAPT models gen-
erally showed worse performance than the base
model, indicating that exposure to relevant domain
data positively impacts results on the end task.
However, the challenge with applying DAPT to
SER is that DAPT only learns general features in
audio; it does not explicitly capture emotional con-
text (Gururangan et al., 2020; Liu et al., 2021).

Pseudo-label Task Adaptive Pre-training
(PTAPT) is an extension of task-adaptive
pre-training (TAPT). TAPT uses continued pre-
training with unlabeled data that is smaller than
what is used for DAPT but is more task-relevant
and similar to the downstream tasks. Chen and
Rudnicky (2021) extend this to PTAPT which has
outperformed both DAPT and fine-tuning alone
on IEMOCAP. PTAPT uses k-means clustering on
utterance-level labels to generate “pseudo-labels”
for frame-level emotion representation, addressing
label granularity by predicting the pseudo-labels,
instead of the masked audio frames, during pre-
training. Importantly, the same data samples are
used in the continued pre-training and fine-tuning
processes, meaning emotion labeled data is used
both with labels known in fine-tuning and unknown
in DAPT or TAPT, which distinguishes it from
previous domain and adaptation experiments.

Multimodal Experiments from multiple source
representations, such as leveraging both the audio
and corresponding transcripts, have been shown
to yield superior SER results than using audio
alone. Concatenation is a common approach for
dealing with multimodal SER features. Feng et al.
(2020) implement a concatenation technique but
use the hidden state of the decoder in an ASR
model to replace word embeddings as inputs to
an SER model, effectively utilizing only speech
features yet achieving performance similar to that

of multimodal speech-and-text models. Hazarika
et al. (2022) proposed a multimodal network
to account for multi-speaker utterances. Each
speaker is represented by a concatenation of text
transcript, spatiotemporal (facial expression), and
audio features. A self-influence module then
represents each speaker’s emotional dependency
by accounting for their previous utterance states.
All the speakers’ features are processed temporally
by a dynamic global influence module to maintain
a global representation of the conversation. Finally,
a multi-hop memory module refines the features
into a context-aware representation for emotion
prediction.

Probol and Mieskes (2023) take a different
feature combination approach. After creating nine
audio neural network models with varying internal
specifications and training each on speech data,
two combinations were explored: combining one
audio model with either another audio model or
the text model, each with a weight of 50%, and
likewise combining three models, each with a
weight of 33%.

3 Methodology

3.1 Data

IEMOCAP (Busso et al., 2008) consists of
American English speech from either scripted
or improvised recordings by ten actors. It was
recorded in five dyadic sessions (i.e., five interac-
tions with two actors each). Due to label sparsity of
some emotional categories, we only use the “neu-
tral”, “happy”, “sad”, and “anger” emotion labels,
combining “excited” with “happy” following Chen
and Rudnicky (2021). The number of samples and
distribution percentages per emotion class for this
modified version of [IEMOCAP is shown in the first
row of Table 1. Each audio file has an accompany-
ing text transcription.

MSP Podcast (Lotfian and Busso, 2019) con-
tains segments in various English dialects from
online podcasts covering a variety of topics (e.g.,
political debates and movie reviews), thus is more
representative of realistic speech. We use the ac-
companying podcast transcripts and the same four
emotional categories as IEMOCAP. An important
difference however is MSP’s severely imbalanced
class distribution compared to IEMOCAP. As seen
in Table 1, the majority of samples are labeled “neu-
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Dataset Split anger happy neutral sad total
IEMOCAP PT/FT | 893 (20%) 1337 (30%) 867 (19%) 1373 (31%) 4470 (100%)
Test 210 (20%) 299 (28%) 335 (32%) 217 20%) 1061 (100%)
PT 3178 9%) 10990 (30%) 20563 (55%) 2480 (7%) 37211 (100%)
MSP FT 364 (8%) 1359 (30%) 2437 (55%) 310 (7%) 4470 (100%)
Test 65 (6%) 350 (33%) 590 (56%) 56 (5%) 1061 (100%)
MSP* PT/FT | 893 (20%) 1337 30%) 867 (19%) 1373 31%) 4470 (100%)
Test 210 (20%) 299 (28%) 335 (32%) 217 20%) 1061 (100%)
Service Desk | Test 7 (2%) 8 (3%) 283 (95%) 0 (0%) 298 (100%)

Table 1: Number of samples over all emotion classes for datasets used in this study.

tral” (55% in the pre-train / fine-tune sets), followed
by “happy” (30%) and a sharp decrease for anger
(9%) and sad (7%). For this reason, we also create
a randomly selected balanced subset, MSP*, with
a similar size and class distribution to IEMOCAP.

Service Desk Calls consist of six approved con-
versations of proprietary recorded service desk
calls between service desk agents and customers
requesting IT help in American English.! An au-
thorized service desk team was permitted access
to the original audio calls, which then underwent
manual removal of all PII and generated transcripts
using Google Cloud’s Speech-to-Text API. After
encrypted distribution of these modified files to the
authors, the data was stored in a private AWS S3
bucket with strict access policies. Transcripts of the
calls did not contain timestamps; for compatibility
with our multimodal experiments we used Aeneas?,
a forced aligner, to create utterances from the mod-
ified audio and transcripts, which were then manu-
ally annotated for the four emotion labels by one
annotator and then reviewed by a second. While
we recognize the number of speakers is limited for
this pilot, this is only used as a test set. Annotating
each call at the utterance level yielded 298 utter-
ances: 7 “anger”, 8 “happy”, 283 “neutral”, with
an average utterance length of 5.6 seconds.

3.2 Models

We compare the performance of two models,
Wav2Vec 2.0 and HuBERT (Wagner et al., 2022;
Chang et al., 2021).> Wav2Vec 2.0 learns to rec-
ognize discrete units in waveforms through self-
supervised training via a codebook of speech units
coupled with a quantization process, while Hu-

'This data received blanket approval for use in this task.

2https://github.com/readbeyond/aeneas

3We use the HuggingFace API to obtain both base models:
facebook/wav2vec2-base, facebook/hubert-base-1s960
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BERT differs by using unsupervised clustering of
MEFCC features to learn speech representations in
the training step. The Fairseq library* was used
to perform the HuUBERT DAPT experiments using
the same learning rate and number of training steps
as Wav2Vec 2.0 DAPT, since a pre-training model
for HuBERT was not available on HuggingFace at
the time of our experiments. Chen and Rudnicky
(2021) use Wav2Vec 1.0 for the clustering stage
in their PTAPT pre-training; we use the version
provided by the Fairseq library. For PTAPT, we
apply the same clustering method for both models.

We used distributed data processing (DDP) and
gradient accumulation in all pre-training and fine-
tuning stages to achieve an effective batch size of
64 with a learning rate of 1e-4. Fine-tuning ran for
15 epochs, the pseudo-label clustering ran for 300k
training steps, and the continued pre-training stage
for both DAPT and PTAPT ran for 120k training
steps. We take the average of five-fold evaluations
to obtain a generalized score for each experiment.
Approximate times for each fold (time ranges are
due to dataset size variations, with IEMOCAP and
MSP* completing faster than MSP): 1-2 hours for
vanilla fine-tuning (on a g4dn.12xlarge (4 GPUs)),
3-5 hours for DAPT, and 4-6 hours for PTAPT
(both using a p3.16xlarge (8 GPUs)).

3.3 Experimental Design

Single Corpus experiments examine if PTAPT
outperforms DAPT and fine-tuning alone with nat-
uralistic data, using the Wav2Vec 2.0 and HuBERT
modelson audio features only. To establish base-
lines, we replicate the same single-corpus exper-
iments described in Chen and Rudnicky (2021)
separately on IEMOCAP and MSP, then compare
the PTAPT, DAPT, and fine-tuning only (FT-only)
results. To make fairer performance comparisons

*https://github.com/facebookresearch/fairseq



[ Wav2Vec 2.0 HuBERT
Pretrain-Finetune-Test sets | FT-only DAPT PTAPT | FT-only DAPT PTAPT
IEMO-IEMO-IEMO 74.47 7691 78.15 | 76.06 7199 7723
MSP-MSP-MSP 38.69 3726 4151 39.74 41.85 40.82
IEMO-MSP-MSP 38.69 40.69  40.57 | 39.74 4148 41.68
IEMO-IEMO-MSP 40.88 39.67 4121 38.04 39.08 4035
MSP*-MSP*-MSP* 47.42 4523  45.61 46.36 454 4546
IEMO-MSP*-MSP* 47.42 45.65 44.69 | 46.36 44.18  45.69
IEMO-IEMO-MSP* 38.09 41.19 3998 | 40.29 40.59  39.94

Table 2: Unweighted Accuracy results from Wav2Vec
2.0 and HuBERT experiments, on audio-only modality.
Red is the lowest score for each row at the Model level,
yellow the medium score, and green the highest. Row
1 replicates prior literature on IEMOCAP. Rows 2-7
evaluate on MSP or MSP*.

of naturalistic speech to acted speech, we also run
an experiment on a downsampled version of MSP
(MSP*), which mirrors the sample size and emo-
tion class distribution of IEMOCAP. For all single-
corpus experiments, the same data samples are used
for pre-training and fine-tuning, and the test data is
from the same corpus.

Cross-Corpus experiments examine the value in
using models fine-tuned with acted speech data for
a naturalistic test set. Because publicly available
SER data is very limited, it would be valuable to
know whether existing SER data (regardless of
whether it is acted or not) can be leveraged for
applications to naturalistic speech. Combinations
of the model, method, and modality variables are
the same as our Single Corpus experiments.

Multimodal experiments extend Chen and Rud-
nicky (2021)’s study but with a multimodal flavor
in which we take the speech model with the better
overall performance (i.e., Audio + Text level).

We adopt a cross-representational model by
Makiuchi et al. (2021) for our multimodal ap-
proach, where probabilities obtained from the bet-
ter SER model (ps) and Text-based Emotion Recog-
nition (TER) model (p;) are respectively multiplied
by weights ws = 0.75 and w; = 0.6 respectively.5
We use the CLS token of bert-base-case on
the utterance level of the text transcriptions pro-
vided with the IEMOCAP and MSP datasets as our
text-based features.

Service Desk Calls enable the assessment of
these SER solutions on actual customer data to ob-

SWeights were manually determined after extensive ex-
perimentation to determine the combination that yielded the
best overall performance across methods. They are the same
across all multimodal experiments and since they determine
the degree of contribution of each data modality to the final
combined probability, are independent of one another and do
not need to sum up to one.

Pretrain-Finetune-Test sets | FT-only | DAPT | PTAPT PTAPT
improv.
IEMO-IEMO-IEMO 71.72 76.25 | 78.6 9.59%
MSP-MSP-MSP 58.15 50.61 | 55.04 -5.34%
IEMO-MSP-MSP 58.15 61.64 | 55.51 -4.54%
IEMO-IEMO-MSP 45.81 56.93 | 46.75 2.05%
MSP#-MSP*-MSP* 49.2 50.33 | 47.79 -2.87%
TEMO-MSP*-MSP* 49.2 47.79 | 45.05 -2.87%
IEMO-IEMO-MSP* 43.26 43.36 | 42.97 -0.67%

Table 3: Unweighted Accuracy results on multimodal
(audio+text) Wav2Vec 2.0 experiments. Red is the low-
est score for each row, yellow the medium score, and
green the highest. PTAPT percentage of improvement
is calculated against FT-only.

tain a further accurate picture on their performance
on real-life downstream tasks.

Evaluation consists of performing five runs for
each experiment and reporting unweighted accu-
racy (UA)® and macro-F1 to better evaluate the
unbalanced nature often found in real world scenar-
ios. In all cases, except when replicating Chen and
Rudnicky (2021)’s IEMOCAP experiment, we test
our models using MSP or MSP* due to the corpus
being more representative of naturalistic speech.

4 Results & Discussion

4.1 Single corpus

Table 2 summarizes unweighted accuracy results
using the Wav2Vec 2.0 and HuBERT models with
single corpus experiments (represented in rows 1,
2, and 5). Our replicated experiment with Wav2Vec
2.0 on IEMOCAP aligned with Chen and Rud-
nicky (2021): PTAPT outperforms both FT-only
and DAPT on IEMOCAP and MSP, while DAPT
only showed better performance over fine-tuning,
suggesting continued pre-training without taking
emotion into consideration may degrade perfor-
mance.

Results using HuBERT however do not align, as
DAPT outperformed PTAPT on both IEMOCAP
and MSP. The increased performance seen with
PTAPT in Wav2Vec 2.0 may not generalize to other
models using only in-corpus data; Wav2Vec 2.0’s
use of waveforms as targets during self-supervised
training may have enhanced PTAPT’s psuedo-label
prediction step, while HuBERT’s use of MFCC
clusters may not have.

Both MSP and MSP* show dramatically lower
performance drops than IEMOCAP for both

SThis is to align with Chen and Rudnicky (2021) who
reported UA in their experiments.

524



Audio Audio + Text
Pretrain-Finetune-Test sets Emotion | FT-only DAPT PTAPT | FT-only DAPT PTAPT
IEMO-IEMO-IEMO anger 78.09 8273 83.86 | 74.95 80.16  85.98
happy 72.63 74.38  76.37 71.14 77.8 77.46
neutral | 65.39 70.85 7147 66.09 67.38 73.07
sad 75.01 78.68 78.13 75.7 80.85 81.51
MSP-MSP-MSP anger 26.16 21.85 30.56 | 34.15 2336  34.97
happy 44.74 50.75 5095 | 55.56 51.73  54.57
neutral | 67.64 57719  67.26 67.5 60.85 625
sad 14.18 13.68  12.79 17.39 15.25 6.19
IEMO-MSP-MSP anger 26.16 27.05 41.29 | 221 2333 2444
happy 44.74 51.33 5256 | 47.58 5097 52.46
neutral | 67.64 67.30 47.35 56.19 68.56 50.78
sad 14.18 1325 18.34 18.69 5.26 20.83
IEMO-IEMO-MSP anger 19.40 21.18 47.75 | 37.19 30.77 3275
happy 4791 49.87 4569 | 56.24 51.35 5311
neutral | 56.56 55.82  41.37 69.19 71.84 64.64
sad 13.02 15.62 16.55 16.67 1149 1296
MSP*-MSP*-MSP* anger 53.92 52.67 51.07 55.04 5598 57.0
happy 49.94 5141 5047 52.78 55.56 53.47
neutral | 44.27 46.36  46.79 | 45.53 49.08 45.24
sad 40.06 28.67 36.24 | 44.94 38.54 28.66
IEMO-MSP*-MSP* anger 53.92 51.47 5132 | 55.86 5542 47.62
happy 49.92 4790 50.07 | 53.05 39.17  51.13
neutral | 44.27 46.87 4590 | 46.72 51.26 47.13
sad 40.06 37.88 3330 | 44.84 4198 23.13
IEMO-IEMO-MSP* anger 41.83 45.57 45.75 | 47.81 46.22 48.09
happy 43.68 46.05 44.10 | 50.51 49.24  46.93
neutral | 42.65 46.36  47.40 | 40.07 44.78  47.92
sad 14.69 19.37 941 26.11 2259 8.03

Table 4: Class-level performance of macro-F1 scores from experiments using Wav2Vec 2.0, on audio-only and
audio+text modalities. In the multimodal experiments, the SER model is pre-trained and fine-tuned on the respective
datasets in the first column; the TER model (BERT) is fine-tuned with the union of the two. Highest scores in each
row for the two modalities are bolded. Highest scores for anger for each modality is underlined. Higher score per
emotion across audio-only and audio+text modalities is italicized.

Wav2Vec 2.0 and HuBERT. While data imbalance
certainly plays a role for MSP, MSP* (the bal-
anced subset) tends to support the idea that emo-
tional characteristics in acted speech are intrin-
sically more exaggerated relative to naturalistic
speech (Schuller et al., 2010), and thus easier to
recognize. All three continued pre-training meth-
ods show improvement from MSP to MSP*, al-
though performance gaps on MSP* compared to
IEMOCAP still exist.

4.2 Cross Corpus

Table 2 shows cross corpus experiments (repre-
sented in rows 3, 4, 6, and 7). Since the test data
in cross corpus experiments differ from either the
pre-training or fine-tuning data, results can further
reveal the robustness of the continued pre-training
methods and suggest the required amount of in-
corpus data needed for downstream tasks using
naturalistic speech.
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Testing on MSP (rows 3-4) shows PTAPT typi-
cally yielding higher UAs than FT-only and DAPT,
regardless of the fine-tuning dataset and the model.
This suggests that PTAPT may be a promising ap-
proach if the downstream task involves evaluating
on overall performance of naturalistic speech with
a class imbalance. Further, the marginal differ-
ences between fine-tuning with acted versus natu-
ral speech is reassuring when only a small quantity
of naturalistic data is available and fine-tuning on
in-source data is not viable.

However, when testing on MSP* (rows 6-7),
FT-only and DAPT appear to be more robust than
PTAPT in both Wav2Vec 2.0 and HuBERT exper-
iments. Similar trends were seen in the single-
corpus MSP* experiments, where FT-only outper-
formed DAPT and PTAPT methods. This may
suggest that PTAPT is not as effective on smaller
datasets, particularly on naturalistic speech whose
emotional features are less emphasized than acted



Pretrain-Finetune-Test sets ‘ Audio Audio + Text
FT-only DAPT PTAPT | FT-only DAPT PTAPT

IEMO-IEMO-IEMO 78.09 82.73 83.86 | 74.95 80.16  85.98
MSP-MSP-MSP 26.16 2185 30.56 | 34.15 2336 3497
IEMO-MSP-MSP 26.16 27.05 41.29 22.1 2333 2444
IEMO-IEMO-MSP 19.4 21.18 4775 37.19 30.77 3275
MSP*-MSP*-MSP* 53.92 5267 51.07 | 55.04 5598 57.0
IEMO-MSP*-MSP* 53.92 5147 5132 | 55.86 5542  47.62
IEMO-IEMO-MSP* 41.83 4557 4575 47.81 4622  48.09

Table 5: F1 scores for Anger from experiments using
Wav2Vec 2.0, on audio-only and audio+text modalities.
Red is the lowest score for each row, yellow the medium
score, and green the highest.

speech.

4.3 Multimodal

We focus on Wav2Vec 2.0 as our SER model
in our multimodal experiments as it demon-
strated marginally better performance in our single-
modality experiments. The SER model is pre-
trained and fine-tuned on the respective datasets in
Table 3; the TER model (BERT) is fine-tuned with
the union of the two. Surprisingly, the “PTAPT
improvement” column suggests that while PTAPT
shows great improvement on IEMOCAP (9.58%
increase in UA), often times this method actually
performs worse than vanilla fine-tuning, particu-
larly for the MSP dataset (5.34% decrease in UA).
Instead, DAPT appears to be the most robust
method due to its highest overall performance
across various dataset combinations: DAPT had
the highest unweighted accuracy scores for two
out of the three cross-corpus dataset configurations
testing on the MSP dataset (rows 3, 4), and likewise
two out of the three dataset configurations testing
on the MSP* dataset (rows 5, 7). In both cases
where DAPT did not perform the best (rows 2, 6),
FT-only had the highest unweighted accuracy. Al-
though introducing text as an additional modality
to DAPT did not help IEMOCAP (row 1 - DAPT:
76.25% UA, PTAPT: 78.6% UA), it greatly im-
proved overall performance across all pre-training
methods for MSP and MSP*, particularly the for-
mer. This could suggest that for naturalistic data
where emotions may be subtle in the audio signal,
adding semantic cues via text is essential.
Interestingly, while all multimodal MSP experi-
ments achieved higher UA scores than their MSP*
counterparts, macro-F1 scores were lower for MSP
than MSP* in all the continued pre-training meth-
ods and data configurations.This hints that the ma-
jority classes in the imbalanced dataset were iden-
tified more often than the minority classes. This is
supported by class level evaluations in the “Audio +
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Figure 1: Unweighted Accuracy results for Service
Desk experiments. X-axis: experiment setting
(pre-training data/fine-tuning data) with audio-only
results on the left, audio+transcript on the right. Blue
lines are results from the TER models alone.

Text” column of Table 4: neutral has much higher
F1 values in MSP experiments than in MSP*.

4.4 Performance on Anger

We are specifically interested in how accurately
“anger” is identified. F1 scores for the anger emo-
tion are presented in Table 5. PTAPT generally
performs better in both audio and multimodal ex-
periments on IEMOCAP and MSP test sets, but
does show some variability in cases where MSP*
is both the fine-tuning and test data.

Multimodal results on anger show that adding
text generally improves performance going from
FT-only to DAPT to PTAPT. Compared to audio-
only MSP results, the audio+text modality tends to
decrease when pre-trained on IEMOCAP (rows
3-4). Since the TER model is fine-tuned with
the union of the SER pre-training and fine-tuning
datasets, there is likely a discrepancy in the char-
acteristics of the text and audio for IEMOCAP
labeled as anger versus that of MSP, which MSP*
mitigates with its smaller data size. Though results
indicate that PTAPT could be robust to predicting
anger in naturalistic speech if the model is trained
on audio only, downstream tasks focusing on anger
could potentially benefit from semantic consistency
between the text and audio inputs, particularly with
the PTAPT method.

4.5 Evaluation on Service Desk Calls

Figure 1 shows evaluating models on real-world
service desk calls. Models pre-trained and fine-
tuned with IEMOCAP yielded the worst results
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Predictions on anger Predictions on happy Predictions on neutral
anger happy neutral sad | anger happy neutral sad | anger happy neutral sad
FT-only | IEMO-IEMO 7 8 1 222 60
MSP-MSP 7 8 6 277
IEMO-MSP 7 8 2 281
MSP*-MSP* 1 6 1 7 5 112 166
IEMO-MSP* 3 4 1 1 6 5 127 151
DAPT | IEMO-IEMO 7 8 1 269 12 1
MSP-MSP 7 8 2 281
IEMO-MSP 7 8 283
MSP*-MSP* 6 1 8 2 269 12
IEMO-MSP* 7 8 3 276 4
PTAPT | IEMO-IEMO 5 1 1 8 3 259 3 18
MSP-MSP 6 1 8 1 241 41
IEMO-MSP 7 8 7 276
MSP*-MSP* 5 1 1 6 1 1 1 166 90 26
IEMO-MSP* 2 5 5 3 20 48 212 3

Table 6: Prediction counts for anger, happy, and neutral on Service Desk calls. Total of 7 samples for anger, 8 for

happy, 283 for neutral.

UMAP plot of ANGRY UMAP plot of HAPPY

UMAP plot of NEUTRAL UMAP plot of SAD

Figure 2: UMAP plots of emotions from the IEMOCAP dataset. From left to right: anger, happy, neutral, sad.
Features are Delta and MFCC coefficients from Mel Spectrograms. n_neighbors=200.

UMAP plo

UMAP plot of NEUTRAL UMAP plot of SAD

NGRY UMAP plot of HAPPY

Figure 3: UMAP plots of emotions from the MSP dataset. From left to right: anger, happy, neutral, sad. Features
are Delta and MFCC coefficients from Mel Spectrograms. n_neighbors=200.

irrespective of the modalities applied, even lower
than the corresponding TER-only run. This aligns
with Yoon et al. (2018); Hazarika et al. (2018) in
that content (“what is said”) is more useful than
the audio signal (“how it is said”) for recognizing
emotions in naturalistic data: words used to express
emotions may generalize more effectively from
acted speech to naturalistic speech, while audio
features, such as an exaggerated tone, are not as
easily transferable. In fact, in all data combinations,
introducing text modality shows benefit.

Models using MSP* also produced poor re-
sults, perhaps due to the imbalanced emotion class
present in the real-world data as well as the fewer
number of data samples compared to MSP. This
is supported by the fact that models fine-tuned us-
ing MSP have the best performance, particularly
the model pre-trained with IEMOCAP and fine-

tuned with MSP, meaning that having more data
but tuned to the imbalance seems to yield the best
performance. For all the runs except one, DAPT
outperformed PTAPT overall, which aligns with
our findings in Table 3 and suggests that PTAPT
is not the most robust and generalizable continued
pre-training method.

Results at the emotion level (see Table 6) pro-
vide insight: neutral samples (95% of the calls)
were often predicted as happy with the model pre-
trained and fine-tuned on IEMOCAP for all three
pre-training methods. Anger samples were most of-
ten predicted as neutral across all pre-training meth-
ods and datasets except when only using IEMO-
CAP, which consistently predicted happy.
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5 Data Visualization

Figures 2 and 3 present the Delta and MFCC Co-
efficients from Mel Spectrograms for [IEMOCAP
and MSP respectively.” Noticeably, the patterns
in Figure 2, while not absolute, do suggest that
there is some clustering of anger and sad, while
happy and neutral are more dispersed. However,
in Figure 3 very little potential clustering emerges.
This may explain why the IEMOCAP dataset has
higher baselines and why training on IEMOCAP
and testing on MSP and MSP* yields better per-
formance: the emotions in IEMOCAP may simply
be more easily discernible, meaning features are
more easily learned and identified in an unknown
audio segment. We see the same difficulty with
the service call data (Figure 4), albeit at a much
smaller sample size, as the anger and happy are
not clustered in any meaningful way and possibly
contributes to the inability of models to identify
anger utterances in Table 6.

6 Limitations

While our study highlights the discrepancy between
widely used acted datasets and real-world speech
despite SOTA SER methods, the quality of these
datasets should be considered as well. In particular,
qualitative analyses on the IEMOCAP dataset by
Probol and Mieskes (2023) found that a small sub-
set of the data samples have features that may neg-
atively contribute to inter-annotator agreement and
model training. These include short audio lengths
(e.g., 1 second), background noise that interferes
with the main speaker’s intended emotion, and in-
consistency between what is said and how it is said.
In addition, due to the small size of the service desk
calls used as our test dataset, the findings from this
pilot study may not be generalizable to other exam-
ples of naturalistic speech.

7 Conclusion

We performed a systematic analysis of applying
different SER strategies to more naturalistic audio
data across experimental setups. We show a no-
ticeable gap in the application of acted speech to
more naturalistic audio sources still persists. While
we do find that a weighted multimodal approach
provides the most potential avenue for model devel-
opment, the emotion class distributions must still
pattern in ways to enable discernible features for

"Visualizations of MSP* show patterns like MSP.
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Figure 4: UMAP plots of emotions from the Service
Desk dataset. Red: anger. Green: happy. Orange:
neutral. Features are Delta and MFCC coefficients from
Mel Spectrograms. n_neighbors=200.

an effective SER model. Future research will in-
vestigate enhanced feature selection in SOTA mul-
timodal models, combined with methods for han-
dling distributional shifts of emotions between the
source and target corpora to further improve perfor-
mance.

Ethics Statement

General speech recognition may bring individual
and group privacy concerns. Proper anonymization
and containment of personally identifiable informa-
tion by speech dataset curators is often promised
in lab settings, but when data is taken from online
platforms like social media or podcasts, this is not
necessarily guaranteed. Hence, clarity on how find-
ings from speech recognition research are applied
to groups of people is important: conducting audio
surveillance in public or obtaining meaningful con-
sent from users of a speech-based product are just
some possible examples (Mohammad, 2022). In
short, when building real world SER applications,
transparency at all levels of the solution is crucial.

Furthermore, SER solutions may inherit or am-
plify bias from training data used in different stages.
For example, an SER system may have higher ac-
curacy in detecting men’s emotions than women’s;
an consequence of this in a medical application
may include a delay in detecting warning signals
in women patients.
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