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Abstract

Multiword Lexical Simplification (MWLS) is
the task of replacing a complex phrase in a
sentence with a simpler alternative. Whereas
previous approaches to MWLS made use of
the BERT language model, we make use of
the Generative Pre-trained Transformer archi-
tecture. Our approach employs Large Lan-
guage Models in an auto-regressive format,
making use of prompt engineering and few-
shot learning to develop new strategies for
the MWLS task. We experiment with sev-
eral GPT-based models and differing exper-
imental settings including varying the num-
ber of requested examples, changing the base
model type, adapting the prompt and zero-
shot, one-shot and k-shot in-context learning.
We show that a GPT-40 model with k-shot in-
context learning (k=6) demonstrates state-of-
the-art performance for the MWLS1 dataset
with NDCG=0.3143, PREC@5=0.1048, beat-
ing the previous BERT-based approach by a
wide margin on several metrics and consistently
across subsets. Our findings indicate that GPT-
based models are superior to BERT-based mod-
els for the MWLS task.

1 Introduction

Lexical Simplification (LS) is a Natural Language
Processing (NLP) task that enhances text acces-
sibility by replacing complex words with simpler
alternatives. It has been applied in various applica-
tion settings, including non-native speakers (Paet-
zold and Specia, 2016b), multilingualism (Shard-
low et al., 2024b), education (Uchida et al., 2018),
and readability (Maddela and Xu, 2018). By simpli-
fying lexical content, NLP systems aim to promote
inclusivity and comprehension.

Multi-Word Lexical Simplification (MWLS) ex-
tends LS to multi-word expressions (MWEs), re-
quiring models to preserve meaning while reducing
complexity. The Plainifier system (Przybyta and
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Shardlow, 2020) was previously used to address
these challenges and has been evaluated using the
MWLS1 dataset’.

This paper explores LLMs for MWLS using the
MWLSI dataset, which contains 1,462 instances
and 7,059 human-provided simplifications, offer-
ing a strong benchmark. Recent models like GPT-3
(Brown et al., 2020), GPT-4 (Achiam et al., 2023),
and Llama 3.1 (Touvron et al., 2023) have demon-
strated effectiveness in NLP tasks, including text
simplification, through prompt engineering. Stud-
ies show that task-specific prompts help guide mod-
els in simplifying MWEs while preserving meaning
(Shin et al., 2020; Gao et al., 2021).

This work investigates prompt engineering (Liu
et al., 2023) to enhance MWLS using LLMs. The
proposed approach generates simplified alterna-
tives while maintaining context, contributing to
the development of accessible NLP tools.

Despite advancements in Lexical Simplification
(LS), most research focuses on single-word simpli-
fication to aid non-native speakers and individuals
with language impairments (Saggion et al., 2022;
Shardlow et al., 2024a). However, existing LS
techniques struggle with multi-word expressions
(MWESs), which often carry context-dependent
meanings. Traditional LS methods, designed for
single-word substitutions, fail to handle these com-
plexities effectively (Constant et al., 2017; Good-
ing and Kochmar, 2018). Whilst the Plainifier at-
tempts to simplify MWEs while preserving mean-
ing, it is based on Masked Language Modelling
(Devlin et al., 2019), leaving room for advance-
ment through the use of large Causal Language
Models (Brown et al., 2020).

This paper explores Al-driven large language
models (LLMs) for MWLS, focusing on GPT-
based models. The goal is to assess whether LLMs
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can provide reliable, context-aware simplifications,
advancing MWLS and improving text accessibil-
ity across diverse domains. The primary contri-
bution is to investigate the potential of Generative
Pre-trained Transformers (GPT) models for Multi-
Word Lexical Simplification (MWLS). By design-
ing customized prompts, this study explores how
GPT models can be guided to generate simpler
alternatives for complex multi-word expressions
while preserving the original semantic content.

The work is structured as follows: We first
overview related literature in Section 2. We then
describe the resources and experimental methodol-
ogy used in Section 3. Next, we present the results
for each experiment in Section 4. We conclude
with a discussion of the results in Section 5.

2 Related Work

2.1 Multi-Word Lexical Simplification

Lexical Simplification (LS) in Natural Language
Processing (NLP) improves text accessibility by
replacing complex words or phrases with simpler
alternatives while preserving meaning. It is widely
used in education, technology, and communication,
helping non-native speakers and broader audiences
(Siddharthan, 2014). Traditional LS methods, such
as dictionary-based substitution and frequency anal-
ysis, often ignore context, leading to oversimpli-
fications or errors (Zhu et al., 2010; Glavas and
Stajner, 2015). While effective for single-word
simplification, these approaches struggle with com-
plex structures, limiting their practical use.

Multi-Word Lexical Simplification (MWLS) ex-
tends LS to multi-word expressions (MWESs) like
idioms, collocations, and technical terms. These
expressions pose challenges due to their context-
dependent meanings, which traditional LS mod-
els fail to simplify effectively (Constant et al.,
2017). Systems like Plainifier (Paetzold and Specia,
2016b) address MWLS but lack flexibility and deep
contextual awareness. This highlights the need
for Al-driven solutions that can preserve meaning
while adapting to linguistic complexity. By lever-
aging large language models (LLMs), this study
explores improved MWLS approaches with greater
accuracy, adaptability, and contextual understand-
ing.

2.2 Approaches to LS

Lexical Simplification (LS) initially relied on rule-
based, dictionary-driven methods, replacing com-
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plex words with simpler synonyms from predefined
lists (Carroll et al., 1998). While effective for basic
tasks, these methods lacked context awareness, of-
ten leading to inaccurate substitutions (Siddharthan,
2014). Early systems using Simple Wikipedia
struggled with polysemy, idioms, and multi-word
expressions (MWEs), limiting their applicability.

Modern LS approaches leverage machine learn-
ing, particularly supervised models trained on par-
allel corpora like Newsela, enabling better contex-
tual preservation (Xu et al., 2015). LSBert, for
example, applies BERT’s masked language mod-
elling to rank simplifications, improving results on
datasets like LexMTurk (Qiang et al., 2020). How-
ever, even these models falter with MWEs, often
generating overly simplified or inappropriate alter-
natives. MWEs (including idioms and collocations)
remain challenging due to their context-dependent
meanings. MWLSI is a dedicated dataset, provid-
ing annotated examples to assess MWE simplifica-
tion models (Przybyta and Shardlow, 2020).

Pretrained models like BERT and RoBERTa
improved LS by using semantic embeddings, en-
hancing simplifications across domains (Liu et al.,
2023). GPT models have recently shown promise
for controlled simplification, particularly in tech-
nical fields like biomedical text (Li et al., 2024).
However, LS still struggles with MWEs, fluency,
and adaptability, limiting large-scale adoption (Lee
and Yeung, 2018). A unified approach integrat-
ing advanced language models and multilingual
datasets could bridge these gaps, pushing LS to-
ward truly accessible text simplification.

2.3 LLMs in Natural Language Processing

Large Language Models (LLMs) have transformed
Natural Language Processing (NLP) by generating
contextually accurate and coherent text across vari-
ous applications (Radford et al., 2019). Models like
GPT-3.5 (Brown et al., 2020) and GPT-4 (Achiam
et al., 2023) excel in handling complex linguistic
structures, making them effective for tasks such as
text generation, translation (Kocmi et al., 2024),
summarization (Zhang et al., 2023), and lexical
simplification (Aumiller and Gertz, 2022). Their
pre-training on vast datasets enables them to pro-
cess polysemous terms, idioms, and multi-word
expressions (MWESs) while maintaining semantic
integrity (Liu et al., 2023).

Prompt engineering plays a key role in guiding
LLMs for text simplification, ensuring fluency and



contextual accuracy (Kew et al., 2023; Shin et al.,
2020). However, challenges remain—LLMs can
sometimes oversimplify, altering meaning or omit-
ting important details. Additionally, their black-
box nature limits interpretability, making it diffi-
cult to analyse decision-making, especially in fields
like medical text simplification (Liu et al., 2019).
Despite these issues, LLMs offer unprecedented
adaptability, integrating readability, contextual rel-
evance, and semantic depth, positioning them as
powerful tools for advancing lexical simplification
research.

3 Methodology

3.1 MWLSI1 Dataset

The MWLSI1 dataset, introduced by Przybyta and
Shardlow (2020), is specifically designed for Multi-
Word Lexical Simplification (MWLS). This dataset
supports the evaluation and refinement of MWLS
systems by providing annotated examples of multi-
word expressions (MWESs) and their simpler alter-
natives. Publicly available, it facilitates collabo-
ration and iterative improvements in the field of
MWE simplification. By adopting MWLSI1, this
research aligns with established standards and con-
tributes to advancing simplification methodologies.
The dataset comprises 1,462 English sentences and
7,059 human-annotated simplifications, sourced
from three domains:

1. BIBLE: Parallel corpus of the World English
Bible (Christodouloupoulos and Steedman,
2015).

2. EUROPARL: Proceedings from the European
Parliament (Koehn, 2005).

3. BIOMED: Text from the CRAFT biomedical
corpus (Bada et al., 2012).

The dataset provides a categorisation of simpli-
fication targets into unigrams (e.g., resistance), bi-
grams (e.g. indirect consequences), and trigrams
(e.g., detect random integration), enabling a de-
tailed analysis of single-word and phrase-level sim-
plification. Each instance in the MWLS corpus
consists of a context, a target word or phrase and
the potential replacements for that phrase. The tar-
get may be a single word, bigram or trigram and
the replacements may also be n-grams where n =1,
2 or 3. Examples taken from the dataset are shown
in Table 1, which is reproduced from Przybyta and
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Shardlow (2020). The dataset is further divided
into subsets such as biblel, bible2, europarl3, etc.,
ensuring balanced representation across n-gram
sizes and linguistic complexities.

3.2 Use of GPT models

We used GPT-3.5-Turbo, GPT-40 and GPT-4o0-
Mini. All models were used via the OpenAl API
and were accessed in a period between June 2023
and May 2025, with a final rerun of all models in
May 2025. We did not experiment with models be-
yond the GPT family due to limited resources in the
experiments. Although the GPT models are closed
source and only accessible via an API, they do
represent a high-performing set of models across
many tasks and have been used successfully in pre-
vious lexical simplification approaches to gain state
of the art performance (Aumiller and Gertz, 2022;
Enomoto et al., 2024). We overview each model
below with reference to the OpenAl model cards?:

GPT-3.5-Turbo: An updated version of GPT-3
(Brown et al., 2020) which is fine-tuned for di-
alogue interactions through supervised learn-
ing and reinforcement learning with human
feedback. This is a text-only model. the
model costs $0.50 per 1M input tokens.

GPT-40: A more recent model than GPT3.5, this
model is a flagship model provided by the
OpenAl platform. GPT-4o0 is trained on text
and images, although we only make use of
text completions in this study (Hurst et al.,
2024). Interaction with the model costs $2.50
per 1M input tokens.

GPT-40-Mini: A smaller’ version of the GPT-40
model. This model is cheaper to run ($0.16
per 1M input tokens) and has a faster inference
speed than the GPT-40 model.

The experimental protocol we undertook for
Multi-Word Lexical Simplification with GPT con-
sists of loading the dataset, passing each compli-
cated phrase and its respective sentence to the GPT
model with prompt via an API request and storing
the results for evaluation. The first author checked
model outputs to identify failure cases (e.g., no out-
put, boilerplate, user-facing messages) and reran
all necessary cases.

https://platform.openai.com/docs/

models

31t is not specified by OpenAI how much smaller, or how
the smaller model was created.
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Case ID Source

Sentence

Replacement

CASE_7739 | BIOMED

CASE_241 | BIBLE

CASE_5327 | EUROPARL

CASE_6461 | BIOMED

CASE_2260 | BIBLE

The main difference in the two lines essentially
resides in the strength of the promoter.

Thus says Yahweh of Armies, "They shall thor-
oughly glean the remnant of Israel. Turn again
your hand as a grape gatherer into the baskets.”

I support Ms Lulling’s recommendations that
the national systems should recognise the impor-
tance of protecting self-employed workers, and
we should stand against all forms of discrimina-
tion, but I am still not convinced that this House
is best placed to work on employment matters.
Other potentially biologically relevant sub-
strates include cholecystokinin and possibly other
neuropeptides.

A man’s foes will be those of his own household.

is basically

will gather

bias and unfairness

relevant

enemies

Table 1: Five examples of sentences from the MWLS1 dataset, each shown with its identifier, source corpus,
highlighted target and one replacement provided by annotators. Reproduced from Przybyta and Shardlow (2020).

Figure 1 shows the workflow that we used. The
process begins with the OpenAl client being ini-
tialised. For each sentence in the dataset, the sys-
tem finds the complicated phrase and a prompt is
sent to the GPT model. The GPT model evaluates
the prompt and generates a list of simplified alter-
natives, which are then saved in a new column in
the dataset. This procedure is repeated for every
instance in the dataset. A new session is initialised
for each instance to prevent effects of catastrophic
forgetting (Vu et al., 2022) in long prompting ses-
sions.

We used the following system prompt in a zero-
shot setting:

You are an Al that suggests simpler alter-
natives for complex words and phrases.

And the corresponding system prompt for one-
or few-shot learning. For one-shot learning we only
specified a single example. For few-shot learning
we specified K = 6 examples:

You are an Al that suggests simpler alter-
natives for complex words and phrases.
Here are some examples of how to sim-
plify multi-word expressions:
<Example_I Instance>

<Example_l Response>

<Example_K Instance>
<Example_K Response>

For each instance across all experiments, we
provided the initial prompt to the GPT model via
the ‘User’ role:

Suggest {n} simpler alternatives to the
multi-word phrase {complex_word} in
the following sentence. The alternatives
should preserve the meaning and im-
prove readability for non-native speak-
ers. Here is the sentence: {sentence}

Where the parameter n varies by experiment as
shown in Table 2 and the complex_word and sen-
tence are instance dependent. The model response
was collected using the ‘Assistant’ role.

3.3 Experiments

We used the full MWLS corpus to evaluate the ef-
fectiveness of GPT models for Multi-Word Lexical
Simplification (MWLS). We do not make use of
training data as our approach is fully unsupervised
and as such the full corpus is used for evaluation.
The experiments we undertook modified key pa-
rameters of the workflow to assess their impact on
simplification quality as shown in Table 2.

In Experiment 1, the number of alternatives was
30 and we introduced a prompt which focussed on
readability for non-native speakers. This aimed to
determine performance level and provide clear in-
structions for simplification quality. Experiment 2
reduced the number of alternatives to 15 and intro-
duced a one-shot system prompt, offering a single
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Parameters Exp 1 Exp 2 Exp 3 Exp 4
Alternatives (n) 30 15 15 20
Model GPT-3.5-Turbo | GPT-3.5-Turbo | GPT-40 | GPT-40-Mini
K-Shot Zero-Shot One-Shot Few-Shot

Table 2: Varied experimental protocols used in our research

Load dataset

Initialize API
Client

Iterate over
each
instance

sExlracl Sentence &
Complex phrase

GPT Model

Generate
Alternatives

Store in
dataset

Figure 1: The experimental workflow we employed.

example to guide the model. This tested whether
quality improved when fewer but more precise sim-
plifications were requested. Experiment 3 modified
the model to GPT-40, maintaining 15 alternatives
while also introducing a few-shot system prompt
(6 examples) to assess how multiple examples in-
fluenced output relevance. Experiment 4 switched
to GPT-40-mini, increasing alternatives to 20 while
retaining the same few-shot prompt. This evaluated
whether a more compact model could maintain sim-
plification quality while generating a broader range
of alternatives.

3.4 Baseline Systems

We reproduce the results of the Plainifier system
introduced by Przybyta and Shardlow (2020). The
Plainfier system makes use of the Masked Lan-
guage Model BERT (Devlin et al., 2019) which
produces token-level probabilities across a vocab-
ulary to replace a masked element in a sentence.
The complex target (which may be a 1-, 2- or 3-
gram) is masked and the language model is used to
produce a set of replacements which are reordered
according to language model probability, semantic
similarity and familiarity.

We additionally reproduce the human baseline
reported by Przybyta and Shardlow (2020). This
was produced using the original annotations as
a gold standard. The human baseline effectively
demonstrates how well any one annotator can pre-
dict the suggested replacements of all other anno-
tators and demonstrates that the task is inherently
difficult for humans to perform.

3.5 Evaluation Metrics

We use the following metrics, which are the same
as those used in the original work on MWLS and
are used widely elsewhere in lexical simplification
research:

Potential: A metric determining the average num-
ber of instances where at least one generated
candidate is also in the gold-standard (Paet-
zold and Specia, 2016a). This is a permis-
sive metric that demonstrates the potential of
a substitution generation system to produce
accurate simplifications.

Precision@K: The percentage of the first K gen-
erated candidates that are present in the gold
standard (Stajner et al., 2022), averaged per-
instance. In our setting we use K=5.

NDCG: Normalised discounted cumulative gain
(Jérvelin et al., 2008) considers the system-
generated substitutions as a ranked list, cast-
ing the evaluation as an information retrieval
problem (i.e., where the vocabulary is con-
sidered the information space and the gold
standard is the items to retrieve).

All metrics are evaluated for each subset in the
dataset, where a subset is a specific genre (bible,
biomed and Europparl) for each N-gram (unigram,
bigram and trigram). We present summary level
statistics for unigrams, bigrams and trigrams (sum-
marised across genre) and for all genres (sum-
marised across n-gram size).
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Metric Subset | Plainifier Human | Expl Exp2 Exp3 Exp4
Bible_All | 0.1528 0.1116 | 0.3022 0.2598 0.3451 0.3060

Biomed_All | 0.1460 0.1065 | 0.2554 0.2260 0.2735 0.2349
Europarl_All | 0.1575 0.0999 | 0.2679 0.2904 0.3163 0.2898

NDCG Alll | 0.2578 0.2112 | 0.4997 0.5172 0.4851 0.3938
All2 | 0.0936 0.0475 | 0.1725 0.1421 0.2512 0.2567

All3 | 0.0458 0.0266 | 0.1191 0.0792 0.1748 0.1650

All | 0.1396 0.1015 | 0.2766 0.2610 0.3143 0.2798

Bible_All | 0.0343 0.2174 | 0.1007 0.0906 0.1164 0.0976

Biomed_All | 0.0360 0.2059 | 0.0856 0.0785 0.0872 0.0692
Europarl_All | 0.0465 0.1913 | 0.0958 0.1024 0.1073 0.0909

Prec@5 Alll | 0.0767 0.3811 | 0.1936 0.1970 0.1812 0.1440
All2 | 0.0180 0.1069 | 0.0455 0.0390 0.0738 0.0668

All3 | 0.0079 0.0575 | 0.0280 0.0201 0.0455 0.0397

All | 0.0365 0.1929 | 0.0946 0.0913 0.1048 0.0871

Bible_All | 0.9366 0.2174 | 0.4398 0.3501 0.4639 0.4201

Biomed_All | 0.8656 0.2059 | 0.3787 0.2997 0.3651 0.3025
Europarl_All | 0.8765 0.1913 | 0.4040 0.3907 0.4459 0.4128

Potential Alll | 0.9908 0.3811 | 0.7137 0.6667 0.6261 0.5150
All2 | 0.8406 0.1069 | 0.2854 0.2204 0.3735 0.3550

All3 | 0.0458 0.0266 | 0.1746 0.1058 0.2487 0.2540

All | 0.6451 0.0575 | 0.4096 0.3500 0.4291 0.3837

Table 3: Experimental results. Plainifier and Human baselines are reproduced from Przybyta and Shardlow (2020).

4 Results

We present the results of our experiments in Table 3.
We have reported three metrics (NDCG, Precision
@5 and Potential) as defined previously. Each met-
ric is evaluated for each subset of our corpus and
the summary statistics are reported for each genre
(Bible_All, Biomed_All and Europarl_All) and each
N-gram size (Alll, All2 and All3). We also present
summary statistics across the entire dataset as A/l.
Results are reported for the Plainifier system and
the human baseline. These results are reproduced
directly from the work of Przybyta and Shardlow
(2020). We continue to report the results of the four
experimental settings that we evaluated with our
GPT-based MWLS system. We have highlighted
the highest performing system in boldface type in
each row (per-summary-statistic and per-metric)
for the reader’s convenience. We also highlight the
key findings from our results in bold-face below.
In experiment 1 we deployed GPT-3.5 Turbo in
a zero-shot setting, whereas in experiment 2 we de-
ployed the same model in a one-shot setting. The
results of experiment 2 are generally lower for all
metrics than for experiment 1, with the exception
of NDCG and Prec@5 for Europarl_All. We also
changed the number of generated candidates in this
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setting from 30 to 15, which may have affected
the potential metric, but should not have affected
other metrics as the generated candidates beyond
the 15th place were typically incorrect*. The drop
in performance indicates that the inclusion of a sin-
gle in-context-learning example with 15 replace-
ments did not lead to improved performance
compared to zero-shot with 30 substitutions in
our experimental setting.

For experiment 3, we used the GPT-40 model
instead of the GPT-3.5-Turbo model. Additionally,
the experimental configuration used 6 in-context-
learning examples instead of 1 as in experiment 2.
The results of experiment 3 demonstrate improved
performance on all metrics compared to all other
experiments that we performed. The setting of
experiment 3 had the highest performance across
all summary subsets for NDCG, except for Alll
(unigrams) and All2 (bigrams). Experiment 3 also
showed improved performance over other experi-
mental settings for Precision@35, where it attained
the highest result of any GPT-based system for all
subsets except for Alll (unigrams). Experiment 3
also demonstrated the highest GPT-based perfor-

“Only the top 5 candidates are taken for prec@5 and lower
order candidates have a minimal effect for NDCG



mance in the potential metric, yielding the highest
result across the entire dataset (A/l). This indicates
that the use of GPT-40 with 6 examples of in-
context learning gave the best machine-based
performance for our dataset.

We additionally experimented with the use of
GPT-40-Mini in the setting of Experiment 4. Here
we are using a smaller but more efficient (time
and token-cost) model, which is known to perform
marginally worse than GPT-40 on baseline tasks.
Our experiments demonstrate that GPT-40-mini
typically has the second-best performance on most
evaluated subsets across all metrics. In 2 instances
(NDCG AlI2 and Potential All3) GPT-40-Mini out-
performs GPT-40. This indicates that smaller lan-
guage models can be competitive with larger
language models for the MWLS task at lower
cost and faster inference speed.

Our results outperform those of the baseline
system (the Plainifier model) for NDCG and Pre-
cision@5. Our best performing system based on
GPT-40 represents a significant increase in perfor-
mance for NDCG (Plainifier = 0.1396, GPT4o0 =
0.3143) and for Precision@5 (Plainifier = 0.0365,
GPT40 = 0.1048). This improvement for NDCG
and Precision@5 is also realised across every eval-
uated subset. The plainifier outperforms all of
our systems for the Potential metric, due to the
limited number of candidates generated by the GPT-
based experiments.

Whereas the human baseline previously outper-
formed the Plainifier system, we report an im-
provement in the NGCD metric over human per-
formance. This is the first time that this has been
reported for the MWLS1 dataset for NDCG. Our
best-performing system, based on GPT-40 outper-
forms the human baseline for all subsets on the
NDCG metric by a large margin (Human-baseline
=0.1015, GPT-40 = 0.3143). Our system also out-
performs the human baseline in terms of potential
across all subsets, although humans typically only
returned a few candidates each. The human base-
line outperforms our best-performing system
for the precision@5 metric (Human-baseline =
0.1929, GPT-40 = 0.1048), indicating that humans
are generally closer to each others predictions for
the top-5 candidates than GPT-based systems.

For the NDCG metric, we demonstrate a new
state-of-the-art performance including outperform-
ing the human baseline and previous state-of-the-
art. Our system based on GPT-40 demonstrates
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the best performance of those systems evaluated,
although we also report improved performance for
unigrams with a system based on GPT-3.5 and bi-
grams with a system based on GPT-40-mini. The
improved NDCG results indicate that our system
consistently ranks relevant candidates higher in
the returned list than previous attempts.

For the precision@5 metric, we demonstrate that
GPT-based systems produce a top-5 ranked candi-
date list that is more similar to a list produced by
the MWLS1 annotators. Our GPT-based systems
consistently outperform the Plainifier system, rep-
resenting an improvement in automated approaches
to MWLS for this metric.

Our GPT-based systems perform consistently
higher than the human baselines for potential indi-
cating that the system generally identified at least
one relevant candidate. Although the Plainifier sys-
tem performs very well on this metric for most
subsets, our GPT-based system performs better on
trigram generation (All3) where we return state of
the art performance beating both the Plainifier and
the human baseline.

5 Discussion

Our results demonstrate that GPT-based models
produce state-of-the-art machine performance for
the MWLS task. We have used 3 API based mod-
els, all of which outperformed the previous base-
line system across two of the three evaluated met-
rics. Whereas the Plainifier system made use of
the token-level probabilities arising from the BERT
model, we instead used the GPT-based models in an
auto-regressive mode through the ‘chat’ interface
of the APL. It is also possible to extract token-level
probabilities from GPT-based models during gener-
ation and there may be potential future gains from
examining the probability distributions of potential
candidate substitutions. We also only experimented
with GPT-based models and did not consider other
similar open-source models for text generation.
The results for the Plainifier are low for NDCG
and Prec @5, but exceptionally high for the poten-
tial metric. Potential is a metric that accepts any of
the generated candidates of a system and the high
results obtained by the Plainifier are due to the high
number of candidates that it generates. In a theo-
retical setting, one could obtain a perfect result for
potential by generating the entire vocabulary (and
all possible n-grams thereof) and presenting this for
evaluation. Whilst we could generate further candi-



dates for each instance with the GPT-based model
at no penalty to the Prec @5 metric, the barrier to
accessibility is the linear cost associated with scal-
ing the number of tokens returned by the model.
This is a barrier to improved performance on the
potential metric, however as this metric does not
provide discounting for incorrect substitutions we
do not consider Potential to be a reliable indicator
of the performance of a deployed Multi-word lexi-
cal simplification system. In an application setting,
we would likely set the number of returned can-
didates to be around that used in our experiments
(15-30), or lower if the candidates are being used
for vocabulary suggestions, where a reader may
only be interested in the top 2 or 3 candidates.

Our results show a large increase over the pre-
vious state-of-the-art, however there is still much
room for improvement across all metrics. The hu-
man baseline shows that the MWLS task is also
difficult for annotators. The performance that we
have reported is above human-level performance
for both the NDCG and potential metrics.

In our experiments, we observed that the GPT-
model frequently failed to generate complex multi-
word expressions (MWESs), particularly trigrams
and in domain-specific subsets such as Biomed3.
These phrases often involve technical terminology
or dense clinical expressions, where maintaining
both semantic integrity and readability is signifi-
cantly more challenging. In such cases, the model
either generated overly generic simplifications or
failed to produce contextually appropriate alterna-
tives. Additionally, there were instances where
the model returned an empty list of simplifications.
The trigger for this behaviour is unclear. In this
situation the instance is run again until successful.

6 Future Work

A significant area for future work on MWLS is
the creation of new datasets. Whereas recent LS
datasets have focussed on single-word replace-
ments this is only limited in use to scenarios
where a word can be directly replaced by another
single-word. MWLS extends this paradigm to N-
N replacement of words, but has not been widely
adopted by LS dataset developers. Currently the
data we have worked on is the only example of
MWLS data that the authors are aware of. Further
work to extend the volume of available data, con-
tribute additional genres and non-English MWLS
would be a positive step forward for the task.
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Our experiments have demonstrated that GPT-
based models are capable of performing well at the
MWLS task for every genre and N-gram size that
we evaluated. We used a single prompt to cover all
generation and it may be the case that using multi-
ple prompts for specific scenarios (i.e., genre-based
prompting, or prompting for specific n-gram sizes)
will yield more comprehensive results. We con-
sider this to be a prompt engineering experiment
and beyond the scope of the present work.

The MWLS dataset that we have considered
only operates on 1-3 grams. It would be interest-
ing to consider a dataset containing replacements
that also allow for larger N-gram sizes. We see in
the results that performance is typically higher for
unigrams and bigrams and that performance dips
for trigrams. We may expect that higher n-gram
sizes will present an additional challenge for future
MWLS systems. We may also consider the inte-
gration of linguistic knowledge at both the level of
dataset creation (i.e., the selection of semantically
coherent complex phrases) and at the level of sys-
tem design. It may be the case that by providing
additional linguistic informed knowledge through
techniques such as Graph Neural Networks or Em-
beddings, we can further improve on MWLS.

7 Conclusion

We have reported a new GPT-based approach to the
Multiword Lexical Simplification task. Whereas
previous approaches made use of the BERT masked
language model, we have made use of the Gener-
ative Pre-trained Transformer architecture. Our
approach has employed Large Language Models
in an auto-regressive format, and made use of
prompt engineering and few-shot learning to de-
velop new strategies for the MWLS task. We have
shown experiments with several GPT-based mod-
els and differing experimental settings. We demon-
strated that a GPT-40-Mini model with 6-shot in-
context learning gave state-of-the-art performance
for the MWLS1 dataset with NDCG=0.3143,
PREC@5=0.1048, beating the previous Bert-based
approach by a wide margin on several metrics and
consistently across subsets. Whilst human perfor-
mance was high for Prec@5, our model outper-
formed the previous state-of-the-art system and rep-
resents a move towards human-level performance
for this metric. Our findings indicate that GPT-
based models are superior to BERT-based models
for the MWLS task.
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