Output Trend Analysis in Semantic Classification of Katakana Words
Using a Large Language Model

Kazuki Kodaki and Minoru Sasaki
Ibaraki University / Japan
{24nm724g, minoru.sasaki.0l}@vc.ibaraki.ac.]p

Abstract

In semantic classification of katakana words
using a large language model (LLM), semantic
divergences from the meanings of original En-
glish words such as Wasei-Eigo(Japanese-made
English) may affect the accuracy of the model.
In order to accurately capture the meaning of
foreign words, we fine-tuned the LLM using
data extracted from the BCCWJ(Balanced Cor-
pus of Contemporary Written Japanese), ana-
lyzed the current accuracy and output trend of
semantic classification for katakana words, and
explored ways to improve the accuracy. The
results of several experiments showed that fine-
tuning was not effective for zero-shot learning,
but in contrast, fine-tuning improved accuracy
by about 10% for few-shot learning. Further
analysis of the visualized data suggests trends
related to words and meanings that the model
struggles to classify correctly.

1 Introduction

Currently, research related to the Large Lan-
guage Model (LLM) is being conducted in the field
of natural language processing. LLM, such as those
provided by ChatGPT, are trained primarily on En-
glish data, and the percentage of Japanese data
seems to be relatively small. Japanese katakana
words often include foreign words derived from
English and Wasei-Eigo(Japanese-English words)
with meanings unique to Japan. This makes seman-
tic interpretation difficult for LLM, due to sense di-
vergence and a lack of relevant training data. There-
fore, this paper aims to improve the accuracy of
the semantic classification task by adding Japanese
data to existing LLM to understand the usage trends
of katakana words and their senses. To solve this
task, we constructed a dataset by extracting sen-
tences containing katakana words from the Bal-
anced Corpus of Contemporary Written Japanese
(BCCWJ)(Maekawa et al., 2014) provided by the

National Institute for Japanese Language and Lin-
guistics (NINJAL), and we used and fine-tuned
OpenAl’s gpt-40-mini-2024-07-18 model to ana-
lyze its output trends.

2 Related Work

Word Sense Disambiguation (WSD) research
generally follows two main approaches: super-
vised learning and knowledge-based methods. Su-
pervised methods classify ambiguous words us-
ing models trained on corpora annotated with cor-
rect senses by humans. Recent models use pre-
trained language models, such as BERT (Devlin
et al., 2019) and RoBERTa (Zhuang et al., 2021),
to embed words and sentences for sense predic-
tion (Maru et al., 2022; Blevins and Zettlemoyer,
2020). Knowledge-based methods rely on exter-
nal resources such as dictionaries and ontologies
instead of annotated corpora. Some approaches
vectorize word definitions to learn sense relation-
ships (Mizuki and Okazaki, 2023), while others use
synonym relationships to derive meaningful sense
vectors (Wang and Wang, 2020). Recent attempts
have also been made to use LLM-based genera-
tive Al such as ChatGPT for WSD(Kocon et al.,
2023; Kang et al., 2024), and evaluation results
show promising performance, but not yet up to the
state-of-the-art models.

3 Experiment

3.1 Extraction-of-Foreign Words

For small-scale experiments, the dataset was con-
structed using only the BCCW] sections PB, PM,
PN, OC, OW and OY. BCCWIJ was used because
it is the only balanced corpus on Japanese. From
these folders, sentences containing words whose
short units (the smallest unit of semantic segmenta-
tion of a sentence or word) were labeled as foreign
words were extracted, resulting in 32,226 sentences.
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From these, we considered four choice sentences
and one question sentence to be the minimum num-
ber of occurrences, calculated the frequency of
occurrence, and set the condition that there must
be at least five sentences, and 10,750 sentences and
795 words were extracted.

3.2 Data Set Creation

3.2.1 Selecting target words

This section outlines the method used to se-
lect target words and sentences containing them
in the data. Digital Daijisen, the source of the goo-
dictionary ! provided by NTT DOCOMO, was used
as the word sense category for the target words.
Considering the four choices and one question
sentence as described in the previous section, we
searched the 795 target words in the web-based
Digital Daijisen and selected words with at least
four examples of word use in the BCCW]J and at
least five sentences. Non-katakana words such as
foreign articles (e.g., 1a) were excluded. As a result,
40 words and 1,143 sentences were extracted.

3.2.2 Creation of data sets

To create the dataset, 1143 sentences containing
40 target words extracted in the previous section
were used. Their meanings were manually labeled
by first author, based on the semantic categories
in the Digital Daijisen. Sentences were labeled as
follows: 0 if the sentence consists only of the target
word and the exact meaning cannot be determined,
1 if the target word is part of some other word, 2 if
the context allows multiple interpretations, and 3
if the meaning of the word cannot be referenced in
Digital Daijisen. 246 sentences labeled 0-3 were
excluded from the dataset, leaving 897 usable sen-
tences. This data is divided into a training and a
test set, which are used for the 8 experiments de-
scribed below. In experiments 1 and 7, the test set
consisted of 120 randomly selected sentences (3
per each of the 40 target words), with the other
777 used for training. In experiments 2 through
6 and 8, the test data included 56 sentences, each
representing a unique word sense in Digital Dai-
jisen (i.e., appearing only once in BCCW]J), with
the remaining 841 sentences used for training.

3.3 Fine-tuning and generating responses

The training data was fine-tuned using Ope-
nAl API with the gpt-40-mini-2024-07-18 model.

'nttps://dictionary.goo.ne.jp/

Input Prompt Output

A. Output : predictive meaning.
Correct label :correct meaning.

Q. Youareali ic analyst. Please tell us the
meaning of the word “TARGET WORD” in the
following sentence: You do not need to answer.

Please choose the meaning closest to from the
following choices.

1.First sense, 2.second sense, ...etc

Target e ining target
words extracted from the BCCWJ are described
here.”

Figure 1: Used Prompts

All settings during the study, such as the learning
rate and number of epochs, were done by “auto”.
For each experimental word sense prediction, re-
sponses were generated using ChatGPT before and
after fine-tuning. The accuracy and output trends
were evaluated by manually judging whether the
predictions perfectly matched the semantic cate-
gories of the Digital Daijisen assigned to the test
data. The prompt presented the semantic cate-
gories (scraped from the goo-dictionary) as answer
choices and instructed the model to select the mean-
ing closest to the target word. The actual prompt
used is shown in the following figurel. Eight exper-
iments were conducted by having responses gener-
ated as described above and changing the training
and test data during fine-tuning. The details of each
experiment and dataset are described in Sections
3.4.1 (Experiment 1), 3.4.2 (Experiments 2-6), and
3.4.3 (Experiments 7-8).

3.4 Experiments

3.4.1 Few-shot learning

The purpose of this experiment is to confirm
the increase or decrease of output accuracy due to
fine-tuning in few-shot learning. The test data in
experiment 1 consisted of 120 sentences (40 target
words x 3 sentences) randomly selected from 3
sentences from each target word, and the training
data consisted of 777 sentences excluding them.

3.4.2 Zero-shot learning

These experiments aim to evaluate the effective-
ness of fine-tuning in zero-shot learning. In each
of the experiments in this section, the test data con-
sisted of 56 sentences containing targets with a
BCCW!]J semantic frequency of 1, which was com-
mon to all. To investigate the effect of data bias by
giving only examples other than the correct word
sense annotated in the test data for the target word,
the following experiments 2-6 were conducted. In
Experiment 2, 841 training sentences were used,
excluding the test data. In Experiment 3, 596 sen-
tences were extracted from the 841 sentences of
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training data, including only the target words in the
test data. In Experiment 4, we randomly selected
298 sentences, half of the 596 sentences in Exper-
iment 3, to test whether accuracy changes as the
amount of data decreases. In Experiment 5, 245
sentences were used from the 841 sentences in the
training data, excluding the 596 sentences in Exper-
iment 3 (no sentences in the training data contained
an target words). In Experiment 6, we extracted
122 sentences, half of the data from Experiment 5,
with the same objectives as in Experiment 4.

3.4.3 Extractive Sense Comprehension and
Chain-of-Thought

In Experiment 7, following ESC (Extractive
Sense Comprehension)(Barba et al., 2021), target
words in the training data of Experiment 1 were
enclosed with < ¢ >< /t > tags, Fine-tuning
was performed as in the other experiments, and
responses were generated using the test data of Ex-
periment 1. This was expected to improve output
accuracy by enclosing the target words with tags.
In experiment 8, we perform zero-shot CoT (Chain-
of-Thought)(Kojima et al., 2022), prompting the
model with “Let’s think step by step” to guide
multi-step inference. This was expected to improve
output accuracy in zero-shot learning. Since exper-
iment 3 was the least accurate of experiments 1-6,
the data set was used directly in experiment 8 to
evaluate the potential for improvement.

3.5 Result

Table 1 shows the output accuracy for each ex-
periment. Accuracy improved in Experiments 1
and 7 after fine-tuning, but decreased in the others.

Table 1: Output Accuracy for Tuning

experiment Fine-tuning
before after

No.1 0.592 (71/120)  0.708(85/120)
No.2 0.679 (38/56)  0.464 (26/56)
No.3 0.679 (38/56)  0.357 (20/56)
No.4 0.679 (38/56)  0.500 (28/56)
No.5 0.679 (38/56)  0.607 (34/56)
No.6 0.679 (38/56)  0.643 (36/56)
No.7 0.600 (72/120)  0.708 (85/120)
No.8 0.643(36/56) 0.357(20/56)

4 Analysis

4.1 Disscussion

In this section, we present the results of analyz-
ing the output trend of the experiments and the
accompanying discussion. As shown in Table 1

and described in Section 3.6, fine-tuning improved
accuracy in Experiments 1 and 7, while decreased
it in others. This suggests fine-tuning is effective
for few-shot settings but not for zero-shot in the
semantic inference task for katakana words. The
decline in zero-shot learning accuracy may stem
from training data bias and the rarity of certain
word senses. The former may be attributed to the
data extraction method. We did not consider the
frequency of word senses when extracting from the
BCCW]J. Common meanings are likely to dominate
the training set. The latter is because the test data
are composed of sentences containing words with
meanings that have a frequency of occurrence of
1 in BCCW], and it is considered that there are
few situations in which the meaning of the word
is actually used in documents. For example, in the
zero-shot learning test data, the correct answer to
the word “course” is ”a dish of Western cuisine,
served in order”. The correct answer for the word
“course” in the zero-Shot Learning test data was
not found to be correct in all cases. The model
or corpus likely lacks sufficient examples of the
word, as it appears primarily in meal-related con-
texts. Experiment 7 did not show an improvement
in precision compared to experiment 1, and the ef-
fectiveness of enclosing tags was not confirmed.
Experiment 8 failed to improve upon experiment
3, suggesting that zero-shot CoT was ineffective,
possibly due to Japanese training data or the nature
of the semantic inference task. Experiments 4 and
6, which used half of the training data selected at
random from experiments 3 and 5 , showed bet-
ter accuracy—probably due to increased data bias.
Furthermore, among experiments 2, 3, and 5, ex-
periment 3 had the lowest accuracy and experiment
5 the highest accuracy. Since experiment 3 consists
only of sentences that include the target word in
the test data and experiment 5 excludes sentences
that include the target word in the test data from
the training data of experiment 2, it seems that
the accuracy of semantic inference with zero-shot
learning decreases when a large number of mean-
ings of the target word are given in the training data.
This suggests that including many meanings of a
target word in training data reduces the accuracy of
zero-shot learning inference.

4.2 Output Trend Analysis

We note several output trends. In experiments 1
and 7, the word “minus” is an example of a word
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that did not produce the correct answer choice be-
fore and after fine-tuning. Digital Daijisen defines
this word as having nine semantic categories, di-
vided into detailed or limited meanings. There was
little improvement before and after the fine-tuning,
which may be due to the detailed semantic cate-
gories in the Digital Daijisen. Still, fine-tuning
slightly improved accuracy for meanings like “not
good, a bad aspect.”. For experiments 2-6 and
experiment 8 (zero-shot learning), we have an ex-
ample where the output was more nuanced than
the provided correct answer choice. The correct
answer for home” as part of a home improvement
store is "Home. -bar, and my-,* but the model be-
fore fine-tuning said that this is used differently
from the usual "home” because it is precisely the
name of a store called "home improvement store”.
However, fine-tuning made the output the labeled
answer. Further, in experiments 2-6, 10 word
senses below had one thing in common: neither
of the pre-tuning nor post-tuning models output the
correct answer choice. ’In Western dressmaking,
to cut fabric. Cutting. : cut”, ”In western cooking,
a dish served in sequence. : course”, A style of
architecture, art, music, etc. Mold. : style”, ”To
assemble a tool, machine, etc. so that it can be used.
To set up. : set”, "To examine and prevent the entry
of anything untoward. : check”, ”Negative elec-
tricity. Also, its symbol. : minus”, ”To subtract. :
minus”, "Adverse. Disadvantage. Loss. : minus”,
”In golf, a target hole cut on the green. : hole”, ”In
a business organization, an organization above or
below, such as a bureau, department, division, or
section. : line”. All of the senses are of limited use,
and “minus” was particularly inaccurate.

4.3 Data Visualization

The 897 sentences extracted from BCCW/J cre-
ated in section 3.2.2 were embedded into a nu-
merical vector using OpenAl API, compressed
into two dimensions, further divided into 21 clus-
ters, and visualized in two-dimensional coordinates.
UMAP (Uniform Manifold Approximation and
Projection) (Mclnnes et al., 2018) was used to
compress the dimensions. This is a dimension-
ality reduction method that efficiently compresses
high-dimensional data to a lower dimension (two
dimensions in this paper). Compared to t-SNE
(Van der Maaten and Hinton, 2008), UMAP better
preserves inter-cluster distances and allows param-
eter customization, making it suitable for this re-

search. Therefore, we adopted it as the dimension-
ality reduction method in this paper. For clustering,
we adopted HDBSCAN (Campello et al., 2013)
due to its ability to handle complex data and accu-
rately detect noise. This helps in visually capturing
cluster tendencies. In HDBSCAN, clusters require
at least 8 points; smaller groups and isolated points
are treated as noise (338 points, 37.7%). Analysis
of the plotted clusters revealed that many of the
sentences share a similar context. For example, a
certain cluster included many PC-related sentences,
regardless of the target word. Therefore, we specu-
late that accuracy could be improved by including
not only sentences with the same word senses as
the target words, but also those belonging to the
same cluster during fine-tuning. Furthermore, for
sentences whose senses showed little effect from
fine-tuning (experiments 2—6 in Section 4.2), we
examined their cluster assignments. “In Western
dressmaking, to cut fabric(cut).”, “In western cook-
ing, a dish served in sequence (course).”. These two
word senses were processed as Noise. The points
treated as Noise (isolated) in plotted cluster likely
lack similar sentence structures. This suggests that
the BCCW/J lacks sufficient examples of sentences
with the above “cut” and “course” meanings.We
speculate that supplementing the dataset with sen-
tences containing katakana words from other cor-
pora that reflect these word meanings could im-
prove precision.

5 Conclusion

Multiple experiments on the semantic inference
of katakana words showed improved output accu-
racy in the gpt-40-mini-2024-07-18 model when
fine-tuned with few-shot learning. We suggest
that for few-shot learning scenarios, fine-tuning
with carefully selected data—including examples
of hard-to-infer word senses, can enhance perfor-
mance. In contrast, zero-shot accuracy declined,
particularly for polysemous and context-specific
words. Wasei-eigo requires a broader semantic in-
terpretation, as its meaning often diverges from
the original English source. Therefore, fine-tuning
may reconstruct a semantic space biased toward
specific usages, reducing zero-shot performance,
particularly for Wasei-eigo with meanings that de-
viate from standard English. We hope that these
results obtained in this research will be used to
contribute to WSD in future research.
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