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Abstract
We propose a domain adaptation method for
multilingual sentence encoders. In domains
requiring a high level of expertise, such as med-
ical and academic, domain-specific pre-trained
models have been released in each language.
However, there is no its multilingual version,
which prevents application to cross-lingual in-
formation retrieval. Obviously, multilingual
pre-training with developing in-domain corpora
in each language is costly. Therefore, we effi-
ciently develop domain-specific cross-lingual
sentence encoders from existing multilingual
sentence encoders and domain-specific mono-
lingual sentence encoders in each language.
Experimental results on translation ranking in
three language pairs with different domains re-
veal the effectiveness of the proposed method
compared to baselines without domain adapta-
tion and existing domain adaptation methods.

1 Introduction

To obtain knowledge comprehensively from large-
scale text data on the Web, cross-lingual infor-
mation retrieval (Artetxe and Schwenk, 2019) is
promising. For application to embedding-based
cross-lingual information retrieval, multilingual
sentence encoders (Conneau et al., 2020; Reimers
and Gurevych, 2020; Feng et al., 2022; Wang
et al., 2024) are actively researched. Although
these encoders are trained on general texts such as
Wikipedia and CC100 (Wenzek et al., 2020), in spe-
cialized fields that require a high-level of expertise,
such as medical and academic, developing domain-
specific multilingual sentence encoders would be
desirable. However, while domain-specific mono-
lingual sentence encoders (Beltagy et al., 2019;
Alsentzer et al., 2019; Araci, 2019; Zhang et al.,
2021; Yamauchi et al., 2022; Labrak et al., 2023)
have been released, the lack of their multilingual
versions has prevented application to cross-lingual
information retrieval.

Therefore, we propose a method to train a
domain-specific cross-lingual sentence encoder.
Since developing in-domain corpora in each lan-
guage and subsequently performing multilingual
pre-training requires significant costs, we fine-tune
pre-trained multilingual sentence encoders on a
bilingual corpus, similar to the training of general-
purpose multilingual sentence encoders (Reimers
and Gurevych, 2020; Feng et al., 2022; Tiyajamorn
et al., 2021; Kuroda et al., 2022; Wang et al., 2024).
Previous studies have focused on bringing bilingual
sentence embeddings closer to each other based on
methods such as knowledge distillation (Reimers
and Gurevych, 2020), translation ranking (Feng
et al., 2022), contrastive learning (Tiyajamorn et al.,
2021; Wang et al., 2024), and adversarial learn-
ing (Kuroda et al., 2022). This study, in contrast,
not only brings embeddings from source and target
languages close together, but also simultaneously
distills domain knowledge.

Experimental results on three domains and lan-
guage pairs, i.e., Academic (English-Japanese),
Medical (English-French), and Financial (English-
Chinese), reveal that the proposed method achieves
higher cross-lingual similarity estimation perfor-
mance than the baseline without domain adaptation
and existing domain adaptation methods. Our de-
tailed analysis reveals that the proposed method is
effective even when the in-domain bilingual corpus
has only a few thousand sentence pairs available.

2 Proposed Method

As shown in Figure 1, this study extracts language-
agnostic embeddings (hereafter, meaning em-
beddings) from a multilingual sentence encoder
through fine-tuning on an in-domain bilingual cor-
pus, while simultaneously distilling domain knowl-
edge from domain-specific monolingual sentence
encoders in each language. Our meaning embed-
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Figure 1: Overview of the proposed method. We train four MLPs to extract language-agnostic domain-specific
meaning embeddings (yellow) using an in-domain bilingual corpus, a pre-trained multilingual sentence encoder,
and pre-trained domain-specific monolingual sentence encoders in each language.

dings (yellow in Figure 1) can generate vectors
that are similar to semantically close sentences, re-
gardless of the input language, on a vector space
suitable for the target domain. The proposed
method consists of two main ideas: (1) extraction
of language-agnostic embeddings and (2) adapta-
tion to domain-specific embeddings. The former is
inspired by DREAM (Tiyajamorn et al., 2021) and
MEAT (Kuroda et al., 2022) that disentangle em-
beddings from multilingual sentence encoders into
language-specific and -agnostic information; and
the latter is inspired by the knowledge distillation
of mSBERT (Reimers and Gurevych, 2020).

As in previous studies (Tiyajamorn et al., 2021;
Kuroda et al., 2022), we disentangle embeddings
from a multilingual sentence encoder into language
and meaning embeddings by two multilayer per-
ceptrons (MLPs), MLPL and MLPM . This is done
for each of source and target sentence embeddings
S ∈ Rd and T ∈ Rd, respectively. We train a total
of four MLPs using multi-task learning with the
following five loss functions.

L = L1 + L2 + L3 + L4 + L5 (1)

2.1 Domain Knowledge Distillation

We aim to distill domain knowledge into meaning
embeddings by the following loss that makes sen-
tence embeddings, which combine language and
meaning embeddings, closer to sentence embed-
dings from domain-specific sentence encoders.

L1 = 2− (cos((SL + SM ), SD)

+ cos((TL + TM ), TD))
(2)

where SL ∈ Rd and TL ∈ Rd are language embed-
dings in the source and target languages, SM ∈ Rd

and TM ∈ Rd are meaning embeddings in each
language, SD ∈ Rd and TD ∈ Rd are sentence
embeddings from domain-specific models. Here, d
is the number of dimensions of each embedding.

2.2 Disentangling into Meaning Embeddings
We want to bring meaning embeddings between
semantically similar sentences closer independent
of their language. To achieve this, we define the
following loss that brings meaning embeddings
closer between bilingual sentences.

L2 = 1− cos(SM , TM ) (3)

2.3 Disentangling into Language Embeddings
We want to distance language embeddings between
sentences in different languages, independent of
their meanings. To achieve this, we define the
following loss that distances language embeddings
between bilingual sentences.

L3 = max(0, cos(SL, TL)) (4)

2.4 Balancing Origin & Domain Embeddings
To make meaning embeddings language-agnostic,
we want to avoid being too influenced by domain-
specific sentence encoders that are language-
specific. To achieve this, we define the following
losses that prevent meaning and language embed-
dings from deviating too much from original ones.

L4 = 2− (cos(S, SM ) + cos(T, TM )) (5)

L5 = 2− (cos(S, SL) + cos(T, TL)) (6)
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2.5 Implementation Details

We use average pooling of token embeddings out-
put from each model for sentence embeddings. All
the MLPs in our model are single-layer feedfor-
ward neural networks (fully-connected layer) with-
out activation functions. Only MLPs are fine-tuned
in our method, and sentence encoders are fixed.

3 Evaluation

We evaluate the performance of the proposed
method on a translation ranking task in three lan-
guage pairs with different domains. Translation
ranking is a task that ranks target language sen-
tences in descending order of cross-lingual seman-
tic similarity to a given source sentence. Our au-
tomatic evaluation metrics include ExactMatch,
which evaluates only first-place candidates, and
MRR@10, which evaluates the top 10 candidates.
In this experiment, semantic similarity is estimated
by cosine similarity.

3.1 Setting

Dataset Experiments were conducted in three do-
mains: Academic, Medical, and Financial. In the
academic domain, we used an English-Japanese
corpus of project titles in Japanese research funds
(KAKENHI1). In the medical domain, we used
an English-French corpus of PubMed, which was
employed in the biomedical translation task of
WMT16 (Bojar et al., 2016). In the financial do-
main, we used an English-Chinese corpus (Turenne
et al., 2022) of article titles from the Financial
Times. The number of sentence pairs in these par-
allel corpora is shown in Table 1.

Model Domain-specific monolingual sentence
encoders include SciBERT2 (Beltagy et al., 2019)
in English and AcademicRoBERTa3 (Yamauchi
et al., 2022) in Japanese for the academic do-
main, Bio ClinicalBERT4 (Alsentzer et al., 2019)
in English and DrBERT5 (Labrak et al., 2023) in
French for the medical domain, FinBERT6 (Araci,

1https://kaken.nii.ac.jp/
2https://huggingface.co/allenai/

scibert_scivocab_uncased
3https://huggingface.co/EhimeNLP/

AcademicRoBERTa
4https://huggingface.co/

emilyalsentzer/Bio_ClinicalBERT
5https://huggingface.co/Dr-BERT/

DrBERT-7GB
6https://huggingface.co/ProsusAI/

finbert

Train Valid Test

Academic (En-Ja) 100,000 5,000 5,000
Medical (En-Fr) 100,000 5,000 5,000
Finance (En-Zh) 50,000 5,000 5,000

Table 1: Corpus size

2019) in English and Mengzi-BERT7 (Zhang et al.,
2021) in Chinese for the financial domain. For
multilingual models, we employed mBERT8 (De-
vlin et al., 2019), LaBSE9 (Feng et al., 2022) and
mE510 (Wang et al., 2024), which are the com-
monly used multilingual sentence encoders. We
used an implementation of HuggingFace Trans-
formers (Wolf et al., 2020) and trained each model
with a batch size of 512 and an Adam opti-
mizer (Kingma and Ba, 2015) with a learning rate
of 10−5. Training was terminated when the loss
in Equation (1) in the validation dataset did not
improve by three epochs.

Comparison In addition to a baseline that uses
sentence embeddings from each model as is, we
evaluate three comparison methods. First, as a com-
parison method (1) that only distills domain knowl-
edge, we consider the following loss L6 using
MLPS for the source language and MLPT for the
target language instead of MLPL and MLPM that
disentangle language and meaning embeddings.

L6 = 2− (cos(SS , SD) + cos(TT , TD)) (7)

where SS and TT are embeddings for each lan-
guage obtained through MLPS and MLPT .

Next, as a comparison method (2) that does not
disentangle language and meaning embeddings, we
consider the loss L6 + L7, which brings embed-
dings in the source and target languages closer in
addition to distilling domain knowledge.

L7 = 1− cos(SS , TT ) (8)

Finally, as a comparison method (3) without do-
main adaptation, we consider the loss L−L1+L8,
which reconstructs the original embeddings by

7https://huggingface.co/Langboat/
mengzi-bert-base-fin

8https://huggingface.co/google-bert/
bert-base-multilingual-uncased

9https://huggingface.co/
sentence-transformers/LaBSE

10https://huggingface.co/intfloat/
multilingual-e5-base

https://kaken.nii.ac.jp/
https://huggingface.co/allenai/scibert_scivocab_uncased
https://huggingface.co/allenai/scibert_scivocab_uncased
https://huggingface.co/EhimeNLP/AcademicRoBERTa
https://huggingface.co/EhimeNLP/AcademicRoBERTa
https://huggingface.co/emilyalsentzer/Bio_ClinicalBERT
https://huggingface.co/emilyalsentzer/Bio_ClinicalBERT
https://huggingface.co/Dr-BERT/DrBERT-7GB
https://huggingface.co/Dr-BERT/DrBERT-7GB
https://huggingface.co/ProsusAI/finbert
https://huggingface.co/ProsusAI/finbert
https://huggingface.co/Langboat/mengzi-bert-base-fin
https://huggingface.co/Langboat/mengzi-bert-base-fin
https://huggingface.co/google-bert/bert-base-multilingual-uncased
https://huggingface.co/google-bert/bert-base-multilingual-uncased
https://huggingface.co/sentence-transformers/LaBSE
https://huggingface.co/sentence-transformers/LaBSE
https://huggingface.co/intfloat/multilingual-e5-base
https://huggingface.co/intfloat/multilingual-e5-base
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Academic (En→Ja) Medical (En→Fr) Financial (En→Zh)

ExactMatch MRR@10 ExactMatch MRR@10 ExactMatch MRR@10

mBERT 0.025 0.087 0.696 0.747 0.083 0.127
(1) L6 0.000 0.002 0.000 0.002 0.000 0.002
(2) L6 + L7 0.279 0.385 0.586 0.663 0.068 0.123
(3) L− L1 + L8 0.403 0.492 0.872 0.889 0.175 0.244

Ours 0.443 0.531 0.885 0.901 0.188 0.259

LaBSE 0.908 0.927 0.943 0.949 0.476 0.537
(1) L6 0.000 0.002 0.000 0.002 0.000 0.002
(2) L6 + L7 0.714 0.774 0.846 0.875 0.232 0.313
(3) L− L1 + L8 0.914 0.933 0.950 0.954 0.497 0.558

Ours 0.917 0.936 0.950 0.954 0.513 0.575

mE5 0.863 0.899 0.939 0.946 0.529 0.594
(1) L6 0.000 0.002 0.000 0.002 0.000 0.002
(2) L6 + L7 0.640 0.720 0.784 0.831 0.238 0.322
(3) L− L1 + L8 0.928 0.948 0.952 0.956 0.600 0.665

Ours 0.935 0.952 0.954 0.957 0.607 0.671

Table 2: Experimental results of translation ranking that uses English sentences as queries to retrieve sentences in
other languages.

adding language and meaning embeddings.

L8 = 2− (cos((SL + SM ), S)

+ cos((TL + TM ), T ))
(9)

3.2 Result
Tables 2 and 3 show the experimental results. Ta-
ble 2 shows the results when using English sen-
tences as queries to retrieve sentences in other lan-
guages, and Table 3 shows the results when using
sentences in other languages as queries to retrieve
English sentences. The proposed method consis-
tently outperformed the baselines for each model
for all domains and language pairs. These consis-
tent experimental results show that our method is
effective for domain-specific cross-lingual sentence
similarity estimation.

The fact that the comparative method (1), which
only distills domain knowledge, completely loses
retrievability, suggests that simple domain adapta-
tion cannot train a cross-lingual model. The com-
parative method (2), which does not disentangle
language embeddings and meaning embeddings,
also degrades performance significantly, indicating
that the extraction of language-agnostic meaning
embeddings is important for cross-lingual retrieval.
Although the comparative method (3), which does
not distill domain knowledge, always outperformed
the baseline, it consistently performed below or

equal to the proposed method. These results sug-
gest that while the performance of cross-lingual
retrieval can be improved by simply extracting
language-agnostic meaning embeddings, its quality
can be further improved by domain adaptation.

3.3 Ablation Study

Table 4 presents an ablation analysis in LaBSE
evaluating multiple combinations of losses, other
than L1, which are essential for domain adaptation.
The performance drop in (a) suggests that L2 and
L3 are important for disentangling language and
meaning embeddings to achieve high cross-lingual
performance. The significant performance drop in
(b) suggests that L4 and L5, which prevent devi-
ation from original embeddings, are essential for
stable domain adaptation. (c) and (e) show that the
to-English performance is worse than the proposed
method when excluding losses related to meaning
embeddings. In contrast, (d) and (f) show that ex-
cluding losses related to language embeddings has
no significant impact.

3.4 Analysis of Sensitivity to Corpus Size

Figure 2 shows the performance of translation rank-
ing while reducing the size of the target domain
corpus for training. Even training with 5k sen-
tence pairs revealed that our method outperforms
the LaBSE baseline. Since developing a large-
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Academic (Ja→En) Medical (Fr→En) Financial (Zh→En)

ExactMatch MRR@10 ExactMatch MRR@10 ExactMatch MRR@10

mBERT 0.059 0.105 0.718 0.768 0.053 0.087
(1) L6 0.000 0.002 0.000 0.002 0.000 0.002
(2) L6 + L7 0.247 0.349 0.777 0.821 0.023 0.054
(3) L− L1 + L8 0.295 0.382 0.886 0.904 0.149 0.208

Ours 0.353 0.443 0.896 0.912 0.164 0.226

LaBSE 0.889 0.910 0.937 0.944 0.353 0.416
(1) L6 0.000 0.002 0.000 0.002 0.000 0.002
(2) L6 + L7 0.714 0.775 0.895 0.914 0.096 0.155
(3) L− L1 + L8 0.908 0.926 0.948 0.952 0.448 0.513

Ours 0.911 0.929 0.949 0.953 0.460 0.528

mE5 0.777 0.823 0.941 0.949 0.398 0.484
(1) L6 0.000 0.002 0.000 0.002 0.000 0.002
(2) L6 + L7 0.633 0.714 0.874 0.899 0.101 0.161
(3) L− L1 + L8 0.912 0.934 0.952 0.956 0.571 0.637

Ours 0.913 0.935 0.952 0.956 0.571 0.637

Table 3: Experimental results of translation ranking that uses sentences in other languages as queries to retrieve
English sentences.

L2 L3 L4 L5 En → Ja Ja → En

LaBSE 0.908 0.889

(a) ✓ ✓ 0.882 0.860
(b) ✓ ✓ 0.002 0.412
(c) ✓ ✓ ✓ 0.907 0.890
(d) ✓ ✓ ✓ 0.917 0.911
(e) ✓ ✓ ✓ 0.920 0.898
(f) ✓ ✓ ✓ 0.918 0.911

Ours ✓ ✓ ✓ ✓ 0.917 0.911

Table 4: Evaluation of ExactMatch in ablation analysis.
Results are similar for other domains and language pairs.

scale bilingual corpus in a specific domain is costly,
the ability to train cross-lingual domain adaptation
from small datasets is a strength of our method.

4 Conclusion

In this study, we address domain adaptation of mul-
tilingual sentence encoders. The proposed method
uses an in-domain bilingual corpus and domain-
specific monolingual sentence encoders in each
language to simultaneously extract language agnos-
tic meaning embeddings from a multilingual sen-
tence encoder while distilling domain knowledge.
Experimental results in three domains (Academic,
Medical, and Financial) and three language pairs
(English-Japanese, English-French, and English-
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Figure 2: Sensitivity to training corpus size.

Chinese) show that the proposed method can con-
sistently improve the performance of cross-lingual
similarity estimation for all domains and languages.
Our method can achieve domain adaptation of mul-
tilingual sentence encoders even from an in-domain
bilingual corpus of thousands of sentence pairs.
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