Fusion of Object-Centric and Linguistic Features for Domain-Adapted
Multimodal Learning

Jordan Kralev
Institute for Bulgarian Language, Bulgarian Academy of Sciences
jordan@dcl.bas.bg
Department of Systems and Control, Technical University of Sofia
jkralev@tu-sofia.bg

Abstract

Modern multimodal systems often struggle to
link domain-specific visual content with textual
descriptions, especially when object recogni-
tion is limited to general categories (e.g. COCO
classes) and lacks customised adaptation to
language models. In this paper, we present
a novel framework that integrates a domain-
specific adapted Detectron2 model into prede-
fined models via a trainable projection layer,
enabling precise crossmodal adaptation for spe-
cialised domains. Our approach extends De-
tectron2’s recognition capabilities to new cate-
gories by fine-tuning on multi-domain datasets,
while a lightweight linear projection layer maps
region-based visual features to the model’s em-
bedding space without completely retraining
the model. We evaluated the framework for
domain-specific image captioning. The pre-
sented approach provides a scalable design for
combining domain-specific visual recognition
with language inference, with applications in
domains that require fine-grained multimodal
understanding. The results show rapid model
convergence and adaptation to specialized do-
mains. The system achieves competitive BLEU
scores on caption generation, though slightly
below Gemma 3 baseline.

1 Introduction

Despite remarkable advances in computer vision
and natural language processing, most modern
models are still largely unimodal and are charac-
terised by either visual understanding (e.g. object
recognition) or language understanding (e.g. text
generation), but not both. In real-world applica-
tions - such as image captioning, visual question
answering and multimodal retrieval - there is a
growing need for models that can interpret both
images and text. Existing multimodal approaches
often rely on generic visual features extracted from
object detectors trained on standard datasets such

as COCO (Lin et al., 2014), which limits their ap-
plicability to specialised domains where object cat-
egories and visual semantics differ significantly.

Furthermore, it is a major challenge to match the
high-dimensional, region-based features generated
by advanced object detectors such as Detectron2
with the sequential, token-based representations
used by language models. Naive concatenation or
superficial fusion of these features often leads to
suboptimal performance due to mismatching fea-
ture spaces and insufficient cross-modal interaction.
This motivates the goals of our work - to propose a
robust and flexible system that adapts object recog-
nition to new domains with user-defined categories,
effectively bridges the gap between visual and lin-
guistic representations using a trainable projection
layer, and enables seamless end-to-end learning for
a wide range of multimodal tasks.

This study tackles these issues by introducing a
scalable system that combines a domain-specific
Detectron2 model with BERT, linked through a
trainable projection layer, showcasing its perfor-
mance on specialized multi-domain datasets. The
fine-tuning approach for Detectron2, as outlined
in a previous authors’ work, is integrated with the
creation and utilization of the Multilingual Image
Corpus (MIC21). MIC21 expands the conventional
80 COCO categories into an extensive ontology
featuring over 700 classes, categorized into 130
thematic subdomains including Sport, Transport,
Arts, and Security. The dataset comprises more
than 21,000 images and 200,000 annotations. An-
notation involved a hybrid process of automated
segmentation and classification followed by thor-
ough manual refinement. Images were collected
from diverse public sources and annotated based
on a custom ontology, which is linked to WordNet
and translated into 25 languages, providing rich
semantic detail and multilingual support. While
the text-generation model developed in the paper
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is English-only the design could be extended for
multilingual support.

The primary contribution of this paper is the in-
troduction of a scalable and modular multimodal
framework that tightly integrates a domain-adapted
Detectron2 object detection model with a BERT-
based language model through a learnable projec-
tion layer, enabling precise cross-modal adaptation
for specialized domains. The system is designed
to map high-dimensional, region-based visual fea-
tures into the linguistic embedding space efficiently,
allowing for seamless end-to-end learning without
retraining large pre-trained components. This ar-
chitecture is evaluated on domain-specific image
captioning tasks.

The organisation of the paper is as follows. The
Section 2 reviews recent advances in multimodal
learning. Section 3 overview the dataset creation,
annotation workflows, and the fine-tuning of De-
tectron2 models. Section 4 is devoted to the model
architecture. Sections 5 and 6 present experimental
results, discussion and concluding remarks.

2 Related Work

Recent advances in the field of multimodal learn-
ing have focussed on the combination of computer
vision and natural language processing.

CLIP (Contrastive Language-Image Pre-
training)' is a multimodal Al framework developed
by OpenAl that learns to combine images and
natural language through contrastive learning. The
CLIP approach trains two models in a contrastive
way (Radford et al., 2021). The text encoder
processes an input sentence and transforms it into
a fixed-dimensional vector that encapsulates its
semantic meaning. Conversely, the image encoder
takes an input picture and similarly produces
a corresponding vector that captures its visual
content.

The core idea of CLIP is to train two separate
encoders — an image encoder (often a vision trans-
former or CNN) for images and a transformer-
based language model for text — on a huge dataset
of image-text pairs from the Internet. Each en-
coder transforms its input (an image or a text
description) into a high-dimensional vector in a
shared embedding space. During training, CLIP
uses a contrastive loss: it encourages the embed-
dings of matching pairs (image, text) to be close
to each other, while it pushes the embeddings of

'https://openai.com/index/clip/

non-matching pairs apart. This procedure allows
the model to learn rich, general visual and se-
mantic concepts directly from natural language su-
pervision instead of relying on manually labelled
datasets.

WeblmageText, a dataset of 400 pairs of images
and their captions from the Internet, was used to
train the OpenAl CLIP models. The total word
count of this dataset is comparable to that of the
WebText dataset, which contains about 40 terabytes
of text data and was used to train GPT-2 (Radford
et al., 2021). Image-text pairs are usually loosely
correlated, as a caption can match multiple images
in addition to the ground truth (Cheng et al., 2021).
This is also reflected in the discriminative ability or
transferring performance of the visual encoder pre-
trained with the contrastive objective (Yang et al.,
2022).

On the other hand, there are visual models for
self-supervised learning (SSL) that have been pre-
trained with the non-contrastive objective (Caron
et al.,, 2021). Beyond the contrastive paradigm,
some visual self-supervised learning (SSL) models
succeed in mitigating dependency on negative sam-
ples (Schiappa et al., 2023). With various refine-
ments to avoid collapsing solutions, these works
can optimise the affinity of the augmented rep-
resentations alone and are categorised as a non-
contrastive framework. For example, to avoid
model collapse, asymmetric architectures (Chen
and He, 2021), dimensional decorrelation (Bardes
et al., 2022), and clustering (Assran et al., 2022;
Schiappa et al., 2023) are used.

In summary, let state clearly state what is
existing and what is new in the proposed ap-
proach. Existing datasets and models are: Detec-
tron2 and Yolact Models; BERT Language Model;
COCO Image Dataset. The novel contributions
are: MIC21 Multilingual Dataset; Fine-Tuned De-
tectron2 Model per Domain; MIC21Summarizer
Model Architecture; Training Strategy.

3 Dataset Preparation

The fine-tuning process begins with the use of
pre-trained models such as Yolact and Detectron2,
which are first trained on the COCO dataset. These
models are used to generate preliminary object
boundaries and class labels for the MIC21 images.
The automatically generated annotations are then
imported into the COCO annotator tool, where hu-
man annotators correct the segmentation masks and
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Figure 1: Workflow for dataset creation and annotation
in MIC21.

re-label objects according to the MIC21 ontology.
This process is further optimised by custom scripts
that automate dataset management tasks, such as
relabelling, merging and exporting annotated data
(Figure 1).

Once the annotated dataset is prepared, the De-
tectron2 framework is used for model training. The
architecture typically consists of a ResNet-based
backbone with a Feature Pyramid Network (FPN),
a Region Proposal Network (RPN), and an ROI
head for classification and mask prediction. Dur-
ing fine-tuning, the backbone and RPN layers are
often frozen to retain the general visual features
learned from COCO, while the ROI head is re-
trained to adapt to the new, domain-specific classes
of MIC21.

The models are assessed using COCO-style met-
rics, including precision, recall, and average preci-
sion (AP) across a range of intersection-over-union
(IoU) thresholds. The FiftyOne framework is used
for visualization and comparison of model predic-
tions with ground truth annotations (Figure 2).

4 Model Architecture

The developed model, MIC21Summarizer, is an ad-
vanced multimodal neural network architecture de-
signed to generate textual descriptions from images
by integrating state-of-the-art computer vision and
natural language processing components (Figure
3). The architecture begins with an image feature
extraction backbone based on Detectron2’s Mask
R-CNN with an X-101-32x8d-FPN configuration.
This model is pre-trained on the COCO dataset for
instance segmentation. The image is preprocessed
and passed through the backbone, and features are
extracted from the *p6’ feature map.

Let I € R7XW>3 be the input image. The
Detectron2 backbone extracts a feature tensor

x; c RCXHFXWF7 (1)

where in our model C' = 256, Hr = 16 and Wr =
16. For this purpose a 16 x 16 pooling layer is
applied over Detectron2 ’p6’ features which are
with variable size dependent on image size. The
feature tensor F' is reshaped into a matrix

xp € ROEX(HFWE) )

The feature matrix is normalized and projected
to the embedding dimension d (here d = 1024 for
bert-cased-large)

v = Wderop(FnO'I‘m(xf)) + bp )

where W, € R™¢, b, € R? and v € R?%6%<,

For the language component, the model lever-
ages the BERT architecture. It initializes a BERT
tokenizer and the corresponding embedding layer
from the "bert-large-cased" model. For a token se-
quence t = (t1,tg,...,tr), the BERT embedding
layer produces

62(61,82,...,6T) ERTXd 4

where e; is the embedding of token ¢;. The input to
the decoder is the concatenation of projected visual
tokens and text embeddings

20 = (U, 6) c R(256+T)><d (5)

The core of the sequence generation is a stack
of three Transformer Decoder layers, each with
eight attention heads and a model dimension of
d = 1024. The decoder consists of L layers (here
L=3), each applying multi-head self-attention

QK™

a; = fsmaz <\/&+M)V (6)
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Figure 2: Example of ground-truth annotation and annotation results using Detectron2 and YOLACT

where queries (), keys K and values V are all
linear tunable projections of z;_;, and M €
R(256+T)x(256+T) jg causal mask defined with

O256%T ) @

0256256
M =
( Urxr

07256

where U is upper triangular matrix with entries

U 0,
ij =
9. _m7

The decoder operates in an autoregressive manner:
it starts with an initial (empty) token embedding
and, at each step, generates the next token em-
bedding conditioned on the previously generated
sequence and the visual context. This process is
repeated for up to 128 steps, allowing the model
to generate a sequence of tokens that describe the
input image.

The output from the decoder (only last T posi-
tions) is projected onto the vocabulary

=

i<j ®)

y =Wz 0567 € RTX™ ©)

where W, are the frozen BERT word embeddings,
and m is the vocabulary size. The word embedding
weights are reused in the output projection layer,
ensuring that the output tokens generated by the
decoder are aligned with the BERT vocabulary and
tokenization. Token predictions are made via an
argmax over the logits.
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The aim of the model is to tightly couple high-
level visual understanding with transformer archi-
tecture, enabling powerful language modeling ca-
pabilities. The design emphasizes modularity and
efficiency by freezing large pre-trained components
and focusing training on the crucial projection and
decoding layers.

4.1 Training Strategy

Both the image backbone and the BERT embedding
layers are frozen during training, focusing learning
capacity on the projection and decoding compo-
nents. To perform cross-entropy training with one
token ahead prediction in autoregressive models
we optimize the model to predict the next token
in a sequence given the previous tokens, known as
teacher forcing.
Given a sequence of tokens
(10)

w = (wy,ws,...,wr)

where w; € 1...m is the index of a token in the
vocabulary. The model output is generating a con-
ditional distribution over sequences of tokens for a
given input image I defined autoregressively as

T-1

p(wa Ia 9) == H p(wt+1|w1:t7 I7 0)
t=1

an

where 6 is the vector of tunable parameters.
The training goal is to maximize the log-
likelihood of the image-sequence pairs from the
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Figure 3: MIC21Summarizer Architecture Overview
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training data set. This translates to minimizing the
negative log-likelihood

L= —logp(w,I,0) =
T—-1

— Z log p(wegi|wr, ..., w, 1,0) (12)
t=1

For each position ¢t = 1...7, let 2z € R™ be
the model’s output (so called logits) for the next
generated token over vocabulary of size m. After
application of softmax operation to convert logits
to probabilities we can get an explicit expression
for p(w, 1,0), i.e

ezz,i

p(wigr = i|wi, ..., wy) = W (13)
where z; ; is element at position j from the vector
Zt.

Two training modes are possible in this frame-
work. One is autoregressive generation loss where
past sequence w1 is obtained from previously gen-
erated tokens, i.e.

wy ~ plwi|wig—1,1,0) (14)

In this case, each £; depends on all previous pre-
dictions through the recursive generation. The gra-
dient calculation 9L /06 will require backpropaga-
tion through ¢ unrolled steps, potentially leading to
vanishing or exploding gradients, along with high
memory usage with complexity O(t).

Alternatively in feacher forcing loss the past se-
quence wi.; uses ground truth tokens before step
t. This allows for parallel computation of the loss
across all positions (O(1) complexity) and there-
fore a single forward/backward pass through the
model, which stabilize the gradients.

In the proposed model architecture only trainable
parameters are projection layer weights 1/}, and bi-
ases by, along with transformer decoder parameters
Og4ec- The projection layer parameters contribute to
the loss gradient as

<8£t >8yt Ov (15)

8W 0zt ov OW),

For each decoder layer [, the decoder layer gradient
is

oL oL [ onl ohl. ont
0. _tz_;ahg <ael +kzahgaeg
= >t ec

dec dec
(16)
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Figure 4: Loss function during initial training of the
model

5 Results

The Figure 4 illustrates the evolution of the loss
function over 250 training epochs during the initial
phase of model training over limited subset. At the
outset, the loss is quite high—above 12 is typical
for randomly initialized or newly adapted models
that have not yet learned meaningful representa-
tions from the data. In the first 20 epochs, there
is a rapid and substantial decrease in loss, indicat-
ing that the model is quickly capturing the most
salient patterns and features present in the training
set. This steep initial decline is characteristic of ef-
fective learning and suggests that the optimizer and
learning rate are well-chosen for the early phase.

Beyond the first 20-30 epochs, the loss curve
begins to flatten, with smaller oscillations and a
gradual downward trend until around epoch 100.
After this point, the loss stabilizes at a low value
and remains nearly constant for the remainder of
training. This plateau suggests that the model has
converged and further training does not yield sig-
nificant improvements in the loss. The absence
of upward spikes or instability in the latter part of
the curve also indicates that the training process is
stable and not suffering from overfitting or catas-
trophic forgetting. Overall, the figure demonstrates
a successful training regime where the model effi-
ciently learns from the data and reaches a steady
state of performance.

The Figure 5 presents the loss curves for sev-
eral sports categories—cricket, baseball, basketball,
volleyball, boxing, and beach volleyball—during
the fine-tuning phase of a model. Each curve rep-
resents the loss value for a specific category as
training progresses over 12 epochs. Across all cat-
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baseball
—— basketball
—— volleyball
0.84 —— boxing
—— beach_volleyball

0.6 4

Loss

0.44

0.2 4

M
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Figure 5: Loss function during fine tuning of the model
by category

egories, there is a clear trend of rapid loss reduc-
tion within the first few epochs, indicating that the
model quickly adapts to the new data and learns
category-specific features efficiently. Categories
like beach volleyball and boxing start with higher
initial losses but show significant improvement
early on, while others such as cricket and baseball
begin with lower losses and stabilize quickly.

After the initial sharp decline, the loss curves for
most categories plateau, with only minor fluctua-
tions, suggesting that the model reaches a stable
state and further training yields diminishing returns.
The variability in final loss values among categories
may reflect differences in data complexity, sample
size, or intra-class variability. For example, bas-
ketball and volleyball maintain higher loss values
compared to cricket and baseball, potentially indi-
cating greater difficulty in distinguishing features
or less training data for those categories. Overall,
the figure demonstrates effective fine-tuning, with
the model achieving rapid convergence and stable
performance across diverse sports categories.

Table 1 presents the BLEU scores (from 1-gram
to 4-gram) for generation performance on two mod-
els, MIC21 and Gemma 3. Across all BLEU
metrics, Gemma 3 outperforms MIC21, with par-
ticularly notable margins at higher n-gram lev-
els: BLEU-1 is 0.79 for Gemma 3 versus 0.71
for MIC21, and BLEU-4 is 0.43 compared to
0.39. This consistent advantage suggests that
Gemma 3 produces text that more closely matches
the reference outputs, both in terms of individual
word choice and longer phrase structure, indicat-
ing greater fluency and accuracy in its generated
sequences.
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Test MIC21 Gemma3
BLEU-1 0.71 0.79
BLEU-2 0.53 0.64
BLEU-3 047 0.53
BLEU-4 0.39 043

Table 1: Generation Performance Metrics

6 Conclusion

The paper presents a scalable framework for
domain-adapted multimodal learning, addressing
the critical challenge of aligning specialized vi-
sual semantics with language generation. By inte-
grating a domain-adapted Detectron2 model with
BERT via a trainable projection layer, the architec-
ture enables precise cross-modal adaptation while
maintaining computational efficiency. The system
leverages the MIC21 corpus—a richly annotated
dataset extending COCO categories to over 700
classes across 130 thematic subdomains—to bridge
the gap between generic visual recognition and
domain-specific linguistic understanding. Key in-
novations include freezing pre-trained components
and focusing training on lightweight projection and
transformer decoder layers, achieving stable con-
vergence and efficient resource utilization.

Experimental results demonstrate the frame-
work’s effectiveness. Loss curves reveal rapid ini-
tial learning followed by stable convergence, indi-
cating robust feature alignment. Fine-tuning per-
formance varies across domains, with sports cat-
egories like cricket and baseball achieving lower
final losses compared to basketball and volleyball,
reflecting differences in intra-class variability and
annotation quality. In generation tasks, the model
achieves competitive BLEU scores, though it lags
behind larger models like Gemma 3, highlighting a
trade-off between specialization and generalizabil-
ity. These results validate the framework’s ability
to generate context-aware descriptions while pre-
serving domain-specific visual semantics.

A key extension to this study will be a compar-
ison to state of the art models for generation and
tagging tasks with an aim to highlight the domain-
specificity or trained models.

Future work could extend this approach by ex-
panding the MIC21 ontology to include dynamic
interactions between objects and integrating con-
trastive or adversarial alignment strategies to fur-
ther refine cross-modal representations. Addi-
tionally, exploring efficient attention mechanisms

or multilingual extensions of the projection layer
could enhance scalability. This work lays a foun-
dation for applications requiring fine-grained mul-
timodal understanding, from medical imaging to
industrial inspection, where domain-specific visual-
language alignment is critical.
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