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Abstract

Active learning (AL) reduces annotation costs
by selecting the most informative samples for
labeling. However, traditional AL methods
rely on a single heuristic, limiting data explo-
ration and annotation efficiency. This paper
introduces two ensemble-based AL methods:
Ensemble Union, which combines multiple
heuristics to improve dataset exploration, and
Ensemble Intersection, which applies major-
ity voting for robust sample selection. We eval-
uate these approaches on the United Nations
Parallel Corpus in both English and Spanish
using domain-specific models such as ConfliB-
ERT. Our results show that ensemble-based
AL strategies outperform individual heuristics,
achieving classification performance compara-
ble to full dataset training while using signif-
icantly fewer labeled examples. Although fo-
cused on political texts, the proposed methods
are applicable to broader NLP annotation tasks
where labeling costs are high.

1 Introduction

Efficient and high-quality annotation of political
texts is essential for advancing natural language
processing (NLP) applications in areas such as
conflict analysis, electoral preferences, political
speech, election prediction, misinformation and
bias detection, and policy research (Linegar et al.,
2023). The manual labeling of political documents
requires expert domain knowledge and remains
time-consuming, costly, and often lacks replicabil-
ity and explainability (Baumgartner et al., 1998).
While some researchers advocate the creation of
synthetic data (Halterman, 2023) and the use of
generative artificial intelligence for NLP tasks (Hes-
eltine and Clemm von Hohenberg, 2024) as cost-
effective ways to leverage human annotations, such
approaches raise questions about data validity and
ethics that are highly sensitive and consequential
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for political science research. Fortunately, Ac-
tive Learning is a promising solution to select the
most informative samples for labeling, mitigating
annotation costs (Settles, 2009). Despite its suc-
cess across various domains, traditional AL meth-
ods typically rely on a single acquisition heuristic,
which can limit their effectiveness in exploring
complex datasets such as political texts.

While active learning demonstrates strong per-
formance in reducing labeling efforts (Rahman
et al., 2024; Abdeljaber et al., 2025), its reliance on
a single acquisition heuristic can lead to suboptimal
exploration of the data space. Different heuristics
prioritize distinct aspects of uncertainty, representa-
tiveness, or diversity. This indicates that no single
method is universally optimal across datasets or
tasks (Beluch et al., 2018; Gal et al., 2017). In
politically oriented corpora, where domain-specific
terms and linguistic expressions can vary widely
depending on the context, ideology, and regional
factors, this limitation is even more pronounced.
There then is a growing need for active learning
methods capable of leveraging few examples of
human judgment to better balance exploration to
improve annotation efficiency and model perfor-
mance in political text classification.

To address these limitations, two novel
ensemble-based active learning methods designed
to combine the strengths of multiple acquisition
heuristics are introduced. The first method, Ensem-
ble Union, aggregates the top-ranked samples from
several individual strategies to enhance dataset ex-
ploration within each annotation round. The second
method, Ensemble Intersection, applies a majority
voting scheme to identify the most consistently in-
formative samples across different acquisition func-
tions. Using complementary perspectives of multi-
ple heuristics, these ensemble approaches improve
annotation efficiency and model performance. The
proposed approaches offer researchers increased
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leverage of a few human annotations over single ac-
quisition heuristic, which is advantageous in com-
plex domains like political text classification.

The paper is organized as follows. Section 2
reviews related work on active learning, ensemble
methods, and political text classification. Section 3
describes the datasets used in our experiments. Sec-
tion 4 details the active learning approaches, includ-
ing our proposed ensemble methods. Section 5 out-
lines the experimental setup, and Section 6 shows
the results and analysis. Finally, Section 7 con-
cludes the paper with directions for future work.

2 Related Work

Active learning (AL) has been extensively studied
as a strategy to reduce annotation costs by selecting
the most informative examples for labeling. Tra-
ditional AL approaches often rely on uncertainty-
based acquisition functions. AL methods such as
least confidence sampling, margin sampling, and
entropy-based selection are used to prioritize sam-
ples where the model exhibits the highest uncer-
tainty (Lewis and Gale, 1994; Settles, 2009). These
methods have demonstrated success across various
domains, including text classification, image recog-
nition, and medical data analysis. However, their
reliance on a single heuristic limits their ability to
explore the broader structure of the data distribu-
tion, motivating the investigation of alternative or
complementary strategies (Shelmanov et al., 2021).

Recent AL research has explored combining
multiple acquisition strategies to overcome the lim-
itations of relying on a single heuristic. Ensem-
ble approaches in active learning aim to leverage
the complementary strengths of different selection
methods to improve data exploration and model ro-
bustness (Beluch et al., 2018; Siddhant and Lipton,
2020). For instance, uncertainty-based techniques
can be combined with diversity sampling to ensure
that the selected instances are both informative and
representative of the overall data distribution (Liu
et al., 2019a). Such ensemble methods have shown
promise in areas like image classification and nat-
ural language processing, but their application to
political text classification remains underexplored.

Political text classification presents unique chal-
lenges compared to traditional text domains. Data
classification or extraction tasks in political doc-
uments often exhibit nuanced language, implicit
biases, and context-dependent meanings that can
vary significantly across regions, cultures, and ideo-
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logical perspectives (Vosoughi et al., 2018; Brandt
and Sianan, 2025; Hamborg et al., 2019). These
complexities make annotation particularly difficult
and expensive, as domain expertise is frequently
required to correctly interpret subtle variations in
language and intent. Recent work has explored
political bias detection, conflict event extraction,
and framing analysis, but the scarcity of annotated
datasets and the high variability within political
texts continue to pose major obstacles for develop-
ing robust NLP models. Synthetic data approaches
have recently been proposed (Halterman, 2023),
but this raises issues about the verisimilitude of the
annotations to the actual texts of interest.

Given the challenges of political text classifi-
cation and the scarcity of annotated data, effec-
tive active learning strategies are essential to im-
prove model performance at lower annotation costs.
While ensemble strategies have been explored in ac-
tive learning, prior work focused predominantly on
combining model outputs or uncertainty scores in
domains such as image classification and general
natural language processing tasks (Beluch et al.,
2018; Siddhant and Lipton, 2020). Our approach
ensembles acquisition functions directly to enhance
the sample selection process itself, improving an-
notation efficiency without relying on model-level
disagreement. The effectiveness of this method is
shown in the domain of political text classification,
an area where active learning remains underutilized
despite the high cost and complexity of annotation.

3 Datasets

Our experiments use the United Nations Parallel
Corpus (UNPC) curated by Osorio et al. (2024,
2025). This database comes from a collection of
86,307 official United Nations Security Council
resolutions issued between 1990 and 2014 and
comprising more than 11 million sentences fully
aligned in the six official UN languages created by
native speakers (Ziemski et al., 2016). The curated
data are a random sample of 11,160 aligned sen-
tences in both English (EN) and Spanish (SP) on
key topics such as human rights, protection of civil-
ians, and terrorism. The corpus provides a highly
relevant resource for political conflict and violence,
making it suitable for evaluating active learning
strategies in domain-specific natural language pro-
cessing tasks. The data annotation process is based
on a rigorous annotation protocol involving fluently
bilingual human coders to classify the sentences



into five classes: non-relevant, verbal cooperation,
verbal conflict, material cooperation, and material
conflict based on the CAMEO ontology (Gerner
et al., 2002). Table 1 presents a set of annotation
examples in both English and Spanish according to

the different categories considered in the study.

Cooperation Conflict
The delegates agree Students accuse
to proceed the government
Verbal Los delegados Estudiantes acusan
acuerdan proseguir al gobierno
The UN delivered Insurgents attacked
Material humanitarian aid th¢_3 market
La ONU entrego Los insurgentes
ayuda humanitaria | atacaron el mercado

Not relevant
All the children went to school
Todos los nifios fueron a la escuela

Table 1: Annotation Example

The dataset was partitioned into training and test
sets, preserving the class distribution across the
labels. Stratified sampling ensures proportional
representation of each class across subsets so the
resulting distributions are nearly identical, main-
taining balance and enabling reliable model eval-
uation. Despite the stratification, the overall class
distribution remains imbalanced, with “Not Rele-
vant” (class 0) comprising over 53% of the data.

The English and Spanish UNPC sentences were
each split evenly (50/50) into training and testing
sets, with 5,581 sentences each. Choosing a 50/50
approach rather than a more conventional training-
heavy split makes the classification task more chal-
lenging. For active learning experiments, the initial
labeled set consisted of 1% of the training data,
with 10 additional samples labeled per round. We
conducted 110 active learning rounds across all ex-
periments, including those involving the Ensemble
Intersection approach. In contrast, the Ensemble
Union method required only 22 rounds to complete,
resulting in approximately 20.6% of the training
data being labeled by the end of the process.

4 Methods

This section describes the active learning frame-
work adopted in our experiments, the acquisition
functions evaluated, the proposed ensemble-based
selection methods, and the model training configu-
rations used throughout the study.

Our active learning framework follows a pool-
based sampling strategy. Initially, a small subset
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of labeled examples is used to train a model, while
the remaining instances form an unlabeled pool. In
each round of active learning, the model predicts
over the unlabeled pool, and a subset of samples is
selected based on an acquisition function. These
selected samples are then labeled and added to the
training set, and the model is retrained from scratch
with the expanded labeled set. This process repeats
iteratively until a predefined annotation budget is
exhausted. By carefully selecting the most informa-
tive examples in each round, active learning aims to
achieve high model performance while minimizing
the total number of labeled instances required.

4.1 Acquisition Functions

In active learning, acquisition functions determine
which unlabeled samples should be used for annota-
tion in each round. These functions aim to identify
the instances that are expected to maximize model
improvement if labeled. There are various acqui-
sition strategies focusing on different notions of
informativeness, such as uncertainty, margin be-
tween predictions, or diversity within the dataset.
In this work, we evaluate several widely-used ac-
quisition functions described below.

Top Confidence Sampling: Top Confidence
Sampling selects instances where the model ex-
hibits the highest predicted confidence for a single
class label. The intuition behind this strategy is
that examples with very confident predictions are
likely to be redundant or already well-understood
by the model, whereas those with lower confidence
could be more informative. In practice, active learn-
ing frameworks invert this logic and prioritize in-
stances with the lowest confidence scores for label-
ing (Lewis and Gale, 1994). This method has been
widely used as a simple yet effective baseline for
uncertainty-based sampling.

Maximum Entropy Sampling: Maximum En-
tropy Sampling selects instances for which the
model’s predicted class distribution has the highest
entropy. In this approach, entropy measures the
uncertainty associated with the prediction: higher
entropy indicates that the model is less confident
and more uncertain about the correct label. By pri-
oritizing high-entropy examples, the active learn-
ing process focuses on samples that are expected
to provide the greatest informational gain when
labeled. This method has been widely adopted in
active learning research due to its simplicity and
effectiveness (Settles, 2009).



Margin Sampling: selects instances where the
model’s top two class probability scores are clos-
est together. The margin between the highest and
second-highest predicted probabilities serves as an
uncertainty measure: a smaller margin indicates
greater uncertainty, suggesting that the model is
unsure which label to assign. By targeting exam-
ples with the smallest margins, this strategy aims
to find samples near decision boundaries, where ad-
ditional labeled data could most effectively refine
the model. Margin Sampling has been widely stud-
ied as a competitive uncertainty-based selection
method in active learning (Scheffer et al., 2001).

Monte Carlo Dropout Sampling: estimates
model uncertainty by applying dropout at inference
time and performing multiple stochastic forward
passes through the model. The variance in the
predicted probabilities across these passes serves
as a measure of uncertainty: higher variance in-
dicates greater uncertainty about the correct label.
By selecting instances with the highest predictive
variance, this method aims to identify examples
that the model finds most ambiguous. Monte Carlo
Dropout Sampling has been widely adopted for
active learning with deep neural networks, particu-
larly for leveraging Bayesian uncertainty estimates
(Gal and Ghahramani, 2016).

Core-set Sampling: selects a subset of unla-
beled instances that best represent the overall data
distribution. It formulates active learning as a cov-
erage problem, aiming to minimize the distance
between the labeled and unlabeled data points in
feature space. By prioritizing diverse and repre-
sentative samples, Core-set Sampling helps ensure
that the model generalizes better across the dataset.
This method has been particularly influential for
active learning with deep neural networks, where
embedding-based diversity becomes crucial (Sener
and Savarese, 2018).

4.2 Proposed Ensemble Methods

While individual acquisition functions capture dif-
ferent notions of uncertainty or diversity, relying
on a single active learning strategy may still limit
data exploration during learning process. To ad-
dress this, we propose two ensemble-based meth-
ods that combine the outputs of multiple acquisition
functions. The first method, Ensemble Union, ag-
gregates top-ranked samples from different heuris-
tics to enhance exploration within each annotation
round. The second method, Ensemble Intersection,
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selects samples based on majority voting across
heuristics, prioritizing instances consistently iden-
tified as informative. These ensemble approaches
aim to balance exploration and exploitation more
effectively, leading to improved annotation effi-
ciency and model performance.
Ensemble Union. This method combines the top-
ranked samples selected by multiple acquisition
functions in each active learning round. Each acqui-
sition function independently ranks the unlabeled
instances by its selection criterion. From each ac-
quisition function, the top m samples are selected,
resulting in a candidate pool containing up to n X m
samples, where n is the number of acquisition func-
tions utilized. Duplicate instances are selected only
once if chosen by multiple strategies.

Each sample is assigned a positional score based
on its rank within its respective acquisition list. For
a sample ¢ ranked in list L, the positional score is:

scorer, (i) = N — ranky ()

where N is the number of selected samples per
strategy (typically NV = 50). To aggregate scores
across strategies, the final score for each unique
sample is defined as the maximum positional score
it achieves across all acquisition functions:
FinalScore(i) = rilgéc(scoreL(z)),
where S is the set of all acquisition strategies. From
all unique samples, the top K samples based final
scores are selected for annotation in each round.
By selecting multiple samples from different
heuristics and aggregating them, Ensemble Union
promotes broader exploration of the dataset, lead-
ing to faster coverage of informative regions. Since
more samples are labeled per round, the total num-
ber of active learning rounds r is reduced propor-
tionally according to r = % where ¢ is the number
of rounds a single acquisition function would re-
quire to reach the target labeling budget. And n
is the number of acquisition functions. Figure 1
illustrates the sample aggregation and duplicate re-
moval process used in Ensemble Union. Here, the
sample with index 6 from Strategy A, index 3 from
Strategy B, and indexes 1, 10, and 6 from Strategy
C are excluded due to duplication, as they were
already selected by other acquisition functions.
An additional advantage of the proposed ap-
proach is improved efficiency in execution time.
Achieving the target budget of 54 data points us-
ing a single active learning strategy would require



6 rounds, assuming a selection of 9 samples per
round. In contrast, the Ensemble Union method
reaches the same target in only 3 rounds, with each
round acquiring 18 samples. This reduction in the
number of iterations highlights the efficiency gains
offered by the ensemble approach.

In our approach, each strategy contributes a
full batch of instances per round. This ensures
sufficient coverage, even in cases where multiple
strategies select the same samples. The Ensemble
Union method also maintains balanced representa-
tion across acquisition functions, with data points
evenly distributed when selections differ.
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Figure 1: Ensemble Union selection and removal.

Ensemble Intersection. This method aggre-
gates selections from multiple acquisition functions
based on majority voting and positional scoring in
these steps:

1. Training: Fine-tune the model using the cur-
rent labeled dataset.

. Querying: Each acquisition function inde-
pendently selects its top k samples from
the unlabeled pool, producing ranked lists
Li,Lo, ..., Ly,.

3. Aggregation and Scoring: The selected sam-
ples are aggregated and scored based on two
components:

* Frequency Score f(z) counts how
many acquisition functions selected a
sample z:

f@) =Y 1{r e L}
=1

* Position Score p(x) assigns higher
weights to samples appearing earlier in
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ranked lists:

n k—1

plz) =Y Ua = Lifj]} x (k- j)

i=1 j=0

Samples are ranked first by descending fre-
quency score f(x); ties are broken by de-
scending position score p(x). The top b sam-
ples according to this combined ranking are
selected for labeling.

4. Updating: The newly selected samples are
added to the labeled set and removed from the

unlabeled pool.

This aggregation approach prioritizes samples
that are consistently deemed informative across
multiple acquisition functions while also reward-
ing those ranked highly within individual methods.
Figure 2 illustrates the scoring and selection pro-
cess for Ensemble Intersection. In this example,
the selected data points are prioritized from left
to right, top to bottom, based on a combination
of their frequency across strategies and their rel-
ative position within each ranking. Records with
indices 4, 1, 10, and 20 appear in two or more strate-
gies, indicating higher consensus and, by extension,
stronger indicative value. As a result, these records
are prioritized during selection. This approach is il-
lustrated in Strategy C, where record index 18—de-
spite being ranked earlier than records such as 4
and 20—was not selected, highlighting that con-
sensus among strategies can outweigh individual
ranking in a single list. The weight table is shown
in the figure, along with sample weight calculations
for selected records. For instance, the weight of the
record with index 4 is computed by summing its
contributions across all its occurrences: it receives
a score of 6 from Strategy A, 6 from Strategy B,
and 5 from Strategy C, resulting in a total weight
of 17. As a result, records that are both commonly
selected and highly ranked across strategies are pri-
oritized. Unlike the ensemble union method, the
ensemble intersection requires the same number of
iterations as an individual active learning strategy
because it does not increase the number of selected
samples per round. Instead, it prioritizes and selects
only those data points that are jointly recognized
by multiple strategies and rank highly within each.
As illustrated in the figure, to reach a target of 54
samples, the method must run for 9 rounds, with
each round contributing 6 prioritized records. This



ensures that the selected samples are agreed upon
by multiple strategies and reflect higher consensus
importance across them.
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Figure 2: Ensemble Intersection scoring and selection.

4.3 Model Training Setup

To evaluate the generalizability of our active learn-
ing methods, we fine-tune a diverse set of pre-
trained transformer models. For the English
UNPC dataset, we use BERT-base-uncased (De-
vlin et al., 2018), DistilBERT-base-uncased (Sanh
etal., 2019), and RoBERTa-base (Liu et al., 2019b),
alongside ConfliBERT (Hu et al., 2022) for domain-
specific political text. We include two categories of
ConfliBERT models: ConfliBERT-Cont., which are
initialized from BERT and further pre-trained on
conflict-related texts, and ConfliBERT-Scr., which
are trained from scratch using the same domain
corpus. For Spanish datasets (UNPC-Spanish),
we fine-tune BETO, a Spanish pre-trained BERT
model (Canete et al., 2020).

The selection includes compact models (Distil-
BERT), robust models trained with larger corpora
(RoBERTa), and domain-adapted models (ConfliB-
ERT), ensuring that our ensemble strategies are
tested across varied architectures and pretraining
regimes. This diversity allows us to verify that
the proposed methods improve performance con-
sistently across different model types.

All models are fine-tuned from pre-trained
checkpoints without additional pretraining. Fine-
tuning is performed using the AdamW optimizer
with a learning rate of 1 x 107°%,e=1x10"8, anda
batch size of 32. Models are trained for a maximum
of 10 epochs per annotation round, with early stop-
ping based on validation loss if no improvement
is observed for 3 consecutive epochs. A dropout
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rate of 0.9 is used where applicable to facilitate un-
certainty estimation through Monte Carlo Dropout
Sampling. During each active learning round, the
model is retrained from scratch using the expanded
labeled set. Hyperparameters such as learning rate,
batch size, and training procedure were kept consis-
tent across all acquisition strategies and ensemble
methods to ensure fair comparisons.

5 Experimental Setup

We evaluate all active learning strategies and en-
semble methods under consistent experimental con-
ditions. The initial labeled sets, unlabeled pools,
and train/test splits follow the configurations de-
scribed in Section 3. Active learning proceeds it-
eratively by querying new samples, labeling them,
and retraining the model at each round (Schroder
et al., 2023).

In addition to the active learning methods, we
establish two baselines. First, a Random Sampling
Baseline, where 10 randomly selected unlabeled
samples are added to the labeled set per round with-
out using acquisition heuristics. Second, a Full
Dataset Training baseline, where each model is
trained on the entire available labeled training set
to measure the upper bound of F1 performance.

Standard acquisition functions select 10 new
samples per round, while ensemble methods such
as Ensemble Union and Ensemble Intersection ag-
gregate selections from multiple strategies, labeling
larger batches to accelerate dataset coverage. The
total annotation budget was set to approximately
20% of the training set size for each dataset.

Performance is evaluated every 5 rounds on the
held-out test set, using Fl-score as the primary
evaluation metric. Our methodological approach
runs each experiment across three random seeds,
and reports the averaged results.

6 Results and Analysis

The study evaluates seven active learning strategies,
including five standard acquisition functions and
two proposed ensemble methods on the UNPC data
in both English and Spanish using various BERT-
based models. To establish performance baselines,
we also trained each model on the full dataset and
implemented a random sampling strategy. As re-
ported in Table 2, the evaluation compares the best
F1-scores achieved by each method under compa-
rable annotation sets, providing a comprehensive
assessment of active learning effectiveness.



Benchmark

Active Learning Strategies

Dataset  Model
Full Dataset Random Top Conf. Max Ent. MC Drop. Margin Coreset Ens.  Ens. Union
ConfliBERT Cont. Cased 77.93 73.88 75.33 75.40 74.88 75.47 73.65 7647 76.44
ConfliBERT Cont. Uncased 78.71 71.13 74.96 73.02 73.09 74.20 71.83  74.32 75.29
ConfliBERT Scr. Cased 75.88 72.88 75.46 75.02 74.99 75.61 7397  76.40 76.39
UNPC ConfliBERT Scr. Uncased 78.80 72.99 75.33 75.23 75.20 7543 7450  75.50 76.44
English ~ BERT Cased 78.85 71.65 74.33 73.56 73.32 75.03 7390  75.66 75.55
BERT Uncased 78.91 72.29 74.01 74.20 74.01 74.01 73.56 7499 75.80
RoBERTa-Base 77.23 73.98 76.47 75.71 75.60 74.93 76.40 7592 76.80
DistilBERT-Base Uncased 68.86 60.03 61.42 63.00 64.56 64.61 62.85  63.59 66.94
UNPC BETO Cased 77.24 74.09 75.78 76.22 75.55 75.93 7478  76.25 76.17
Spanish  BETO Uncased 75.46 72.78 75 75.09 75.22 74.35 74.65  74.45 75.27

Note: results in bold font indicate top performing active learning strategy for a given model.

Table 2: Summary of results across datasets, models, and active learning strategies. (Best F1 Scores)

Overall Performance Trends.

Across all datasets and models, the proposed en-
semble methods—Ensemble Union and Ensemble
Intersection—consistently outperform individual
active learning strategies as well as the random
sampling baseline. Notably, Ensemble Union fre-
quently achieves the highest F1-scores. This per-
formance gain stems from aggregating multiple
acquisition heuristics, which allows the ensemble
to capture diverse and complementary aspects of
uncertainty and representativeness. By integrat-
ing these strengths, the ensemble methods enable
more robust, informative, and diverse sample se-
lection, leading to improved model generalization.
As a result, models trained on a fraction of the
data selected through these methods often match
or exceed the performance of models trained on
the full dataset, underscoring the practical value of
ensemble-based active learning in reducing label-
ing costs. These findings suggest that ensembling
offers a simple yet powerful mechanism to boost
active learning effectiveness without introducing
complex modeling overhead.

Model-Level Insights. Model selection is key
for active learning outcomes. Models pre-trained
on domain-specific political text, particularly Con-
fliBERT, consistently outperform general-purpose
models. This performance boost underscores the
advantage of using domain-specific language mod-
els for specialized classification tasks. It seems
that selecting the right combination of active learn-
ing strategy and the appropriate language model
is the key to achieve high levels of performance.
In contrast, DistiIBERT—designed as a compact
and faster alternative to BERT—consistently shows
lower Fl-scores compared to larger transformer
models. DistilBERT’s reduced parameter count
and compressed training objectives, while bene-
ficial for efficiency, appear to trade off represen-
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tational capacity necessary for high-accuracy po-
litical text classification. This suggest that model
capacity and pretraining domain alignment both
critically influence active learning effectiveness.

Language-Level Insights. Results in Table
2 reveal some performance differences between
English and Spanish datasets across models and
active learning strategies. Models fine-tuned on
Spanish texts (BETO) generally achieved slightly
lower F1-scores when compared to models trained
on English datasets. These differences may reflect
variations in the model’s pretraining corpus size,
language modeling resources, or domain-specific
adaptation between English and Spanish. Never-
theless, ensemble-based active learning methods
consistently improved model performance across
both languages, demonstrating the leverage of the
proposed ensemble strategies.

Ensemble Union Efficiency. Beyond improve-
ments in F1 performance, the Ensemble Union
method demonstrated a significant practical advan-
tage: it requires fewer active learning rounds com-
pared to traditional acquisition strategies. Aggre-
gating multiple sampling heuristics and selecting a
larger batch of samples per round, Ensemble Union
accelerated exploration of the unlabeled dataset, re-
ducing the number of iterations needed to reach the
target annotation budget. This efficiency lowers an-
notation overhead and speeds model development
cycles. Even with fewer total rounds, Ensemble
Union achieved performance comparable to or ex-
ceeding that of methods that operated with smaller
batch sizes across more rounds. These findings
show that ensemble-based active learning improves
sample efficiency, leading to both higher perfor-
mance and reduced human labeling effort.

AL Performance and Sample Size. In essence,
active learning strategies aim at minimizing the
amount of human effort, resources, and attention



necessary to achieve high levels of performance.
As Figure 3 shows, all active learning strategies
improve their performance as the size of the an-
notation set increases. In line with the results dis-
cussed above, the Ensemble Intersection and En-
semble Union show the best performance. With the
exception of DistilBERT-that consistently reports
the lowest F1 scores—all other panels in the plot
indicate that the Ensemble strategies proposed in
this study achieve high levels of performance with
about 5% of annotations. Such remarkably high
levels of performance with such a small sample
size represent considerable savings for researchers
in terms of human effort and financial resource.
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Figure 3: Active Learning Performance by Annotation
Percentage in English (EN) and Spanish (SP) texts.
Note: Red and blue lines indicate the best performing active

learning strategies per model.
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7 Conclusion

This paper introduced two ensemble-based active
learning strategies—Ensemble Union and Ensem-
ble Intersection—to improve data exploration and
annotation efficiency in political text classification
tasks. We evaluated these methods across multi-
ple models and two datasets, covering English and
Spanish political texts. Our results demonstrate
that ensemble active learning consistently outper-
forms individual acquisition strategies and random
baselines, achieving performance close to or ex-
ceeding models trained on full datasets while using
significantly fewer labeled examples.

Ensemble Union, in particular, offered practical
advantages by accelerating dataset coverage and re-
ducing the number of active learning rounds needed
to reach target annotation budgets. Ensemble In-
tersection showed robust performance across both
large and small datasets, demonstrating stability
in sample selection even under constrained label-
ing scenarios. The findings suggest that ensemble-
based active learning provides a viable and efficient
framework for annotation-intensive natural lan-
guage processing tasks, particularly in politically-
oriented and multilingual domains.

Future work includes the development of Dy-
namic Active Learning approaches, where rein-
forcement learning agents adaptively select sam-
pling strategies based on observed model and data
characteristics. Additionally, extending evaluation
to cybersecurity and biomedical datasets, and fur-
ther exploring multilingual settings such as Arabic
texts, are promising directions for demonstrating
the generalizability and scalability of active learn-
ing methods across diverse domains.
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