Multi-Agent Reinforcement Learning for Interactive Code Debugging with
Human Feedback and Memory

Anjana Krishnamoorthy, Kartik Ivaturi, and Benyamin Ahmadnia

Department of Computer Science
California State University, Dominguez Hills, Carson, USA
akrishnamoorthyl@campus.csudh.edu, kivaturil@campus.csudh.edu,
bahmadniayebosari@csudh.edu

Abstract

This paper introduces an interactive Python de-
bugging framework that combines multi-agent
reinforcement learning, Natural Language Pro-
cessing (NLP), and long-term memory. Two
Proximal Policy Optimization (PPO) agents
specialize in syntax and logic errors, gener-
ating candidate fixes that developers can ac-
cept, reject, or refine. A BERT-based mod-
ule encodes natural language feedback into
dense embeddings and quality scores, which
shape reward signals for Reinforcement Learn-
ing from Human Feedback (RLHF). To support
personalization, the system uses dual FAISS
indices to retrieve past fixes based on code-
error pairs and developer explanations. Evalu-
ated on a synthetic dataset of 200 Python pro-
grams, our approach achieves an 88% syntax-
fix rate and 45% logic-fix rate within five sug-
gestions—outperforming one-shot Large Lan-
guage Model (LLM) baselines. In addition, the
system improves the quality of the explanation,
as measured by BLEU, ROUGE, and Code-
BLEU. By integrating multi-agent specializa-
tion, linguistic feedback, and memory-driven
retrieval, our framework delivers a more effi-
cient, adaptive, and developer-aligned debug-
ging experience.

1 Introduction

Software developers spend considerable time and
mental resources on debugging during software de-
velopment. The Python code generated by Large
Language Models (LLMs) like Codex and Alpha-
Code frequently includes syntax or logic mistakes
which need manual correction. Existing neural
repair systems, such as DeepFix and DrRepair, to-
gether with fine-tuned LLMs such as CodeTS5, typi-
cally operate in a one-shot manner. These systems
lack interactive feedback, developer personaliza-
tion, and the ability to retain knowledge across
sessions.

595

To address these limitations, we propose an in-
teractive debugging assistant that unifies Reinforce-
ment Learning from Human Feedback (RLHF),
multi-agent specialization, and memory-based per-
sonalization. The system employs two Proximal
Policy Optimization (PPO) agents: 1) Syntax Agent
for structural errors and 2) Logic Agent for test-
driven faults. Developers interact with these agents
through a natural language interface, providing
feedback that is encoded by a BERT-based proces-
sor into dense representations and reward signals.

Additionally, an episodic memory module main-
tains dual FAISS indices, one over code error em-
beddings and another over developer explanations
to enable retrieval and reuse of past successful fixes.
This architecture allows the assistant to adapt to
individual coding styles, improve over time, and
reduce developer effort.

By combining structured interaction, personal-
ized retrieval, and linguistic feedback, our frame-
work offers a more effective and human-aligned de-
bugging experience than existing one-shot or fully
automated solutions.

2 Related Work

Prior research in automated program repair spans
neural code correction, LLMs, multi-agent sys-
tems, human-in-the-loop learning, and memory-
augmented architectures. Early efforts such as
DeepFix (Gupta et al., 2017) and DrRepair (Ya-
sunaga and Liang, 2020) approached bug fixing
as a one-shot translation problem, using sequence
models or graph networks to correct syntax and
logic errors. However, these systems lack interac-
tivity and cannot refine their outputs through user
feedback.

LLM-based tools such as Codex and GitHub
Copilot excel at code generation but offer no guar-
antees of correctness, often producing faulty out-

Proceedings of Recent Advances in Natural Language Processing,pages 595-603
Varna, Sep 8-10, 2025

https://doi.org/10.26615/978-954-452-098-4-070

puts that require manual debugging. LeDex (Jiang
et al., 2024) improves upon this by using execu-
tion feedback and reinforcement learning to refine
the model output, but remains a single-agent sys-
tem that relies solely on automated test results. It
does not incorporate human feedback or support
long-term personalization.

Recent studies in multi-agent reinforcement
learning suggest performance gains through task
decomposition. Co-Learning (Yu et al., 2024)
demonstrates this by coordinating correction and
testing agents through reward exchange, but it lacks
developer input and session-level memory, limiting
adaptability and user alignment.

RLHF has shown strong results in alignment of
language models (Christiano et al., 2017), subse-
quent large-scale applications such as InstructGPT
(Ouyang et al., 2022), and summarization using
human preferences (Stiennon et al., 2020). In the
code domain, most RLHF approaches use auto-
mated test outcomes as implicit feedback (Zhang
et al., 2024), missing subjective signals such as
clarity or stylistic consistency. Our work directly
incorporates developer judgments, accept, reject, or
correct, into scalar and terminal rewards, enabling
adaptive policy learning grounded in user intent.

Memory-augmented neural architectures offer
another avenue for personalization and learning
over time. Early work such as Memory Networks
(Weston et al., 2015) introduced differentiable at-
tention to stored representations, while more re-
cent systems such as generative agents (Park et al.,
2023) and skill libraries in embodied agents (Wang
et al., 2023) have demonstrated the value of long-
term memory in sequential decision-making. De-
spite this progress, memory remains underutilized
in debugging systems, which typically start from
scratch in every session. Our approach addresses
this gap by using dual FAISS indices to persist and
retrieve embeddings of past code errors and natural
language explanations, allowing agents to recall
and reuse effective fixes across sessions.

In summary, while existing research excels in
isolated areas such as one-shot repair, LLM gen-
eration, or human-in-the-loop learning, no prior
system integrates multi-agent specialization, direct
RLHF, and memory-based retrieval for interactive
code debugging. Our proposed framework aims to
fill this gap by delivering a personalized, continu-
ously improving debugging experience grounded
in developer interaction and historical context.

3 Methodology

Our debugging framework integrates two special-
ized PPO agents, one for syntax errors and one
for logic bugs, with RLHF, NLP, and episodic
memory. We construct a synthetic dataset of 200
Python programs (100 syntax bugs, 100 logic
bugs) using create_synthetic_dataset (),
enriched with natural language bug descriptions via
enhance_dataset_with_nl_reports()
(e.g., “Missing colon after if™).

Two OpenAl Gym-compatible environments are
defined:

* SyntaxEnvironment: Compiles code and ex-
tracts error diagnostics and NL features.

* LogicEnvironment: Execute tests using
pytest and summarize failed cases.

Both environments share an observation-action in-
terface and query memory during initialization and
after accepted actions.

3.1 Observation, Actions, and Policy Network

At each timestep ¢, the agent observes a composite
state:
o = [830, M10, N768] (D

Here, s3g represents static code and diagnostic
features, myg consists of retrieved memory em-
beddings, and n7gg is the BERT-encoded natural
language explanation.

Action representations:

* Syntax Agent:
a; = (type, line, tokens,explanation)
* Logic Agent:

a; = (patch,test_id,explanation)

Each input stream is independently processed
through fully connected layers:

s" = FCs0-64(s) 2
m' = FCig_,32(m) 3
n' = FCrps_1258(n) 4

The concatenated vector is projected into a
shared representation:

z = FCagus198([s,m', n']) = ma(as|or), V(o)
4)
where 7y is the head of policy and V,, the head

of value of the PPO network.

596

3.2 Episodic Memory and Retrieval

We maintain a circular buffer with a capacity of
1,000 records. Each entry contains:

¢ A CodeBERT-based 768-dim code-error em-
bedding

* A BERT-based 768-dim explanation embed-
ding

* Metadata: bug ID, action sequence, and feed-
back score

Two FAISS indices are maintained: one over
code embeddings and one over NL explanations.
At each decision point, agents query top-k neigh-
bors to inform or reuse past successful actions.
Memory entries with low historical utility are peri-
odically pruned.

3.3 Training and Reward Shaping

Agents are pre-trained in supervised bug-fix pairs
and then fine-tuned using simulated feedback be-
fore RLHF with real users. We adopt the standard
PPO hyperparameters as follows: o = 3 x 1074,
v =099, € = 02, ngeps = 2048, and
batch size = 64.

Reward shaping is guided by user feedback:

+1 if accepted
if rejected (6)

if corrected

ry = —1
+0.5

In addition, a terminal reward of +5 is granted if
all bugs are resolved in five steps. Optional devel-
oper ratings in the range [—2, +2] may be added to
r¢ to enrich the granularity of the signal.

Interaction modes:

* Alternating mode: Syntax Agent acts until
compilation succeeds, then is transferred to
the Logic Agent.

* Joint mode: Both agents propose actions per
timestep. The terminal reward Ry is divided
through a Shapley-inspired formula:

1
R =3 (V(S, 41, 42) = V(5,A-0) (D

Each episode ends after 10 steps or when all
bugs are fixed. Transition tuples (o, at, ¢, 0¢41)
are logged for offline replay and policy refinement.

3.4 Ablation and Evaluation Protocol

To measure the contributions of each component of
the system, we performed ablation experiments by
disabling the following:

* Episodic memory (no FAISS retrieval)
* RLHF (supervised pretraining only)
* NL features (zeroed nrgs embeddings)

* Multi-agent setup (Syntax or Logic agent
alone)

Evaluation metrics include:

 Fix rates: syntax, logic, and overall (within
five suggestions)

* Efficiency: average number of suggestions to
complete a repair

* NLP quality: BLEU and ROUGE-1/2/L for
NL explanations

e Code similarity: CodeBLEU between
patches and ground-truth fixes

* Acceptance rate: percentage of suggestions
accepted on first attempt

Validation is performed on closed bugs using both
simulated and real developer feedback.

4 System Architecture

Figure 1 illustrates the high-level architecture of
our interactive debugging assistant, which con-
sists of six core components: a Natural Language
Processor, two Gym-based environments, a Multi-
Agent Controller, a shared policy network with two
specialized agents, an episodic memory module,
and a human feedback interface.

4.1 Natural Language Processor

The NLProcessor module uses a pre-trained BERT
encoder to transform free-form developer feedback
into a 768-dimensional embedding vector. These
embeddings serve two purposes:

* They are included in the observation vector o¢
for both agents.

* They are indexed in the NL FAISS memory
store for cross-session retrieval.

In addition, BLEU and ROUGE scores are
computed between agent explanations and gold-
standard developer descriptions to inform reward
shaping.

597

Figure 1: System architecture. Natural language feed-
back is embedded and stored; code and test environ-
ments interact with PPO agents coordinated by a central
controller; feedback updates memory and agent poli-
cies.

4.2 Gym Environments

We implement two custom gym. Env classes:
SyntaxEnvironment:

* State: Current source code, compiler errors,
and feedback history.

* Step: Invokes Python’s interpreter to identify
syntax issues, extracts diagnostics, and en-
codes them via the NLProcessor.

LogicEnvironment:

e State: Executable code, unit test results, and
interaction history.

» Step: Execute pytest on the code and ex-
tracts summaries of failure tests.

Each environment outputs a structured observa-
tion:

o¢ = {530, M10, N768 } (®)
where s3¢ contains structured code and error fea-
tures, mqo consists of memory retrievals, and n7gg

is the NL embedding.
The action spaces for the agents are:

* Syntax Agent: type, line, token_seq, explana-
tion.

* Logic Agent: patch, test_id, explanation.

598

4.3 Multi-Agent Controller

The Multi-Agent Controller coordinates agent-
environment interactions and manages the episode
loop:

* In alternating mode, the Syntax Agent pro-
poses actions until compilation succeeds, after
which control passes to the Logic Agent.

* Injoint mode, both agents act at each timestep.
Terminal rewards are distributed using a
Shapley-value-inspired allocation:

1
R =g (V(S, A1, A2) =V (5, 4)) 9

Following each accepted action, the envi-
ronments are updated and a transition tuple
(o¢, at, ¢, 0¢41) is recorded for training. After each
episode, the final bug-fix-feedback tuple is stored
in memory.

4.4 Agents and Feature Extractor

Both agents share the same policy architecture,
built using SB3’s MultiInputPolicy. The
custom feature extractor processes each input
stream independently:

s = FCs0_64(s) (10)
m’ = FCio_,32(m) (11
n' = FCr6s_128(n) (12)

The concatenated vector [s',m’,n/] is passed
through a projection layer:

z = FCau128([s", m/,n']) — ma(at|or), V(o)

(13)
4.5 Long-Term Memory Module

The episodic memory module maintains a circular
buffer of 1,000 entries with:

* 768-dimensional CodeBERT embeddings of
(code, error) pairs.

* 768-dimensional BERT embeddings of devel-
oper explanations.

Two FAISS indices support nearest-neighbor re-
trieval. At each decision point, agents query these
indices for relevant past fixes. The extracted ex-
amples can inform new actions or directly trigger
a ReuseSolution event. Memory entries are
periodically pruned based on past feedback scores
to maintain retrieval quality.

4.6 Human Feedback Interface

Developers interact with the system through a
VSCode-based interface equipped with the follow-
ing features:

* The suggested patches are annotated in the
code editor.

* Feedback options include: Accept,
Reject, and Correct, each mapped to a
corresponding reward.

* Optional developer ratings in [—2,+2] are
supported to refine reward signals.

* Manual edits are captured and stored as “cor-
rected” actions.

Each interaction updates the reinforcement learn-
ing training buffer and contributes to long-term
memory, allowing the system to learn over time
from user behavior.

S Experimental Setup

This section describes the tools, dataset, training
procedures, and evaluation metrics used to evaluate
the proposed debugging framework.

The system is implemented in Python 3.9 using
the following tools:

* Reinforcement Learning: Stable Baselines3
v1.8.0 with PPO.

* Language Models: Hugging Face Transform-
ers v4.28 for BERT and CodeBERT.

* Test Execution: Python exec() and

pytest v7.3 to run unit tests.

* Memory Indexing: FAISS v1.7 for approx-
imate nearest-neighbor retrieval with 768-
dimensional embeddings.

¢ Database and Interface: SQLite v3.39 for
logging and a VSCode extension as the front-

end interface that communicates via REST
APIs.

The experiments were run on an NVIDIA T4
GPU with 16GB RAM on Ubuntu 22.04.

A dataset of 200 Python programs is syntheti-
cally generated using:

* create_synthetic_dataset () to pro-
duce 100 syntax and 100 logic bug samples.

* enhance_dataset_reports () toinject
natural language bug descriptions (e.g., “miss-
ing colon in if statement.”)

The dataset includes common beginner-level er-
rors and is partially adapted from QuixBugs and
hand-crafted logic fault patterns. Each program is
paired with 35 unit tests. Syntax bugs are evalu-
ated through compilation success, while logic bugs
are tested using functional assertions. We split the
dataset into 150 training samples and 50 held-out
programs for validation and generalization testing.

In addition to our synthetic experiments, we eval-
uated two established Python bug benchmarks:

* CodeFlaws (30 programs; syntax & logic)

* ManyBugs (40 programs; logic-only)

We apply the same training regime and report actual
fix rates in Section 6.

A rule-based simulated user provides feedback
during the pre-training phase. Given a proposed fix,
the user assigns rewards based on match quality:

+1 Exact match with ground-truth fix
r¢ = § +0.5 Correct location, partial fix

-1 Incorrect or unrelated suggestion
(14

If no valid solution is found within the allowed
steps, a terminal reward r7 = 0 is assigned.

We use the following hyperparameters for PPO
optimization:

Learning rate o = 3 x 10, Discount factor
v = 0.99, Clip range ¢ = 0.2, Entropy coef = 0.01
Nseps = 2048, and Batch size = 64.

Additional configuration parameters:

¢ Memory size: 1,000 entries (FAISS buffer)
* Retrieval top-k£: 5 neighbors
* Episode length: Maximum 10 steps

* Random seeds: 42, 123, 2025 (results aver-
aged across 3 runs)

We evaluated the performance of the model us-
ing the following metrics:

* Fix Success Rates: Percentage of programs
fully repaired within 5 suggestions, split by:

— Syntax bugs
— Logic bugs
— Overall (combined)

599

* Efficiency: Average number of suggestions
required for successful repair.

e Natural Language Metrics: BLEU,
ROUGE-1/2/L scores between developer de-
scriptions and agent-generated explanations.

* Code Similarity: CodeBLEU scores that
compare the agent’s final patch with the
ground-truth version.

* Acceptance Rate: The fraction of agent sug-
gestions accepted on the first attempt.

The robustness of the model is validated in the 50
programs that have been canceled using both sim-
ulated and real feedback. Episode reward curves
and memory usage statistics are logged over time.

We conducted a pilot user study with eight
Python developers (3-7 years of experience), each
completing 5 debugging tasks (2 syntax, 2 logic,
1 mixed). The goal was to assess subjective ex-
perience, debugging efficiency, and the perceived
helpfulness of agent-generated feedback. The met-
rics collected include:

¢ Time to first correct fix
* Number of suggestions reviewed
¢ NASA-TLX workload scores

* 5-point Likert ratings on clarity, satisfaction,
and trust

Participants reported a mean satisfaction score
of 4.2/5 and a 35% reduction in the debugging time
compared to manual attempts. Although results are
promising, the limited sample size and lack of a
direct comparison baseline (e.g. Codex or Copilot)
are noted limitations. We plan to include larger-
scale and comparative studies in future work.

6 Results and Analysis

This section presents the empirical results of our
system on the held-out 50-program test set. We
compare against strong baselines, evaluate effi-
ciency, explanation quality, and perform ablation
studies to quantify the impact of system compo-
nents.

Table 1 and Figure 2 report the success rates of
syntax, logic, and general fix, together with the
average number of suggestions required to repair
each program.

600

Key Performance Metrics
Overall Fix Rate

Explanation Quality

078 080 o
061
06
04
0z
00
& & &
o &
o &

&
S

§

Figure 2: Debugging performance: syntax-fix rate,
logic-fix rate, overall-fix rate, and average steps to repair
across systems.

Our system achieves the highest fix rates and
the lowest edit counts, demonstrating that combin-
ing human feedback with memory retrieval signif-
icantly improves both accuracy and efficiency. In
particular, it reduces suggestions by more than 75%
compared to GPT-4.

Table 2 summarizes the average time per debug-
ging episode and the acceptance rate of the first-
pass suggestions.

Although GPT-4 exhibits a higher acceptance
rate, it is significantly slower and less interactive.
Our model maintains high suggestion quality while
enabling rapid feedback loops.

We assess natural language explanation quality
using BLEU, ROUGE-1/2/L, and the alignment
between code patches and ground truth via Code-
BLEU. The results are shown in Table 3 and Fig-
ure 3.

NLP Explanation Metrics
Rouge 1

Rouge L Codebleu

Figure 3: Natural-language explanation quality: BLEU,
ROUGE, and CodeBLEU across systems.

Our model balances fluency and functional ac-
curacy. Although GPT-4 achieves slightly higher
BLEU/ROUGE, our system leads in CodeBLEU,

System Syntax Logic Overall Avg Steps
RLHF + Memory 0.88 045 0.60 2.30
GPT-4 One-Shot 0.83 040 0.58 10.10
Single-Agent Supervised 0.81 032 0.50 7.00
Multi-Agent (No Memory) 0.85 0.37 0.55 9.00

Table 1: Fix success rates and average steps to repair across systems.

System Time(s) Acceptance Rate
RLHF + Memory 2.30 0.56
GPT-4 One-Shot 10.10 0.69
Single-Agent Supervised 7.00 0.39
Multi-Agent (No Memory) 9.00 0.58

Table 2: Execution time and first-pass suggestion acceptance rates.

showing better alignment with actual code changes.

Table 4 reports average NASA-TLX subscale
scores.

TLX Subscale Avg Score (0-100)
Mental Demand 45
Temporal Demand 40
Physical Demand 10
Effort 38
Performance 30
Frustration 22

Table 4: NASA-TLX subscale scores collected in the
human study.

Table 5 reports the impact of memory impair-
ment, RLHF, or agent specialization. Each ablation
degrades the performance, confirming the necessity
of each component.

The value of “40% memory consulted” refers to
the proportion of the total decision steps in which
the agent triggered a memory query or reused a past
solution retrieved. This suggests that the memory
module actively supports nearly half of all decision
points, particularly for recurring or stylistically sim-
ilar bugs.

During the evaluation, we observed that logic
fixes involving nested loops or external library calls
were more likely to fail. In contrast, syntax fixes
such as bracket mismatches or missing colons were
highly reliable. Future work may focus on aug-
menting the memory index with control-flow-aware
features to handle deeper logic chains.

!CodeFlaws and ManyBugs are benchmarks of buggy C
programs; we use Python-equivalent adaptations for compati-
bility with our environment (Le et al., 2015).

To illustrate how our system performs on real-
world code, we present a debugging episode from
the CodeFlaws dataset. This example highlights the
system’s ability to generalize from synthetic train-
ing to unseen, real Python code, and to incorporate
natural language reasoning effectively.

Example (CodeFlaws-17):

Original code snippet:
if score > 90
print ("Excellent")

Compiler error:
expected " :’

SyntaxError:

Agent Suggestion: Insert a colon after
the condition: if score > 90:

Agent NL Explanation: ”Python re-
quires a colon at the end of conditional
statements.”

Outcome: Fix accepted. The program
compiled and passed all test cases.

This example demonstrates the system’s capac-
ity to recover from common student-level syntax
errors using semantically appropriate edits and
human-aligned explanations. Natural language
feedback adds interpretability to the action and
the fix was drawn from the system policy without
direct memorization. More complex logic bugs
show similar behavior, though with slightly lower
success rates.

The results confirm that RLHF and memory-
based retrieval enhance both repair quality and
developer-aligned behavior. Compared to the GPT-
4 one-shot approach, our system is faster, more

601

System BLEU ROUGE-L ROUGE-2 ROUGE-1 CodeBLEU

RLHF + Memory 0.19 0.40 0.26 0.42 0.47

GPT-4 One-Shot 0.21 0.47 0.31 0.49 0.45

Single-Agent Supervised 0.13 0.24 0.18 0.26 0.35

Multi-Agent (No Memory) 0.18 0.37 0.22 0.39 0.42

Table 3: Explanation and code similarity metrics.
Ablation Results Memory Usage

Configuration Syntax Logic Overall Avg Steps Consulted Fix-Rate Lift
Full Model (RLHF+M) 0.88 0.45 0.60 2.30 40% +11 pp
No Memory 0.80 0.37 0.51 3.10 — —
No RLHF 0.85 0.40 0.55 2.75 — —
Single-Agent Only 0.81 0.32 0.46 4.00 — —
Real-World Benchmarks
CodeFlaws (n=30) 0.75 0.32 0.54 3.1 — —
ManyBugs (n=40) — 0.28 0.28 34 — —

Table 5: Top: Ablation and memory-usage metrics. Bottom: Fix success rates on real-world benchmarks.'

adaptive, and offers greater control through hu-
man feedback. Episodic memory significantly im-
proves efficiency by avoiding redundant effort and
aligning future suggestions with previous success-
ful fixes.

7 Conclusions and Future Work

We introduced an interactive multiagent debug-
ging framework that integrates RLHF, NLP, and
memory-based retrieval to assist developers in fix-
ing Python code. The system employs two special-
ized PPO agents, one for syntax and one for logic
errors, whose policies are continuously refined
through developer feedback. A BERT-based NL
processor encodes developer explanations, which
serve both as observation features and as reward
signals. An episodic memory module stores past
code-error pairs and explanations, enabling the re-
trieval and reuse of successful fixes.

Empirical results in a synthetic dataset demon-
strate that our approach achieves an 88% syntax-fix
rate, a 45% logic-fix rate, and a 60% overall fix rate
within five suggestions—outperforming GPT-4 and
other baselines. The system also reduces average
suggestions to 2.3 and achieves high CodeBLEU
scores, indicating better alignment between expla-
nations and code edits. A user study also supports
the system’s utility, showing a reduced debugging
time and a high level of developer satisfaction.

Although this work supports developer produc-

tivity, automated fixes must be interpreted cau-
tiously. We recommend human-in-the-loop con-
firmation for all critical code changes, particularly
in safety-sensitive applications. Looking forward,
several directions remain open:

* Cross-language and multi-file support: Ex-
tending the framework to larger, multi-module
codebases and other programming languages
(e.g., Java, C++).

* Richer feedback modalities: Incorporating
graded, ranked, or dialog-based feedback to
better capture developer intent beyond ac-
cept/reject actions.

* Hybrid reasoning pipelines: Integrating
symbolic reasoning or static analysis to ad-
dress deeper logical bugs with verifiable cor-
rectness.

* Personalization via meta-learning: Leverag-
ing meta-learning to adapt agents more rapidly
to individual developer styles with minimal
data.

* Federated and continual learning: Enabling
deployment in real-world CI/CD pipelines us-
ing federated updates to improve generaliza-
tion while preserving privacy.

These enhancements aim to make adaptive de-
bugging agents more robust with human developers
in diverse real-world environments.

602

Acknowledgment

The authors thank the Department of Computer
Science and the College of Natural and Behavioral
Sciences at CSUDH for their support.

References

Paul Christiano, Jan Leike, Tom Brown, Miljan Mar-
tic, Shane Legg, and Dario Amodei. 2017. Deep
reinforcement learning from human preferences. In
Advances in Neural Information Processing Systems,
volume 30.

Rahul Gupta, Soham Pal, Aditya Kanade, and Shirish
Shevade. 2017. Deepfix: Fixing common c language
errors by deep learning. In AAAI Conference on
Artificial Intelligence, pages 1345-1351.

Nan Jiang, Xiaoyang Li, Sheng Wang, Qian Zhou,
Sayed Hossain, Baishakhi Ray, and Yujie Liao. 2024.
Ledex: Training llms to better self-debug and explain
code. NeurIPS 2024 (to appear).

ThanhVu Le, David Lo, Claire Le Goues, and Willem
Visser. 2015. Manybugs and introclass benchmarks
for automated repair of ¢ programs. In Proceedings
of the 2015 International Conference on Software
Engineering, pages 715-718.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida,
Carroll Wainwright, Pamela Mishkin, and Ryan
Lowe. 2022. Training language models to follow
instructions with human feedback. arXiv preprint
arXiv:2203.02155.

Joon Sung Park, Joseph C O’Brien, Carrie J Cai, Mered-
ith Ringel Morris, Percy Liang, and Michael S
Bernstein. 2023. Generative agents: Interactive
simulacra of human behavior. arXiv preprint
arXiv:2304.03442.

Nisan Stiennon, Long Ouyang, Jeffrey Wu, Daniel
Ziegler, Ryan Lowe, Christine Voss, and Dario
Amodei. 2020. Learning to summarize from human
feedback. In Advances in Neural Information Pro-
cessing Systems.

Guanzhi Wang, Yuhuai Xie, Yiding Jiang, Ajay Man-
dlekar, Chunyuan Xiao, Yuke Zhu, and Anima
Anandkumar. 2023. Voyager: An open-ended embod-
ied agent with large language models. arXiv preprint
arXiv:2305.16291.

Jason Weston, Sumit Chopra, and Antoine Bordes. 2015.
Memory networks. In International Conference on
Learning Representations.

Michihiro Yasunaga and Percy Liang. 2020. Graph-
based, self-supervised program repair from diagnos-
tic feedback. In Proceedings of the International
Conference on Machine Learning (ICML).

603

Jiayi Yu, Yifan Wu, Yulin Zhan, Wei Guo, Zichao Xu,
and Raymond Lee. 2024. Co-learning: Code learning
for multi-agent reinforcement collaborative frame-

work with conversational interfaces. arXiv preprint
arXiv:2409.00985.

Yujie Zhang, Xiaoyang Chen, Shaohan Fu, and Rui
Tang. 2024. Automated program repair with process-
based feedback. In Findings of ACL 2024.

