Task-Oriented Dialogue Systems through Function Calling

Tiziano Labruna
University of Bozen-Bolzano
Fondazione Bruno Kessler
tlabruna@fbk.eu

Abstract

Large Language Models (LLMs) have demon-
strated remarkable capabilities in generating
dialogues and handling a broad range of user
queries. However, their effectiveness as end-
to-end Task-Oriented Dialogue (TOD) systems
remains limited due to their reliance on static
parametric memory, which fails to accommo-
date evolving knowledge bases (KBs). This
paper investigates a scalable function-calling
approach that enables LLMs to retrieve only
the necessary KB entries via schema-guided
queries, rather than embedding the entire KB
into each prompt. This selective retrieval strat-
egy reduces prompt size and inference time
while improving factual accuracy in system re-
sponses. We evaluate our method on the Mul-
tiWOZ 2.3 dataset and compare it against a
full-KB baseline that injects the entire KB into
every prompt. Experimental results show that
our approach consistently outperforms the full-
KB method in accuracy, while requiring signifi-
cantly fewer input tokens and considerably less
computation time, especially when the KB size
increases.

1 Introduction

Large Language Models (LLMs) have recently
achieved human-level fluency on a wide range
of language tasks, thanks to scaling laws and in-
struction tuning (Brown et al., 2020; Wei et al.,
2022). Among the many applications of LLMs,
task-oriented dialogue (TOD) systems are designed
to assist users in completing specific goals, such
as booking a flight, ordering food, or finding infor-
mation, through natural language interactions. De-
spite their fluency, LLMs face a fundamental limi-
tation in TOD scenarios: the knowledge encoded in
their parametric memory is frozen at training time,
preventing the model from reflecting subsequent
changes in the external world.

Giovanni Bonetta
Fondazione Bruno Kessler
gbonetta@fbk.eu

Bernardo Magnini
Fondazione Bruno Kessler
magnini@fbk.eu

A straightforward workaround is to embed the en-
tire KB in each prompt, ensuring that every conver-
sational turn has access to all facts that might be
needed. Unfortunately, KBs quickly outgrow the
context window and contain much information that
is irrelevant to the current user request. Padding the
prompt with thousands of unused entries inflates
latency and inference cost while making it harder
for the decoder to focus on the truly salient rows.

Retrieval-augmented generation (RAG) (Lewis
et al., 2020) mitigates prompt bloat for unstruc-
tured corpora by retrieving the top-£ textual chunks
at inference time. However, MultiWwOZ-style KBs
are json objects that closely resembles relational-
rows, which often differ by only one or two cells
(e.g. the name of two cafés on the same street). Con-
verting each row into an ad-hoc sentence has been
shown possible (Roberti et al., 2020), but could
have limitations such us: it destroys schema infor-
mation, it blows up the index with near-duplicate
passages, and it confuses dense retrievers that rely
on lexical diversity.

Recent variants such as TableRAG (Chen et al.,
2024), SRAG (Lin et al., 2025) and the survey
of Soliman et al. (Soliman and Gurevych, 2025)
confirm that naive, chunk-based RAG loses ef-
fectiveness on highly structured or repetitive data.
Rather than engineering a specialised, table-aware
retriever, we exploit the KB’s schema directly via
function calls: slot values detected in the user ut-
terance are mapped to structured query parameters,
yielding constant-time access to exactly those rows
that the answer requires.

Building on recent work that enables LLMs to in-
voke external tools—e.g. ReAct (Yao et al.), Tool-
former (Schick et al., 2023), and ToolLLM (Qin
et al., 2023)—we introduce a selective function-
calling pipeline for TOD. At each turn the model

614

Proceedings of Recent Advances in Natural Language Processing,pages 614-622
Varna, Sep 8-10, 2025

https://doi.org/10.26615/978-954-452-098-4-072

(i) detects whether the user’s intent contains slot
values, (ii) issues a targeted query against the KB,
and (iii) integrates only the returned rows into the
prompt. Evaluated on MultiwOZ 2.3 (Zang et al.,
2020), this strategy cuts prompt tokens by ~ 4
times while improving factual accuracy over a base-
line that serialises the full KB at every turn.

2 Related Work

TOD systems traditionally rely on modular archi-
tectures that separate natural language understand-
ing, dialogue state tracking, and policy learning
components. However, recent advances in LLMs
have motivated a shift toward end-to-end TOD sys-
tems that aim to unify these components within a
single generative model (Zhao et al., 2023). De-
spite their fluency, LLMs struggle to maintain fac-
tual accuracy and adapt to dynamic knowledge
bases, due to their reliance on static parametric
memory.

To address the rigidity of LLMs in dynamic set-
tings, retrieval-augmented generation (RAG) meth-
ods have emerged as a promising solution. These
methods combine LLMs with external retrievers
that provide relevant context at inference time (Izac-
ard et al., 2023; Zhang et al., 2022). Nonetheless,
RAG was designed for free-text collections and
shows degradation when the source is highly struc-
tured.

A recent survey on RAG over tabular data (Soliman
and Gurevych, 2025) highlights three open issues:
schema loss during chunking, retrieval ambiguity
caused by repetitive content, and inflated context
windows when multiple near-identical KB samples
are returned. Our work departs from RAG entirely:
by delegating KB access to an external function, we
preserve the structure of the data, keep inference
costs predictable, avoid embedding redundancy and
its inherent risk of false positive retrieval, since the
function calling logic is simple rule-based python
code.

A recent trend involves leveraging function calling
APIs to handle structured queries, allowing LLMs
to delegate knowledge access to external tools (Yao
et al.; Qin et al., 2023). These approaches improve
both factual grounding and system modularity by
decoupling reasoning from knowledge access. Sim-
ilar strategies have been employed in dynamic dia-
logue settings to mitigate prompt length limitations
and reduce inference cost (Mialon et al., 2023).

615

Compared to approaches that embed the entire
KB in the prompt, our method adopts a selective
function-calling strategy triggered by slot-value
detection. This allows for minimal and relevant
KB access, reducing computational overhead and
improving response relevance. Our work builds
upon these recent advances by offering a practical
and scalable framework for integrating dynamic
retrieval into end-to-end TOD systems.

Recent work by Labruna et al. (2024) tackles a re-
lated challenge in the question answering domain:
determining whether an LLM’s parametric knowl-
edge is sufficient to answer a query, or whether
external retrieval is required. While their task dif-
fers in format and scope, the core objective aligns
with ours: making informed, context-dependent
decisions about when to rely on internal memory
versus external knowledge. We extend this idea
to multi-turn, structured dialogue by integrating
schema-guided function calls instead of free-text
retrieval.

3 Function Calling Methodology

In this study, we propose a TOD system designed
to selectively retrieve information from a knowl-
edge base when necessary, based on the specific
needs expressed in each user turn. The system is
built around a large language model that manages
the conversation and executes knowledge retrieval
when appropriate.

It begins with a system prompt that sets the ini-
tial behavioral instructions for the LLM (Section
3.1). Then each user turn is analyzed to determine
whether external knowledge is required. This is
achieved through a lightweight slot-value and in-
tent extraction process (Section 3.2). For instance,
a vague input like “Can you help me?” does not
lead to a KB query, while a more specific request
such as “Find me a cheap Italian restaurant in the
center” does.

When relevant information is detected, it is passed
to a function that maps the extracted content into
structured query parameters (Section 3.3). These
parameters are then used to retrieve only the most
relevant KB entries (Section 3.4). The results of the
query are evaluated for adequacy and informative-
ness (Section 3.5), and, if appropriate, integrated
into the LLM’s prompt to inform the response. This
targeted augmentation ensures that the model’s out-
puts are both accurate and aligned with the user’s

intent.

To support longer conversations, the system in-
cludes a conversation management component that
trims older dialogue turns as needed to remain
within the LLM’s context window, while preserv-
ing relevant history (Section 3.6).

Through this structured and dynamic methodology,
the system is able to maintain a high level of rele-
vance, responsiveness, and efficiency in handling
complex task-oriented dialogues.

3.1 Initial System Prompt

The core LLM at the basis of our dialogue system
is guided through an initial system prompt. This
prompt defines the model’s general role in the con-
versation, for instance, acting as a travel assistant
or a booking agent, and provides domain-specific
instructions that shape its behavior throughout the
interaction. It may also include stylistic directives
to ensure consistent tone and phrasing across re-
sponses. For example:

You are an airline ticket booking
system.
provide suggestions for available
flights.

Respond politely and

This initial prompt establishes the context and ob-
jectives of the conversation, enabling the model to
generate coherent and purpose-aligned responses
as the dialogue evolves.

3.2 Slot-Value and Intent Extraction

Once the user submits an input, the system (LLM)
receives it and begins the process of understanding
the user’s request. To enable targeted retrieval of
knowledge, we first identify whether the input con-
tains any slot-values. This is done by forwarding
the user input to a second language model specifi-
cally tasked with slot-value extraction.

This model is provided with a predefined list of
possible slot types relevant to the current domain,
each accompanied by a brief description. However,
the list of possible values for each slot is not given,
as these must be inferred by the model using its
parametric knowledge.

If the model returns that no slot-values have been
detected, the initial LLM proceeds to generate a

response using only the context available in the
current conversation history.

If slot-values are found, the system proceeds to
determine the user’s intent. This is achieved by
prompting another model (or another instance of
the same model) with the same user input and a list
of possible intents, each with a short description.
The objective is to infer the communicative goal
behind the user’s utterance.

With both slot-values and intent identified, the sys-
tem is equipped to determine whether external
knowledge retrieval is needed and how to formulate
a precise query for it.

3.3 Function Instruction and Parameter
Mapping

After extracting slot-values and the user’s intent,
the system determines whether a query to an ex-
ternal KB is necessary. If so, these extracted ele-
ments are used to select the most suitable function
from a predefined set, where each function f; cor-
responds to a specific type of query designed to
retrieve domain-relevant information.

Each function is defined with a set of parame-
ters 61, 0o, . .., 0, that correspond to expected slot-
values. Formally, we represent a function as:

fui(0.1,022,...,0.n) (1)

For example, a function to search for restaurants
based on area, price range, and cuisine may be
defined as:

Function: SearchRestaurant(Area,
PriceRange, Cuisine)

When the slot-value extraction step identifies rel-
evant inputs (for instance, “northern” as a value
for the slot Area) and the intent is classified as
search, these are passed to the function selection
logic, which results in the following function call:

f-SearchRestaurant(6_Area = “north”) (2)

Only the slots that were detected in the input are
passed as arguments to the selected function, while
missing parameters remain unspecified. This tar-
geted mapping enables the system to retrieve only
the KB entries necessary to respond to the user’s

616

request, avoiding redundant data access and im-
proving both efficiency and relevance.

3.4 Function Call and Query Execution

After selecting the appropriate function f; and as-
signing its parameters based on the extracted slot-
values, the system proceeds to execute the function
to query the knowledge base (KB). Each function
is tailored to a specific domain and is designed to
filter KB entries according to the input constraints
provided in its parameters.

The output of the function call is a set of retrieved
instances:

T=4i1,i2,...,ik 3)

where 7 denotes the set of KB results that satisfy
the query conditions, and £ is the number of match-
ing instances.

The internal logic of the function typically involves
applying a filtering mechanism over a structured
KB, using the parameter values to constrain the
search. This may include exact matching for clearly
specified slots, partial or relaxed matching to ac-
commodate minor user input variations, or more
complex domain-specific heuristics to determine
relevance. The flexibility of each function depends
on the domain requirements and the granularity of
the KB entries it operates over.

This execution step isolates only the information
necessary to fulfill the user’s request, allowing the
system to respond with targeted and contextually
relevant content.

3.5 Result Evaluation and Prompt
Augmentation

After executing the function call and retrieving a set
of results Z = {iy,9,...,1x}, the system evalu-
ates the outcome to determine how to proceed with
the response generation. This evaluation hinges
on the number of retrieved instances k, which is
compared against a predefined upper threshold 7'
to assess the informativeness and usefulness of the
result set.

* No Results (¢ = 0): If the query returns no
matching instances, the system avoids generat-
ing a misleading or hallucinated response. In-
stead, it augments the prompt with a message
that informs the model of the lack of results

617

and guides the generation accordingly. For
example, the following instruction is added to
the prompt:

No entities in the knowledge
base match the user query.
Suggest that the user
reformulate or broaden their
request.

* Too Many Results (k¢ > T): When the num-
ber of results exceeds a predefined threshold,
the system avoids overwhelming the gener-
ation with an unmanageable list. Instead, it
augments the prompt with a directive indicat-
ing the overload and advising the model to
guide the user toward refining their query. For
example:

The query returned too many
entities. Ask the user to
provide additional constraints
to narrow down the search.

¢ Acceptable Number of Results (0 < & < T'):
If the result set is within an acceptable range,
the system proceeds to build a knowledge-
grounded prompt. This prompt contains a
textual rendering of the retrieved instances,
formatted in a way that allows the LLM to
generate a coherent and factually grounded
response. For example, the augmented prompt
might begin with a sentence like:

Your answer should strictly
rely on the following
Knowledge Base:

followed by a structured summary of the in-
stances in Z.

This stage ensures that the system remains faith-
ful to the available knowledge, avoids generating
unsupported statements, and adapts its behavior
depending on the informativeness of the KB query
results. By carefully controlling when and how
the KB content is introduced into the prompt, the
system maintains both factual accuracy and conver-
sational relevance.

3.6 Conversation Management and Context
Trimming

To maintain continuity across turns, the sys-
tem preserves the full dialogue history H =

{h1, ha, ..., hy}, including user and system utter-
ances as well as the initial system prompt. How-
ever, since large language models operate within a
fixed context window of size C, the system must
ensure that the input remains within this limit.

To do so, it dynamically monitors the length of the
conversation L(H), and if the combined content
of the history and the current input exceeds C, the
earliest dialogue turns are discarded. This process
is formalized as follows:

If L(H) > C, removeh1,h2, ...,

until L(H) < C (4)

The trimming procedure prioritizes the retention
of the most recent and relevant turns, along with
the system prompt, which provides high-level be-
havioral instructions to the model. This ensures
that the system continues to generate contextually
grounded and coherent responses, even in extended
interactions.

4 Experimental Setting

This section presents the experimental setup used
to assess the effectiveness of our function calling
approach for knowledge retrieval in Task-Oriented
Dialogue systems. Specifically, we compare two
strategies: (I) a baseline that retrieves the entire
knowledge base for every dialogue turn regard-
less of context (Section 4.1) and (II) our proposed
method, which selectively invokes a function to
retrieve only relevant KB entries based on the user
query (Section 3).

The goal of this comparison is to determine whether
dynamically deciding when and what to retrieve,
through structured function calls, offers a mean-
ingful advantage over the naive strategy of always
retrieving the full KB.

In each case, the system is tasked with produc-
ing factual, contextually appropriate, and domain-
specific responses. The subsections that follow
detail the full-KB strategy (Section 4.1), the struc-
ture of the dataset and the underlying KB (Section
4.2), the specification of the LLM used (Section
4.3), the evaluation metrics employed (Section 4.4),
and the results of the comparative analysis (Section
4.5). We also include an error analysis (Section 4.6)
and a supplementary study on the computational
efficiency of both approaches (Section 4.7).

618

4.1 Full-KB Approach

The full-KB approach embeds the entire knowledge
base directly into the system’s prompt. This initial
prompt begins with an instruction block that defines
the system’s behavior, tone, and style, followed by
a directive to rely exclusively on the provided KB
when responding to domain-specific user queries.
The complete KB remains constant throughout the
interaction and ensures that the model has access
to all KB entries at every step of the conversation.

As the dialogue unfolds, each user message is ap-
pended to the context, and the system generates
a response based on the full prompt, comprising
the instruction block, the complete KB, and the
accumulated dialogue history. Each new system
message is then added to the context in turn.

To stay within the model’s context window, the
system trims the oldest turns in the dialogue history
when necessary. This trimming follows the same
strategy described for the function-calling approach
(see Section 3.6), ensuring that recent context and
the system prompt remain intact.

4.2 Dataset and Knowledge Base Description

The experiments use the MultiwOZ 2.3 dataset
(Han et al., 2021), a widely adopted benchmark
for TODs. MultiWOZ contains multi-domain dia-
logues collected through crowdsourcing, covering
seven different domains. It provides both dialogue
transcripts and corresponding structured knowl-
edge bases for each domain, making it ideal for
evaluating knowledge-grounded dialogue models.

For this study, we focus exclusively on the restau-
rant domain. This choice is motivated by several
factors: the restaurant domain is well-studied and
rich of in domain-specific attributes (e.g., cuisine
type, location, price range), it has a sufficiently
large and detailed KB in MultiWwOZ, and limiting
the scope to a single domain simplifies the eval-
uation of knowledge retrieval strategies without
introducing confounding domain variability.

To examine the effect of KB size on the perfor-
mance of different retrieval approaches, we pre-
pared three versions of the restaurant KB: the orig-
inal, and two augmented versions with approxi-
mately twice and three times the original number
of entries. The augmentation process involved syn-
thetically generating new entries while preserving
the data structure and realistic attribute distribu-

Table 1: KB-Alignment accuracy of function calling vs full-KB approach for different KB sizes

Method

Original KB KB x2 KB x3

Full-KB Approach
Function calling

0.652
0.833

0.615
0.816

0.549
0.802

tions. Specifically:

e Food, Area, Price, and Address: Values
were randomly sampled from the original
KB’s existing attribute sets.

* Name: New names were created by combin-
ing tokens randomly selected from original
restaurant names.

e Phone Number: Simulated as random 10-
digit numbers.

This augmentation strategy allowed us to scale the
KB while maintaining consistency and realism. We
limited augmentation to three times the original
size because larger KBs would exceed the model’s
context window constraints, especially for the full-
KB approach.

4.3 Model and Computational Details

Both the Function Calling and Full-KB approaches
rely on the LLaMA-3.1 8B model for dialogue gen-
eration. LLaMA-3.1 (Grattafiori et al., 2024) is part
of the Large Language Model Meta Al (LLaMA)
family, specifically fine-tuned for generating co-
herent, context-aware responses in conversational
settings. With approximately 8 billion parameters,
it balances computational efficiency and linguis-
tic capability, making it well-suited for complex
task-oriented dialogue (TOD) scenarios.

Inference was conducted using a single NVIDIA
A40 GPU with 48GB of memory. No additional
fine-tuning or parameter modifications were ap-
plied; all model parameters and decoding settings
remained at their default values.

4.4 Evaluation Metrics

To assess the performance of both approaches, we
use the KB-alignment accuracy metric. This met-
ric measures the degree to which the system’s re-
sponses align with the information contained in the
knowledge base. Each response from the system
is evaluated on a binary scale: 1 if the response is
entirely accurate with respect to the KB (i.e., all
factual statements align with the knowledge stored
in the KB), and O if the response contains any fac-

tual inaccuracy, such as providing incorrect details
about restaurant availability, food types, or loca-
tions.

Only responses that involve KB references are in-
cluded in the evaluation, excluding general con-
versational turns that do not involve knowledge
retrieval (the turns where slot-values are not de-
tected). The overall KB-alignment accuracy is
computed as the average accuracy across all KB-
relevant responses. Formally, for a set of IV re-
sponses 71,73, ...,TN, the accuracy A is defined
as:

N
1 .
A= N ;1 alignment(r;) ®)

where alignment(r;) equals 1 if the response 7; is
factually correct according to the KB, and O other-
wise.

Determining whether a system message is fully
consistent with the KB is a manual task performed
by a human evaluator. This process can involve
ambiguity, as some information may be implic-
itly inferable from the KB without being explicitly
stated. In such cases, the evaluator must judge
whether the inference is reasonable and grounded
in the available KB content.

4.5 Experimental Results

Table 1 presents the KB-alignment accuracy for
both the full-KB and function calling approaches,
evaluated across three different KB sizes: the origi-
nal MultiwOZ 2.3 KB, and versions augmented to
double and triple the number of entries.

The results clearly show that the function calling ap-
proach consistently outperforms the full-KB base-
line in all settings. With the original KB, function
calling achieves an accuracy of 0.833, compared to
0.652 for the full-KB strategy. This performance
gap widens slightly as the KB grows larger: at
twice the original size, function calling maintains a
high accuracy of 0.816, while the full-KB method
drops to 0.615. When the KB is tripled in size, the

619

Table 2: Error Category Comparison for fu

1I-KB and function calling Approaches

Error Category Full-KB x1 Full-KB x2 Full-KB x3 Func Call x1 Func Call x2 Func Call x3
RESTAURANT NOT FOUND BY NAME 31/36 (86.11%) 23/36 (63.64%) 24/36 (65.22%) 10/18 (55.56%) 8/16 (50.00%) 12/12 (100.00%)
RESTAURANT NOT FOUND BY ATTRIBUTES 20/30 (66.67%) 30/30 (100.00%) 16/19 (84.21%) 13/17 (75.41%) 27/29 (92.96%) 14/16 (87.50%)
INVALID RESTAURANT NAME 6/33 (18.18%) 11/49 (22.47%) 12/41 (29.47%) 2/29 (6.87%) 1/17 (5.83%) 1/19 (5.23%)
INVALID RESTAURANT BY ATTRIBUTES 7126 (27.27%) 13/73 (17.65%) 2/63 (3.17%) 2/29 (6.98%) 1/79 (1.27%) 1/29 (3.49%)
INCORRECT RESTAURANT COUNT 0/0 (0%) 0/0 (0%) 0/0 (0%) 3/3 (100.00%) 0/0 (0%) 0/0 (0%)

gap becomes even more pronounced, with function
calling at 0.80 and the full-KB approach falling
further to 0.549.

These results suggest that the function calling
mechanism, by retrieving only relevant KB entries
on-demand, is more robust to increases in knowl-
edge base size. In contrast, the full-KB method
suffers from degraded accuracy as the context win-
dow becomes increasingly saturated with irrele-
vant information. This confirms the hypothesis that
selectively retrieving information (both what and
when) leads to better factual consistency than indis-
criminately including the entire KB in the prompt.

Furthermore, the relatively stable accuracy of the
function calling approach across KB sizes indi-
cates that it scales more gracefully, maintaining
high response quality even as the knowledge space
expands. This scalability is particularly valuable
in real-world scenarios, where KBs may grow over
time or vary significantly across domains.

4.6 Error Analysis

In addition to evaluating KB-alignment accuracy,
we performed a detailed error analysis to identify
the types of errors encountered by both approaches.
Errors were manually categorized based on the na-
ture of the mismatch between the system’s response
and the knowledge base. The following categories
emerged:

¢ RESTAURANT NOT FOUND BY NAME: The
system failed to retrieve a restaurant explicitly

requested by name, despite its presence in the
KB.

RESTAURANT NOT FOUND BY AT-
TRIBUTES: The system was unable to
identify a restaurant matching the specified
attributes (e.g., cuisine type, area, price
range).

INVALID RESTAURANT NAME: The re-
sponse included a restaurant name that does
not exist in the KB.

620

¢ INVALID RESTAURANT BY ATTRIBUTES:
The system returned incorrect attribute values
for a restaurant (e.g., stating it is in the city
center when it is not).

¢ INCORRECT RESTAURANT COUNT: The
reported number of restaurants matching a
query was inaccurate.

Table 2 provides a detailed breakdown of the fre-
quency of each error type for both approaches.

The full-KB approach tends to struggle more with
hallucinated content, such as producing invalid
restaurant names or mismatched attributes. These
issues appear to worsen as the size of the KB
increases, suggesting that the model’s ability to
attend to relevant entries diminishes when over-
whelmed with a larger unfiltered context.

The function calling method, while generally more
accurate, exhibits occasional retrieval failures. For
example, it can miss a valid restaurant even when
the name or attributes are unambiguous, indicat-
ing potential limitations in the underlying retrieval
mechanism or its integration with the language
model.

Overall, while function calling mitigates many
of the content hallucination issues found in the
full-KB approach, it introduces its own class of
retrieval-related errors. Understanding these pat-
terns is crucial for designing more robust hybrid
systems that combine precise retrieval with effec-
tive language generation.

4.7 Computational Efficiency

Finally, the computational efficiency of both ap-
proaches was evaluated by comparing the input
token count and the total processing time required
for each dialogue. These metrics provide a practi-
cal perspective on the scalability of each method,
especially as the size of the knowledge base in-
creases.

The results, illustrated in Figure 1, show that the
function calling approach is significantly more effi-

Comparison of Function Calling vs. All in Input Tokens and Time per Dialogue

80000 [

—e— Tokens - Function Calling
—a— Tokens - All

—e- Time - Function Calling
Time - All

70000

60000 [

50000

40000

Input Tokens per Dialogue

30000

20000 |

10000

-180

=
(=2}
o

-140

=
N
o

-100

Time per Dialogue (seconds)

-80

-60

x1

x2

Approach Scale

Figure 1: Comparison of Input Tokens and Processing Time per Dialogue between function calling and full-KB

Approaches across KB Sizes

cient than the full-KB method across all KB sizes.
By retrieving only the relevant information from
the KB on demand, function calling reduces the
input size passed to the language model, which in
turn lowers the processing time.

For the original KB scale (x1), function calling re-
quired only 7,503 tokens and 60.5 seconds per dia-
logue, compared to 31,153 tokens and 96.3 seconds
for the full-KB approach. This translates to a 76%
reduction in prompt tokens and a 37% reduction in
processing time. As the KB triples in size (x3), the
difference becomes even more striking: function
calling maintains a modest increase to 7,653 tokens
and 64.2 seconds, while the full-KB baseline in-
creases to over 85,000 tokens and 189.7 seconds
per dialogue. This yields savings of over 90% in to-
kens and more than 66% in processing time. These
findings confirm that function-based retrieval not
only improves factual precision but also delivers
substantial gains in efficiency—cutting inference
time in large-KB settings, making it a highly scal-
able alternative for real-world end-to-end TOD de-
ployments.

5 Conclusion

This study highlights the advantages of combining
selective retrieval and function calling for improv-
ing the accuracy and scalability of task-oriented
dialogue (TOD) systems. By retrieving only the
necessary information from the knowledge base
(KB), the function calling approach consistently

621

delivers more accurate responses, while also reduc-
ing computational overhead and response latency.
In contrast, the full-KB approach, which embeds
the entire KB into each prompt, becomes increas-
ingly inefficient and less reliable as the KB grows.

The experimental results show that function calling
maintains strong KB-alignment accuracy across
different KB sizes, demonstrating robustness to
domain changes and scalability in growing knowl-
edge environments. In parallel, the computational
analysis reveals substantial reductions in both input
token usage and processing time. This efficiency
gain not only improves response latency but also
reduces the overall cost of deployment, especially
in resource-constrained or real-time settings.

The error analysis further reinforces these findings.
As the KB size increases, the full-KB approach
struggles with issues such as failing to retrieve
restaurants by name, indicating that larger KBs
introduce ambiguity and complexity that the model
cannot easily resolve. In comparison, the func-
tion calling method demonstrates greater resilience
to these challenges. The integration of selective
retrieval, function calling, and prompt augmenta-
tion offers an effective strategy for building TOD
systems that are accurate, efficient, and scalable.
This approach provides a practical path forward for
deploying dialogue agents in dynamic, knowledge-
rich environments.

References

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind Nee-
lakantan, Pranav Shyam, Girish Sastry, Amanda Askell,
et al. 2020. Language models are few-shot learners.
In Advances in Neural Information Processing Systems
(NeurlPS).

Si-An Chen, Lesly Miculicich, Dmitry Ustalov, Tuan
Du, Adam Roberts, and Tom Kwiatkowski. 2024.
Tablerag: Million-token table understanding with lan-
guage models. In Advances in Neural Information Pro-
cessing Systems (NeurIPS).

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri,
Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle,
Aiesha Letman, Akhil Mathur, Alan Schelten, Alex
Vaughan, et al. 2024. The llama 3 herd of models.
arXiv preprint arXiv:2407.21783.

Ting Han, Ximing Liu, Ryuichi Takanabu, Yixin Lian,
Chongxuan Huang, Dazhen Wan, Wei Peng, and Minlie
Huang. 2021. Multiwoz 2.3: A multi-domain task-
oriented dialogue dataset enhanced with annotation
corrections and co-reference annotation. In Natural
Language Processing and Chinese Computing: 10th
CCF International Conference, NLPCC 2021, Qingdao,
China, October 13—17, 2021, Proceedings, Part I 10,
pages 206-218. Springer.

Gautier Izacard, Patrick Lewis, Maria Lomeli, Lucas
Hosseini, Fabio Petroni, Timo Schick, Jane Dwivedi-Yu,
Armand Joulin, Sebastian Riedel, and Edouard Grave.
2023. Atlas: few-shot learning with retrieval augmented
language models. J. Mach. Learn. Res., 24(1).

Tiziano Labruna, Jon Ander Campos, and Gorka
Azkune. 2024. When to retrieve: Teaching llms to
utilize information retrieval effectively. arXiv preprint
arXiv:2404.19705.

Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio
Petroni, Vladimir Karpukhin, Naman Goyal, Heinrich
Kiittler, Mike Lewis, Wen-tau Yih, Tim Rocktischel,
Sebastian Riedel, and Douwe Kiela. 2020. Retrieval-
augmented generation for knowledge-intensive nlp
tasks. In Proceedings of the 34th International Confer-
ence on Neural Information Processing Systems, NIPS
’20, Red Hook, NY, USA. Curran Associates Inc.

Teng Lin, Yizhang Zhu, Yuyu Luo, and Nan Tang. 2025.
Srag: Structured retrieval-augmented generation for
multi-entity question answering over wikipedia graph.
arXiv preprint arXiv:2503.01346.

Grégoire Mialon, Roberto Dessi, Maria Lomeli, Christo-
foros Nalmpantis, Ram Pasunuru, Roberta Raileanu,
Baptiste Roziere, Timo Schick, Jane Dwivedi-Yu, Asli
Celikyilmaz, Edouard Grave, Yann Lecun, and Thomas
Scialom. 2023. Augmented language models: a sur-
vey. Transactions on Machine Learning Research, 2023.
Publisher Copyright: © 2023, Transactions on Machine
Learning Research. All rights reserved.

Yujia Qin, Shihao Liang, Yining Ye, Kunlun Zhu, Lan
Yan, Yaxi Lu, Yankai Lin, Xin Cong, Xiangru Tang, Bill

622

Qian, Sihan Zhao, Runchu Tian, Ruobing Xie, Jie Zhou,
Mark Gerstein, Dahai Li, Zhiyuan Liu, and Maosong
Sun. 2023. Toolllm: Facilitating large language models
to master 16000+ real-world apis.

Marco Roberti, Giovanni Bonetta, Rossella Cancelliere,
and Patrick Gallinari. 2020. Copy mechanism and tai-
lored training for character-based data-to-text genera-
tion. In Machine Learning and Knowledge Discovery in
Databases: European Conference, ECML PKDD 2019,
Wiirzburg, Germany, September 16-20, 2019, Proceed-
ings, Part II, pages 648—664. Springer.

Timo Schick, Jane Dwivedi-Yu, Roberto Dessi, Roberta
Raileanu, Maria Lomeli, Eric Hambro, Luke Zettle-
moyer, Nicola Cancedda, and Thomas Scialom. 2023.
Toolformer: language models can teach themselves to
use tools. In Proceedings of the 37th International
Conference on Neural Information Processing Systems,
NIPS °23, Red Hook, NY, USA. Curran Associates Inc.

Hassan Soliman and Iryna Gurevych. 2025. A survey on
advances in retrieval-augmented generation over tabular
data and table question answering. In Proceedings of
the ACL Workshop on Reasoning over Large and Graph-
Structured Data (RLGMSD).

Jason Wei, Maarten Bosma, Vincent Y. Zhao, Kelvin
Guu, Adams Wei Yu, Brian Lester, Nan Du, Andrew M.
Dai, and Quoc V. Le. 2022. Finetuned language mod-
els are zero-shot learners. In The Tenth International
Conference on Learning Representations, ICLR 2022,
Virtual Event, April 25-29, 2022. OpenReview.net.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak
Shafran, Karthik Narasimhan, and Yuan Cao. React:
Synergizing reasoning and acting in language models.
International Conference on Learning Representations
(ICLR).

Xiaoxue Zang, Qian Ma, Felix Heide, Hao Zhou, Ming
Shi, Pawel Budzianowski, Tsung-Hsien Wen, and Mil-
ica Gasi¢. 2020. Multiwoz 2.3: A multi-domain task-
oriented dialogue dataset with additional annotation cor-
rections and state tracking baselines. In Proceedings of
the 2nd Workshop on Natural Language Processing for
Conversational AI (NLP4ConvAl).

Yizhe Zhang, Siqi Sun, Xiang Gao, Yuwei Fang, Chris
Brockett, Michel Galley, Jianfeng Gao, and Bill Dolan.
2022. Retgen: A joint framework for retrieval and
grounded text generation modeling. In Proceedings
of the AAAI Conference on Artificial Intelligence, vol-
ume 36, pages 11739-11747.

Qingxia Zhao, Xiaopeng Jin, Zhibin Wang, et al.
2023. Structgpt: A structured multimodal prompting
framework for task-oriented dialog. arXiv preprint
arXiv:2305.11887.

http://arxiv.org/abs/2307.16789
http://arxiv.org/abs/2307.16789
https://openreview.net/forum?id=gEZrGCozdqR
https://openreview.net/forum?id=gEZrGCozdqR
https://par.nsf.gov/biblio/10451467
https://par.nsf.gov/biblio/10451467

