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Abstract

In this paper, we demonstrate how Large Lan-
guage Models (LLMs) can effectively learn to
use an off-the-shelf information retrieval (IR)
system specifically when additional context is
required to answer a given question. Given the
performance of IR systems, the optimal strat-
egy for question answering does not always
entail external information retrieval; rather, it
often involves leveraging the parametric mem-
ory of the LLM itself. Prior research has iden-
tified this phenomenon in the PopQA dataset,
wherein the most popular questions are effec-
tively addressed using the LLM’s parametric
memory, while less popular ones require IR
system usage. Following this, we propose a
tailored training approach for LLMs, leverag-
ing existing open-domain question answering
datasets. Here, LLMs are trained to generate a
special token, ⟨RET⟩, when they do not know
the answer to a question. Our evaluation of the
Adaptive Retrieval LLM (ADAPT-LLM) on the
PopQA dataset showcases improvements over
the same LLM under three configurations: (i)
retrieving information for all the questions, (ii)
using always the parametric memory of the
LLM, and (iii) using a popularity threshold to
decide when to use a retriever. Through our
analysis, we demonstrate that ADAPT-LLM is
able to generate the ⟨RET⟩ token when it de-
termines that it does not know how to answer
a question, indicating the need for IR, while it
achieves notably high accuracy levels when it
chooses to rely only on its parametric memory.

1 Introduction

The task of question answering (QA) remains a
key focus in Natural Language Understanding re-
search. Benchmarks such as Natural Questions
(NQ) (Kwiatkowski et al., 2019), SQuAD (Ra-
jpurkar et al., 2016), and QuAC (Choi et al., 2018)
are commonly used to evaluate QA models. Large

Language Models (LLMs) now consistently outper-
form traditional methods on these datasets.

Two primary approaches are typically used for
QA with LLMs:

(i) Closed Book Question Answering: The
model relies solely on its parametric memory, en-
hanced through instruction tuning (Taori et al.,
2023) or few-shot prompting (Brown et al., 2020).
However, parametric memory is limited to the train-
ing data and may be outdated, missing post-training
information.

(ii) Open Book Question Answering: An LLM
is paired with an Information Retriever (IR) sys-
tem (Izacard and Grave, 2021; Zhu et al., 2021) to
access external context for more accurate answers.

Recent work by Mallen et al. (2023) highlights
the complexity of choosing between these strate-
gies. Using the PopQA dataset—14K questions
with popularity scores—they show that LLMs per-
form well on popular questions using only para-
metric memory, while IR helps with less popular
ones. Their findings support a hybrid approach:
rely on parametric memory for high-popularity
questions and use IR for the rest, guided by a fixed
popularity threshold. However, most QA datasets
lack popularity scores, making this strategy non-
generalizable.

Our study addresses whether LLMs can learn to
decide on their own when to invoke an IR system.
To investigate this, we analyze LLM performance
on an open-domain QA dataset, identifying which
questions it answers correctly and which it does
not. For incorrect responses, we annotate questions
with a special ⟨RET⟩ token to indicate the need for
additional context. Using this, we build a new train-
ing dataset where the LLM learns either to answer
directly or to retrieve context when uncertain (see
Figure 1). We refer to this model as ADAPT-LLM.
We evaluate ADAPT-LLM on PopQA, a strong
testbed for hybrid retrieval strategies. Our results
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Figure 1: The inference process of ADAPT-LLM step-by-step: given a question (step 1), an LLM decides (step
2) whether to answer the question directly (step 3) or to ask for additional contextual information, generating the
special ⟨RET⟩ token; for the latter, an off-the-shelf IR system is used to retrieve relevant context (step 4), which is
used alongside the question to prompt again the LLM for the final answer (step 5).

show:

• ADAPT-LLM consistently outperforms fixed
strategies, such as always retrieving context
or never retrieving.

• It performs comparably to methods that use
popularity scores—without relying on any
dataset-specific metric.

• When ADAPT-LLM chooses to retrieve con-
text, accuracy improves significantly; when it
answers directly, it also achieves high accu-
racy. This indicates effective judgment.

• The main performance bottleneck lies in the
IR system: accuracy with gold passages is
much higher than with retrieved ones.

These results highlight the value of adaptive re-
trieval for QA with LLMs. By training ADAPT-
LLM to decide when external information is nec-
essary, we show it is feasible to teach LLMs to use
retrieval selectively and effectively.

2 Related Work

Retrieval-Augmented Generation (RAG) (Lewis
et al., 2020) has improved many NLP tasks like
question answering (Karpukhin et al., 2020; Izac-
ard and Grave, 2021), truthfulness (Ji et al., 2023;
Lin et al., 2022), and language modeling (Guu et al.,
2020; Borgeaud et al., 2022). By grounding gener-
ation in retrieved text, smaller models can match
larger ones (Catav et al., 2024), and RAG helps
keep LLMs updated without costly retraining (Gao
et al., 2023). However, traditional retrieval (e.g.,
TF-IDF, BM-25 (Robertson et al., 2009)) relies on
keyword overlap and struggles with lexical gaps
(Berger et al., 2000). Transformer-based dense

retrieval models (Gao et al., 2021; Reimers and
Gurevych, 2019; Karpukhin et al., 2020) improve
performance but face challenges in zero-shot new
domains (Thakur et al., 2021). Retrieval quality
limits overall model performance and large indices
increase latency, harming real-time user experience
(Barnett et al., 2024). Meanwhile, as models scale,
their parametric knowledge grows (Kaplan et al.,
2020), enabling competitive open-domain QA us-
ing only internal knowledge (Liang et al., 2023;
Achiam et al., 2023; Touvron et al., 2023). This
motivates adaptive approaches (Schick et al., 2024;
Mallen et al., 2023): use the model’s parametric
knowledge when possible, and augment with re-
trieval only when needed. For example, Schick
et al. (2024)’s Toolformer learns to use external
tools via self-supervised API calls, boosting perfor-
mance but often overusing tools (e.g., search en-
gine used 99.3% in QA). In contrast, ADAPT-LLM
leverages parametric knowledge and reduces re-
trieval use to 83.99% while improving over vanilla
retrieval. Similarly, Mallen et al. (2023) propose
PopQA, a dataset with entity popularity scores to
decide when to retrieve: below a threshold, re-
trieve; above it, answer directly. This outperforms
vanilla retrieval but depends on unavailable pop-
ularity scores in real scenarios. Contemporane-
ous to our work, Erbacher et al. (2024) train an
LLM to balance hallucination risk and retrieval
cost. Our ADAPT-LLM similarly learns when to
retrieve, but also compares against baselines of al-
ways or never retrieving, showing the benefit of
adaptive retrieval. Finally, Roy et al. (2024) pro-
pose SELF-multi-RAG, which learns when to re-
trieve, how to rewrite conversational context for
retrieval, and how to assess passage relevance in
multi-turn QA, complementing our ADAPT-LLM
approach that focuses on balancing retrieval and
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parametric knowledge without rewriting.1

3 Adaptive Retrieval LLM
(ADAPT-LLM)

Adaptive retrieval refers to the model’s capabil-
ity to dynamically determine whether to retrieve
additional context information for generating an-
swers in question answering tasks. Unlike tradi-
tional models that either always incorporate context
or never consider it, adaptive retrieval allows the
model to selectively retrieve context based on the
specific requirements of each question.

This adaptive approach aims to optimize perfor-
mance by leveraging context only when necessary,
thereby enhancing the model’s ability to generate
accurate answers.

As depicted in Figure 1, the process of the
ADAPT-LLM unfolds in the following sequence:

1. The first prompt containing the question is
sent to the model (step 1 of Figure 1).

2. The ADAPT-LLM evaluates the prompt to de-
termine whether additional context is neces-
sary to answer the question effectively (step
2).

3. If the model determines that context is not
required, it directly produces a response to the
question by leveraging its parametric memory
(step 3).

4. If context is deemed necessary, the ADAPT-
LLM model returns a special token, repre-
sented as ⟨RET⟩, and an off-the-shelf IR sys-
tem is used to retrieve pertinent context based
on the question (step 4); the context is then
combined with the original question prompt
to form a comprehensive representation for
answer generation (step 5).

The decision-making process of ADAPT-LLM
enables the model to determine the necessity of
context for answering questions through dynamic
assessment of each prompt. This flexible behav-
ior allows the model to strike a balance between
utilizing context for enhanced understanding and
delivering direct answers when sufficient.

1All resources are publicly available at
https://github.com/tLabruna/Adapt-LLM

Algorithm 1: Training data creation
Input: Q: questions, A: answers, P:

passages, LLM
Output: DSAdapt: A training dataset for

Adaptive Retrieval

1 DSAdapt = init empty()
2 for q, gold ans, pass in (Q, A, P) do
3 ans = LLM(q)
4 if ans = gold ans then
5 inst =

build instance(’parametric prompt’,
q, gold ans)

6 DSAdapt.add(inst)
7 end
8 else
9 inst1 =

build instance(’parametric prompt’,
q, ”¡RET¿”)

10 DSAdapt.add(inst1)
11 inst2 =

build instance(’context prompt’, q,
gold ans, pass)

12 DSAdapt.add(inst2)
13 end
14 end
15 return DSAdapt

3.1 Training ADAPT-LLM

Here, we delineate the methodology employed to
train our ADAPT-LLM model. The process of craft-
ing the training data, denoted as DSAdapt, is pre-
sented in Algorithm 1.

We begin by selecting an open-domain question
answering dataset containing questions Q, asso-
ciated context passages P , and corresponding an-
swers A. We initialize DSAdapt to an empty set
(line 1 of the algorithm). For each question in Q,
we leverage the base LLM without any retrieval
mechanism to perform a zero-shot inference (line
3). This step allows us to differentiate questions for
which the model generates correct answers from
those where its responses are inaccurate. This pro-
cess can be understood as a way to discover what
the base LLM knows due to its parametric mem-
ory. For questions where the model’s response is
accurate (line 4), we build a training set instance
incorporating the following prompt, which we call
parametric prompt:

Prompt: Answer the question Q. If
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you need help answer <RET> to get
the context. Q: {...}

Alongside this prompt, we include the corre-
sponding question from Q and the golden answer
from A, collectively forming the instance (line 5),
which is subsequently appended to the DSAdapt

dataset (line 6). This prompt is always used with-
out context and serves to teach the model to either
answer directly or to signal that it needs context.
In contrast, if the LLM fails to produce a correct
response to the question (line 8), we build two
different instances. The first employs the same
parametric prompt as previously described, with
⟨RET⟩ designated as the answer (line 9), indicating
the necessity for additional context. The second
prompt, termed context prompt, encompasses con-
textual information alongside the question:

Prompt: Answer the question Q
given the context C. Q: {...}, C:
{...}

For this instance, we include the prompt, the
question from Q, the golden answer from A, and
the corresponding context passage from P (line
11). This two-stage supervision helps the model
decide when it needs external knowledge and how
to use it effectively once retrieved.

After populating the dataset with both types of
prompts for questions where the LLM could not
respond accurately and only the parametric prompt
with golden answers for all other questions, our
training set DAdapt is prepared for the subsequent
fine-tuning phase. The fine-tuning process entails
training the base LLM on our dataset, resulting in
the ADAPT-LLM model.

This approach ensures that the model effectively
learns to discern when context is necessary for an-
swering questions, or to provide a direct response
when it suffices, as well as answer directly when
provided with context.

3.2 Inference
In the inference phase, we utilize the fine-tuned
model to generate responses to unseen questions.
We employ the same prompts used during the train-
ing phase, as outlined in Section 3.1. Initially, the
model is prompted to either provide a direct re-
sponse or return ⟨RET⟩ if it is unsure of the answer.

If the model returns ⟨RET⟩, we proceed with
information retrieval to acquire relevant context by
means of an off-the-shelf IR system. Subsequently,

we augment the question with the retrieved context
and prompt the model again using the second type
of prompt introduced during the training phase.

4 Experiments and Results

In this section, we outline the experimental frame-
work aimed at assessing the performance of the pro-
posed adaptive retrieval approach, ADAPT-LLM.
We begin by describing the datasets utilized (Sec-
tion 4.1), followed by an overview of our base
model (Section 4.2), the different configurations
of the base model (Section 4.3), and the training
details (Section 4.4). Subsequently, we introduce
the three primary experiments:

1. Evaluation of ADAPT-LLM performance
compared to the following baseline models:
(i) an LLM that retrieves contextual informa-
tion for all questions, and (ii) an LLM that
exclusively relies on its parametric memory
without using an IR system for any question
(Section 4.5).

2. Analysis of ADAPT-LLM’s ability to deter-
mine when extra context is necessary to an-
swer a question (Section 4.6).

3. Comparison with the state-of-the-art approach
for PopQA (Section 4.7).

4.1 Datasets

To ensure comprehensive training and evaluation
of our models, we specifically selected three di-
verse question answering datasets. For training, we
chose NQ (Kwiatkowski et al., 2019) and SQuAD
(Rajpurkar et al., 2016), as they are widely recog-
nized datasets that assess factual knowledge and
are based on Wikipedia. For evaluation, we opted
for PopQA (Mallen et al., 2023). Below are brief
descriptions of each dataset:

NQ The Natural Questions dataset (Kwiatkowski
et al., 2019) is a collection of real-world ques-
tions derived from Google search queries, accom-
panied by long-form text passages obtained from
Wikipedia articles and providing a diverse range of
topics and natural language variations. We utilize
this dataset for training our models in the experi-
ments.

SQuAD The Stanford Question Answering
Dataset SQuAD (Rajpurkar et al., 2016) is a widely
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Training Set Model configuration Accuracy

NQ
NEVER RETRIEVE 21.43%

ALWAYS RETRIEVE 35.86%
ADAPT-LLM (ours) 36.77%

SQUAD
NEVER RETRIEVE 21.22%

ALWAYS RETRIEVE 36.59%
ADAPT-LLM (ours) 38.15%

Table 1: Performance comparison of Llama-2 models
trained on the NQ and SQuAD datasets using differ-
ent retrieval configurations (NR-LLM, AR-LLM, and
ADAPT-LLM), evaluated on the PopQA test set. Exact
match accuracy is reported for all models.

utilized dataset in the field of natural language pro-
cessing and comprises questions posed by crowd-
workers on a diverse range of Wikipedia articles,
along with relevant paragraph passages serving as
context. We utilize this dataset for training our
models in the experiments.

PopQA The Popular Questions and Answers
dataset (Mallen et al., 2023) consists of curated
questions sourced from various online platforms,
encompassing a wide range of domains and styles.
Given the variability in the effectiveness of context
retrieval strategies observed in this dataset, we se-
lect PopQA as our test set to evaluate the language
models’ performance in determining when context
is necessary for accurate answer provision.

4.2 Base Model
In our experiments, we employ Llama-2 (Touvron
et al., 2023) as our base LLM. Llama-2 is an open-
source instruction-based LLM, which comes in ver-
sions of 7B, 13B, and 70B parameters. The model
is pretrained on an expanded corpus sourced from
publicly available online data sources. This cor-
pus offers a 40% increase in size compared to its
predecessor, contributing to the model’s enhanced
performance and capabilities.

Additionally, Llama-2 features an extended con-
text length, effectively doubling its capacity to pro-
cess and comprehend longer sequences of text.
These enhancements significantly improve the
model’s effectiveness across various natural lan-
guage understanding tasks. Specifically, for our
experiments, we utilize the Llama-2 model with
7B parameters, leveraging its robust capabilities
for our specific research objectives.

4.3 Model Configurations
We conduct the experiments using three different
model configurations, corresponding to the three

NQ SQuAD PopQA
Questions 58,880 87,599 14,282

Words/question 9.20 10.06 6.62
Words/answer 2.26 3.16 2.04

Table 2: Comparison of the three datasets we use for our
experiments, i.e. SQuAD, NQ and PopQA. For each
of them we provide the number of questions, and the
average number of words per question and answer.

different ways in which an LLM and an IR system
can be combined:

• Adaptive Retrieval (ADAPT-LLM). The
ADAPT-LLM model dynamically decides
whether to retrieve context based on the ques-
tion and its perceived need for contextual in-
formation, as explained in Section 3.1. As the
IR system, we use Contriever (Izacard et al.,
2022), which is an unsupervised model pre-
trained on a large corpus, followed by fine-
tuning on MS MARCO (Nguyen et al., 2016).
We only retrieve the most relevant passage ac-
cording to the IR system to prompt the base
LLM for the final answer.

• Never-Retrieve (NR-LLM). This model con-
figuration is trained to answer questions solely
based on the question text without consider-
ing any contextual information. It serves as
the baseline for evaluating the performance of
question answering models in the absence of
context.

• Always-Retrieve (AR-LLM). In contrast to
the NR-LLM model, this configuration always
retrieves context passages to assist in answer-
ing questions. It is trained to utilize context
consistently for generating answers. To ensure
a fair comparison with ADAPT-LLM, we also
use Contriever (Izacard et al., 2022) as the
IR system and only retrieve the most relevant
passage as context.

4.4 Training Details
For all three model configurations (ADAPT-LLM,
AR-LLM and NR-LLM) and both training sets
(SQuAD and NQ), we adhere to the parameter con-
figuration established in Alpaca-Lora (Taori et al.,
2023) which includes a batch size of 128, three
epochs, and a fixed learning rate of 3e-4. We incor-
porated LoRA (Low-Rank Adaptation) regulariza-
tion, with parameters configured for r=8, alpha=16,
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Training ⟨RET⟩ Usage ⟨RET⟩ No ⟨RET⟩
Acc. w/ context Acc. w/o context Acc. w/ context Acc. w/o context

NQ 87.26% 33.04% 14.65% 55.72% 62.36%
SQuAD 83.93% 33.40% 9.94% 57.73% 62.92%

Table 3: Results of the usage of the ⟨RET⟩ token in the ADAPT-LLM model. The first column shows the percentage
of PopQA questions for which the model requests additional context. The second column focuses on the questions
for which ADAPT-LLM asks for context (⟨RET⟩), comparing the performance between answering those questions
with and without context. The last column (No ⟨RET⟩) is for questions which ADAPT-LLM decides to answer
directly. We also compare the performance with and without the context retrieved by the IR system.

and a dropout rate of 0.05. Training was performed
on an NVIDIA A40 GPU, for an average training
time of approximately 8 hours. We do not perform
any model selection and we use the last checkpoint
after 3 epochs of training.

4.5 Validating the Adaptive Retrieval
Approach

To assess the effectiveness of our adaptive approach
(ADAPT-LLM) compared to the NR-LLM and AR-
LLM baselines, we fine-tuned the Llama-2 model
on both the NQ and SQuAD datasets using all
three configurations. For NR-LLM and AR-LLM,
we constructed training samples using question-
answer pairs with instruction prompts: NR-LLM
was prompted to answer without context, while
AR-LLM received both question and context. In
contrast, ADAPT-LLM was trained using the two-
step approach described in Section 3.1, resulting
in 74.72% of questions marked with the ⟨RET⟩ to-
ken for NQ and 87.49% for SQuAD. All models
were evaluated on the PopQA dataset. During in-
ference, NR-LLM and AR-LLM followed their re-
spective prompting strategies, while ADAPT-LLM
used the procedure from Section 3.2. We used
Exact Match Accuracy as the evaluation metric,
comparing generated answers to the annotated gold
answers in PopQA. Table 1 shows that across both
training sets, ADAPT-LLM consistently outper-
forms NR-LLM and AR-LLM. NR-LLM yields
the lowest scores, with an accuracy gap of around
14 points, confirming that Llama-2’s parametric
memory alone is insufficient for PopQA.

The performance gap between AR-LLM and
ADAPT-LLM is smaller. ADAPT-LLM achieves
36.77% and 38.15% accuracy on PopQA when
trained on NQ and SQuAD, respectively, compared
to 35.86% and 36.59% for AR-LLM. The best re-
sults are obtained with SQuAD.

Although both NQ and SQuAD are Wikipedia-
based like PopQA, we examine which training set

better aligns with the evaluation set. Table 2 com-
pares their characteristics.

NQ is closer in question and answer length to
PopQA, but SQuAD’s larger size (∼87K vs. ∼58K
questions) may explain its better results. While fur-
ther analysis is needed to fully understand dataset
suitability—beyond the scope of this work—these
findings suggest that scale plays a key role.

4.6 Contextual Retrieval Decision Analysis
In this experiment, our objective is to once again
evaluate the effectiveness of the ADAPT-LLM
model, this time focusing on its ability to accu-
rately determine when additional context is needed.
We follow these steps:

1. Run inference on ADAPT-LLM over the
PopQA test set, prompting it to either return
an answer directly or output ⟨RET⟩ if more
context is needed.

2. If ⟨RET⟩ is returned:

2.1. Provide the retrieved context to ADAPT-
LLM and collect its final answer.

2.2. Run the same question on NR-LLM with-
out context.

3. If ADAPT-LLM answers directly:

3.1. Run ADAPT-LLM without context.
3.2. Run AR-LLM with context retrieved by

the IR system.

Table 3 presents the results of this experiment.
The first thing to note is that the ADAPT-LLM
model generates the ⟨RET⟩ token for approxi-
mately 82-83% of the questions in the PopQA
dataset, with similar ratios observed across both
training datasets. This observation aligns with
the low performance of the NR-LLM configura-
tion demonstrated in Table 1. However, ADAPT-
LLM consistently determines when additional con-
text is required to answer a question accurately.
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Figure 2: Histograms depicting the proportion of questions where ADAPT-LLM trained on NQ (left) and ADAPT-
LLM trained on SQuAD (right) ask for extra context for different popularity score intervals.

Passage Type SQuAD Acc. (%) NQ Acc. (%)

Gold 89.42 69.76
Contriever 22.49 27.04

Table 4: Accuracy of ADAPT-LLM on SQuAD and NQ
dev sets using gold vs. Contriever-retrieved passages.

Across both the NQ and SQuAD training datasets,
ADAPT-LLM exhibits significantly higher accu-
racy when retrieving context compared to the NR-
LLM model’s accuracy without context (as indi-
cated in the ⟨RET⟩ column of Table 3). Specifically,
for the NQ dataset, the accuracy of the ADAPT-
LLM model when requesting context is 33.04%,
whereas the accuracy of the NR-LLM model with-
out context retrieval is notably lower at 14.65%.
Similarly, for the SQuAD dataset, ADAPT-LLM
achieves an accuracy of 33.40% with context re-
trieval, whereas the NR-LLM model’s accuracy
without context is substantially lower at 9.94%.

Finally, the last column of Table 3 (No ⟨RET⟩)
shows the performance of ADAPT-LLM when an-
swering questions based solely on its parametric
memory. As can be seen, accuracies above 62%
are obtained when no context is utilized, provid-
ing further evidence that ADAPT-LLM effectively
discerns between retrieving context and providing
direct answers to questions. Additionally, we eval-
uate the performance of these questions when con-
text is added to the input, revealing significant de-
creases in accuracy of up to 7 absolute points.

These findings provide insights into the effec-
tiveness of the decision-making process employed
by the ADAPT-LLM model in determining the ne-
cessity of additional context for accurate response
generation and present empirical evidence of the
necessity of performing dynamic context retrieval
in improving the accuracy of question answering

models. However, it is notable that the overall per-
formance of the model when answering questions
with retrieved context, as observed in Table 3 (ap-
proximately 33%), is relatively low.

To further explore this observation, we conduct
an additional experiment: evaluating ADAPT-LLM
(both versions trained on NQ and SQuAD) on the
NQ and SQuAD development splits, comparing
performance when using the gold passages of the
dataset and the context retrieved by our IR system,
Contriever (Izacard et al., 2022). Unfortunately,
PopQA does not provide the gold passages, so di-
rect evaluation there was not possible.

Table 4 presents the results of this experiment.
A significant performance difference is observed
between using the gold passage and the top passage
retrieved by Contriever for both datasets (approxi-
mately 67 absolute points for SQuAD and 42 for
NQ). This indicates that Contriever, and current IR
systems in general, do not consistently retrieve the
most relevant passage to answer a given question.

This observation underscores the importance of
retrieving multiple documents as context, as seen
in the most successful open-domain QA systems
(Izacard and Grave, 2021), and highlights its im-
pact on the overall performance of ADAPT-LLM in
PopQA. To further validate the behavior of ADAPT-
LLM when requesting additional context, Figure 2
illustrates the proportion of questions for which our
model generates the ⟨RET⟩ token, aggregated by
popularity score intervals (left image for ADAPT-
LLM trained on NQ and right image for SQuAD).
Mallen et al. (2023) suggest that high-popularity
questions can be adequately answered using the
parametric memory of the LLM, while lower popu-
larity scores necessitate extra context.

In Figure 2, we observe this pattern for both ver-
sions of ADAPT-LLM, indicating that our model,
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despite lacking access to popularity scores during
training or inference, has learned effective criteria
for requesting additional context.

4.7 Comparison with state-of-the-art methods

We conducted a comparative analysis between our
ADAPT-LLM model and the current state-of-the-
art approach for PopQA proposed by Mallen et al.
(2023). Their methodology relies on the popularity
score annotated in the PopQA dataset to determine
whether a question requires additional context. To
establish the optimal threshold for determining
question popularity, Mallen et al. (2023) split the
PopQA dataset into 75% as a development set for
threshold determination and 25% as a test set. In
the original paper, they apply this methodology to
various LLMs available at that moment (Llama-2
was not released yet). To ensure a fair comparison
between ADAPT-LLM and the popularity-based
method, we replicated their approach using the
Llama-2 7B model to determine the best popularity
score threshold (found to be 707,000) using the
same PopQA development set. This allowed us
to obtain results consistent with their methodol-
ogy while utilizing our base LLM. Similar to the
original results in Mallen et al. (2023) when using
smaller models, the popularity score threshold is
almost equivalent to always retrieving contextual
information for Llama-2 7B. The IR usage is of
99.86% as presented in Table 5. This clearly shows
how the popularity score method struggles with
smaller size models, being GPT-3 DAVINCI-003
the only model to get a IR usage below 80% in
the original paper when using adaptive retrieval
with the Contriever. Subsequently, we evaluated
our ADAPT-LLM configuration on the same 25%
test set split and compared the outcomes with those
obtained using the method described by Mallen
et al. (2023). This systematic comparison enabled
us to assess the efficacy of our ADAPT-LLM model
in relation to the current state of the art. The re-
sults of this experiment are presented in Table 5.
We observe comparable performance between the
replicated approach of Mallen et al. (2023) and
ADAPT-LLM when trained on NQ and SQuAD
datasets and tested on the 25% subset of PopQA.
It’s worth mentioning that ADAPT-LLM does not
utilize any information from PopQA, unlike Mallen
et al. (2023), who directly use the popularity score
and a 75% portion of PopQA dataset to find an op-
timal value for that popularity score. This method-

Model IR (%) Acc. (%)

POPULARITY SCORE 99.86 36.81
ADAPT-LLM (NQ) 87.22 35.30
ADAPT-LLM (SQUAD) 83.99 37.29

Table 5: Accuracy and IR usage of ADAPT-LLM
(trained on NQ and SQuAD) vs. a POPULARITY
SCORE-based strategy using Llama-2, following Mallen
et al. (2023).

ology is not generalizable to other open-domain
question answering tasks since the popularity score
is a unique feature of PopQA. However, ADAPT-
LLM can be applied to any similar dataset. Given
these characteristics, we believe that the results ob-
tained by ADAPT-LLM are even more significant,
offering comparable performance to an approach
that utilizes dataset-specific information. These
findings substantiate the validity of our approach,
demonstrating its effectiveness even when trained
on datasets different from the one used for testing.

5 Conclusions

In this paper, we introduce ADAPT-LLM, an LLM
trained to decide when additional context is neces-
sary for answering a question, rather than relying
solely on its parametric memory. ADAPT-LLM is
the result of fine-tuning a base LLM on an open-
domain question answering dataset that has been
modified to differentiate between questions answer-
able with the LLM’s parametric memory alone and
those requiring supplementary context. To con-
struct these training datasets, we initially subject
the base LLM to zero-shot evaluation to determine
its accuracy in answering questions. For questions
where the model’s response is incorrect, we train
the LLM to generate a special token, ⟨RET⟩, in-
dicating the need for additional context. Through
extensive experiments conducted on the PopQA
dataset, we show that ADAPT-LLM performs better
than its two fixed alternatives: never retrieving and
always retrieving relevant context information. Fur-
thermore, our findings highlight ADAPT-LLM’s
capability to effectively discern the necessity of ad-
ditional context, which is the primary objective of
this work. Future work could explore methods to
enhance performance when utilizing an IR system,
such as incorporating learnable sequential retrieval
techniques. Furthermore, we believe it would be
valuable to conduct a more in-depth analysis of the
interaction between training and testing datasets in
the development of ADAPT-LLM systems.
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