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gian@uffs.edu.br

Fernando Perez-Tellez
TU Dublin, Ireland

Fernando.PerezTellez@TUDublin.ie

Robert J. Ross
TU Dublin, Ireland

robert.ross@TUDublin.ie

Abstract

Understanding medical terminology is critical
for effective patient-doctor communication, yet
many patients struggle with complex jargon.
This study compares Machine Learning (ML)
models and Large Language Models (LLMs) in
predicting medical term complexity as a means
of improving doctor-patient communication.
Using survey data from 252 participants rating
1,000 words along with various lexical features,
we measured the accuracy of both model types.
The results show that LLMs outperform tra-
ditional lexical-feature-based models, suggest-
ing their potential to identify complex medical
terms and lay the groundwork for personalised
patient-doctor communication1.

1 Introduction

Laypeople often struggle with medical terminol-
ogy due to factors such as limited health literacy,
language barrier, or personal problems. This lim-
ited understanding of medical terminology poses
significant challenges in healthcare systems. Poor
comprehension of health records, medication in-
structions, or public education materials can lead to
treatment non-adherence, miscommunication dur-
ing clinical consultations, and even avoidable hos-
pitalisations. Studies show that many individuals
have only basic health literacy, and some conceal
poor reading skills, leading doctors to overestimate
their understanding (Weiss, 2007). On the other
hand, LeBlanc et al. (2014) found that soon-to-be
physicians underestimated patients’ medical text
comprehension abilities. Even patient information
leaflets may not be written in accessible language,
further compounding these issues for vulnerable
groups such as Medicaid recipients (O’Sullivan

1The supplementary material will be available
on https://huggingface.co/liliya-makhmutova and
https://github.com/LiliyaMakhmutova

et al., 2020). Non-native speakers may also lack rel-
evant medical vocabulary (Al Shamsi et al., 2020).
Others may disengage from healthcare-related in-
formation due to low interest (McCarron et al.,
2019), (dis)trust in the healthcare system (Tsai
et al., 2018; Tunç et al., 2025), inaccessible health
records (van Mens et al., 2020; Neves et al., 2020),
or personal challenges (Murugesu et al., 2022). Ad-
dressing these gaps is critical for designing clearer
Electronic Health Record (EHR) interfaces, patient
information materials, and AI-driven tools that min-
imise jargon and improve accessibility of medical
records.

Each person comes with a unique background
and experience, which influences their understand-
ing of medical terms. As a result, people can mis-
interpret medical terminology by relying on their
existing knowledge. Notable examples of such
misunderstandings were documented by Gotlieb
et al. (2022), including cases where individuals
misinterpreted “impressive x-ray findings” or “pro-
gressing tumour” as positive news due to the collo-
quial meanings of these terms. Another example is
the word “fertilisation” which in medical contexts
refers to “the joining of sperm and egg” while in
agricultural contexts it suggests “(soil) enrichment”
(both derived from the Latin word “fer” meaning
“to bear, carry”). Language background can also
lead to confusion. For instance, “angina” (short for
“angina pectoris” – “chest pain”) is commonly used
to refer to tonsillitis in many languages.

Several studies focus on general medi-
cal/biological terms (Shardlow et al., 2020; Grabar
et al., 2014), while others examine specific
terminology (e.g., X-rays, diseases) (Sugihara
et al., 2024; Pieterse et al., 2012; Zimmermann
et al., 2021; Lalor et al., 2024). Most research
exploring lexical understandability measures term
recognition rather than comprehension of meaning.
Few studies investigate medical term complexity
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with a personalization component (Tran et al.,
2025; Asthana et al., 2024). Furthermore, some
publications analyse this topic using limited sets of
terms (Gotlieb et al., 2022; O’Connell et al., 2013;
Lerner et al., 2000; Briem et al., 2004).

In this paper, we explore features and models for
predicting the complexity of medical terms. This
study may be helpful for clinicians in identifying
potentially ill-understood jargon that could confuse
patients. Specifically, our goal is to understand
which fairly common medical words or phrases (jar-
gon) are unknown or misunderstood by laypeople.
Another key question addressed is how different
lexical characteristics of words influence their com-
prehension, as well as the use of LLMs to evaluate
medical term complexity. Our key contributions
are: (1) A curated dataset of 1,000 medical terms,
annotated with familiarity and complexity scores
based on responses from 252 participants; (2) An
evaluation of traditional machine learning models
versus the use of state-of-the-art LLMs to predict
term complexity, along with an analysis of informa-
tive features; and (3) A demonstration that LLMs
slightly outperform traditional models, achieving
the lowest prediction errors (RMSE: 0.21).

2 Related Work

Early research by Zeng et al. (2005) and Kauchak
and Leroy (2016) highlights the limitations of con-
ventional readability measures, such as syllable
count, word length, or easy-word lists, in assess-
ing the complexity of medical terms, arguing that
these metrics often do not predict true compre-
hension barriers. Zeng et al. (2005) pioneered a
personalised approach, modelling term familiarity
based on individual factors (e.g., education, age,
native language status) and word-level characteris-
tics (e.g., corpus frequency, Dale-Chall easy-word
percentage), finding education to be the strongest
predictor. Similarly, Kauchak and Leroy (2016)
showed that while word length correlates with per-
ceived difficulty, term frequency better predicts
actual understanding, although their forced-choice
survey method may inflate guessing since false def-
initions are randomly selected. Likewise, Jiang and
Xu (2024) demonstrate that general readability met-
rics (e.g., FKGL, ARI) perform poorly on medical
texts unless augmented with jargon term counts,
reinforcing the need for an alternative approach.

Several studies identify term frequency as a re-
liable complexity indicator. Cherednichenko et al.

(2018) use frequency-based filtering for Ukrainian
medical terms, while Pylieva et al. (2019) and Sugi-
hara et al. (2024) integrate frequency features from
medical corpora and Wikipedia into machine learn-
ing models. Shardlow et al. (2020) further validate
that simple lexical features (word length, syllable
count) outperform contextual embeddings in pre-
dicting single-word complexity. Their dataset also
includes multi-word expressions, which tend to be
more complex than individual words, particularly
in biomedical texts.

The role of context emerges as critical in later
studies. Kwon et al. (2022) focus on EHR jargon,
pre-training models on Wikipedia hyperlinks to im-
prove jargon span detection. Their work highlights
challenges with abbreviations (“ENT”, “q.6 h”),
person-name-based medical concepts (“Azzopardi
effect”), and device names (“BiPap”). They also
found that the masked language model comple-
ments the model solely based on word frequencies.
Jiang and Xu (2024) extend this by categorising
jargon into Google-easy (searchable) and Google-
hard (obscure) terms, proposing customised simpli-
fication strategies.

Discrepancies in laypeople’s understanding of
medical terminology are a recurring theme in the
literature. Pylieva et al. (2019) and Sugihara et al.
(2024) report that only 22–27% of medical terms
are correctly understood by annotators. Sugihara et
al. also note demographic variations (for example,
younger males tend to struggle with terms related
to pregnancy and childbirth). Additionally, Cheng
Sheang et al. (2022) observe low inter-annotator
agreement (κ = 0.175-0.316) to identify complex
words in French clinical texts, further highlighting
the subjectivity of complexity judgments.

To help laypeople understand medical jargon, nu-
merous tools have been developed. Initially, these
efforts focused on synonym dictionaries and di-
rect word substitution (Alfano et al., 2020; Kan-
dula et al., 2010; Keskisärkkä, 2012; Kvist, 2013).
With advances in NLP, machine learning models
were trained to address this task (Phatak et al.,
2022; Flores et al., 2023; Lu et al., 2023; Botar-
leanu et al., 2020; van den Bercken et al., 2019;
Van et al., 2020; Joseph et al., 2023; Basu et al.,
2023). Subsequently, context-aware simplification
systems emerged, leveraging NLP to identify and
replace complex terms with lay-friendly alterna-
tives in EHRs and patient portals (Jiang and Xu,
2024; Kwon et al., 2022). Similarly, mobile apps
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like MediReader (Hendawi et al., 2022) and AI-
driven chatbots (Bhatt and Vaghela, 2024; Khamaj,
2025) now provide real-time simplifications.

3 Methodology

In this study, the objective was to assess laypeo-
ple’s understanding of common medical terminol-
ogy they are likely to encounter during hospital
admission, in EHRs, or in patient information
leaflets. Although Pylieva et al. (2019) and Sugi-
hara et al. (2024) have highlighted significant dis-
crepancies in the comprehension of medical terms
(with only around 25% of terms correctly under-
stood by their audience), our work diverges by fo-
cusing on high-frequency terms to ensure practical
relevance. Unlike studies with randomly selected
distractors (such as Kauchak and Leroy (2016)),
which can inadvertently bias responses toward the
most plausible answer, we manually curated all in-
correct options to rigorously test participants’ true
understanding. Our study also measures the level
of term recognition prior to correct comprehension.

Our study was carried out in three main phases:
(1) Dataset curation, where we systematically se-
lected high-frequency medical terms from diverse
sources to ensure relevance and coverage; (2) An-
notation and labelling of the dataset, where we
designed and administered a questionnaire to as-
sess laypeople’s comprehension; and (3) Dataset
analysis, where we utilised different models and
features to evaluate term complexity.

3.1 Terms Selection

The objective of this step was to compile a compre-
hensive and balanced set of medical terms likely
to confuse patients, ensuring coverage across vari-
ous sources while filtering for relevance, frequency,
and practicality. To achieve this, three sources of
terms were used.

The first source comprised medical terms identi-
fied through a conventional search engine (Google)
query for pages related to confusing medical ter-
minology. The query “medical terms that confuse
patients” returned 198 web pages, though not all
contained relevant unique content or were acces-
sible. After the elimination of irrelevant or cor-
rupted pages, 166 web pages remained, yielding
an average of 130 unique terms per page (12,533
unique terms in total). Initially, Gemma2:27B
(Gemma Team, 2024) and ChatGPT-4o-mini (Ope-
nAI, 2024) were used to extract medical terms from

4,096-character text chunks of the web pages. The
prompts requested enumerated lists of (1) “terms
used in hospitals, including anatomical ones”, and
(2) “medical terms that can confuse patients”.
However, both models occasionally missed terms,
necessitating a switch to manual extraction.

Secondly, multiple medical dictionaries (Baker,
2004; Stöppler, 2013; Merriam-Webster; EMA;
Acland, a,b; Law and Martin, 2020) were used
to obtain more academic medical terms (27,565
unique terms in total). To account for the lack
of recent COVID-19 terminology, we added these
terms separately, obtaining them from multiple web
pages (50 terms found through the Google query

“medical terms related to COVID-19”).
Finally, as the third source of medical terms,

ChatGPT-4o-mini was used. The model was
prompted with: “Output an enumerated list of
1500 medical terms or phrases that usually con-
fuse patients”. Although instructed to produce
1,500 terms, the initial output contained signifi-
cantly fewer. After three prompting attempts, the
model generated approximately 1,950 non-unique
terms. Following manual filtering, only 125 unique
and relevant terms remained.

As the next step, for each term from the three
sources, its absolute frequency was obtained from
the NGRAMS website2. Terms were filtered to
include only those with an absolute frequency be-
tween 400,000 and 1,500,000. This range was cho-
sen as a compromise: it avoids selecting too many
“obvious” terms (which can be difficult to define
simply and concisely in the next step) while also
excluding terms that may be unfamiliar to most
people. Words within this frequency range were
uniformly and randomly sampled from the three
sources. During the creation of the questionnaires,
many selected words were replaced with others of
similar frequency for the following reasons:
1. Overly obvious terms: phrases whose mean-

ings are easily guessed if the individual terms
are known, definitions that include the term it-
self, or words that are difficult to simplify (e.g.
body surface, seriously ill, liquid form);

2. Low relevance to patients: specialised scien-
tific, chemical, or genomics terminology (e.g.
florid, hydrogen bond, messenger RNA, data
bank, The Lancet, Gaussian distribution);

3. Duplication: terms with minor differences (e.g.,
extra apostrophes, hyphens, or capitalisation) or

2https://ngrams.dev
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different grammatical forms (e.g., adjective vs.
adverb, plural vs. singular);

4. Uncommon or ambiguous abbreviations: e.g.
OCD, RBC, CSC;

5. Clarification modifications: terms requiring
additions for proper medical context (UFO →
the “UFO” procedure; Adonis (complex)).

After these adjustments, a final set of 1,000 words
was selected for the questionnaire.

3.2 Questionnaire Design and Execution

To gather data on the recognition and understanding
of medical terminology along with socioeconomic
information, we conducted a series of question-
naires. The 1,000 refined terms were distributed
across 25 questionnaires (40 terms each). This
distribution helped to strike a balance between par-
ticipant numbers and average completion time, as
lengthy surveys may reduce concentration and re-
sponse quality (Sharma, 2022). Each questionnaire
comprised four sections:
1. Self-rated confidence: Participants first rated

their confidence in medical terminology on a
10-point Likert scale;

2. Term familiarity: Respondents then evaluated
their familiarity with 40 terms using a 4-point
forced-choice scale: (1) “I never heard of this
term before”, (2) “I possibly heard this term be-
fore but I don’t know its meaning”, (3) “I think
I know something about this term and know
something about its definition”, (4) “I know this
term and know what it means”.

3. Definition accuracy: Participants selected the
correct definition for each term from four op-
tions (matching the terms in section 2). Cor-
rect definitions were sourced from online med-
ical articles, prioritizing simple wording. Non-
essential details were omitted without compro-
mising meaning. Terms requiring overly lengthy
explanations were replaced with frequency-
matched alternatives (see Section 3.1);

4. Socioeconomic data collection The final sec-
tion covered the following broad topics: (1) De-
mographics, (2) Language background, (3) Ge-
ographical exposure, (4) Education, interests &
profession, (5) History of serious illness (self or
close family).
To generate three false but plausible definitions

for each term, we utilised LLMs (ChatGPT-4o-mini
and DeepSeek-V3 OpenAI, 2024; DeepSeek-AI,
2025b). However, fully automating this process

proved unfeasible due to several limitations:
• Repetitive output: The models frequently pro-

duced similar definitions or variations on the
same theme;

• Formulaic structure: Generated definitions
often followed predictable patterns, such as:

“<Simple definition>, often caused by <...>, [typ-
ically occurring <...>, [especially <...>]]”;

• Overly personalized language: The outputs
sometimes used informal phrasing (e.g. “your
body” instead of “the body”), which differs from
standard medical definitions found online;

• Topic divergence: In some cases, the generated
definitions were entirely unrelated to the medical
term. For instance, for “cardiogram”, an LLM
might propose a definition unrelated to the heart
or diagnostic procedures. Such obviously incor-
rect options could make the correct answer easier
to identify (even for someone completely unfa-
miliar with the term). Although guessing might
help patients during consultations, and the exer-
cise may have value in itself, it fails to test confu-
sion between commonly misassociated medical
terms (e.g., “bipolar disorder” vs “multiple per-
sonality disorder”).

Consequently, we used manual data curation with
LLM assistance to create the false definitions.

The questionnaire was administered via Prolific3.
A total of 25 surveys were conducted, with ten
participants recruited for each survey. The aver-
age completion time was 18 minutes (median =
15 minutes, SD = 10 minutes). The following pre-
screening criteria were applied to most surveys: (a)
English as the first and primary language; (b) Par-
ticipants had to be born in, currently reside, and
hold nationality of one of the following countries:
Ireland, the United Kingdom, the United States,
Canada, Australia, or New Zealand. All partici-
pants who had previously completed any of the
surveys were excluded during pre-screening.

3.3 Dataset Analysis

Survey results were analysed from two perspec-
tives: the participants’ perspective (how well a
person performs) and the terms’ perspective (how
complex a term is). For the latter, we compare
how the term complexity score derived from par-
ticipant performance differs from that estimated by
LLMs. This analysis was performed using Gemma-
3:27B (Gemma Team, 2025), Phi-4:14B (Abdin

3https://www.prolific.com/
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et al., 2024), Mistral-Small-3.1:24B (Mistral AI,
2025), Llama-3.3:70B (Meta, 2024), DeepSeek-R1
(DeepSeek-AI, 2025a), and ChatGPT-4.1 (OpenAI,
2025)4.

To instruct an LLM to output evaluation scores,
Leng et al. (2023) recommends using an integer
(not float) scale, such as 0-3 or 0-4, for better re-
sults. Although a larger scale (0-10) was not rec-
ommended due to the “difficulty in coming up with
distinguishing criteria between all scores”, we com-
pared both the 0-4 and 0-10 scales to assess differ-
ences. For reliability, we performed five evalua-
tions per term and averaged the results. To balance
variability in LLM outputs with reliability and in-
struction adherence, we set the temperature to 0.2
(AI21, 2025).

As noted in multiple studies (Clarke and Dietz,
2024; Qin et al., 2024; Christiano et al., 2023),
LLMs perform better as rankers than scorers. Thus,
we sorted the terms in each questionnaire (40 terms
per ranking) using Python’s built-in sorting func-
tion with a custom LLM-based comparator. For the
comparator, we set the temperature to 0.0 and used
the following prompt: You are a helpful AI assis-
tant. Your task is to predict which term is likely to
be correctly understood by the majority of people:
term 1: <term 1> or term 2: <term 2 >. Output
1 if term 1 is likely to be correctly understood by
the majority of people than term 2. Otherwise, out-
put 2. Output just the number. This approach was
inspired by Wang et al. (2025), but we replaced
their Bubble Sort algorithm with Python’s Timsort
(Peters, 2002) to reduce LLM calls. Timsort effi-
ciently handles partially ordered data, and terms
were pre-sorted by frequency – a known correlate
of complexity (Hashimoto, 2021; Stewart et al.,
2022).

Finally, these ranking results were transformed
into complexity scores. For this conversion, we
calculated each term’s percentile within its ques-
tionnaire and mapped it to a number in the [0, 10]
interval using the percent point function (PPF) of
the Gaussian distribution N (5, 1.82) (University of
Illinois, 2025; Virtanen et al., 2020). The output
was then min-max scaled to the 0–1 range. This
two-step procedure mitigates the numerical insta-

4The following prompt was used for each of the listed mod-
els: You are a helpful AI assistant. A medical term is called
simple if it is understood correctly by the majority of people.
Your task is to evaluate the simplicity of the medical term

“<...>” on a scale from 0 (very complex) to <MAX GRADE>
(very simple). Output just the simplicity score.

bility that arises from the small scale σ of the Gaus-
sian distribution by getting 0-1 score in one step.

3.4 Features for Terms Complexity Prediction

We selected features for ML models to predict term
complexity based on three recent papers.

Inspired by Dalvean (2024), we used binary po-
sitional letter variables (e.g., “a2” = True – or 1 –
if the second letter is “a”). From their study, we se-
lected 66 significant binary letter position variables.
Dalvean solved the complexity prediction task for
individual words, whereas in our paper, a medical
term may consist of multiple words. In these cases
(e.g., “kidney failure”), values of positional letter
variables are averaged across words (e.g., if “a2” is
0 for “kidney” and 1 for “failure”, the term-level
value of “a2” variable is 0.5).

From Cheng Sheang et al. (2022), we adopted:
(1) FastText embeddings (reduced from 300 to 10
dimensions via PCA to avoid the curse of dimen-
sionality); (2) English Wikipedia absolute word
frequency; (3) Word character, syllable and vowel
count; and (4) Word rank (the frequency order from
the FastText pre-trained model). All features are
averaged for multi-word terms.

Finally, following Mosquera (2021), we in-
cluded the following features:
• Morphological: Word character, syllable

(Holtzscher, 2022), and morpheme counts (Cuko
and Warren, 2023); medical word parts number
(e.g. 2 for angiogram, as it consists of angio- and
-gram Tsutsumi, 2017); is acronym/abbreviation
(regex-based), word lemma/stem length (Bird
et al., 2009);

• Frequency: Google n-gram5 frequency (of a
full medical term), Wikipedia absolute word fre-
quency, Zipf frequency (Speer, 2023), Wikipedia
documents count (where a term appeared), con-
sonant frequency;

• Lexical: WordNet senses, synonyms, hypernyms,
and hyponyms counts (Miller, 1994);

• Psycholinguistic/other: Average age of acquisi-
tion (Kuperman et al., 2012), first year of appear-
ance (of a full term) using Google n-gram.

Similarly, the features are averaged for multi-word
terms (except Google n-gram-related ones).

4 Results and Analysis

In this section, we present our analysis of the
collected data (information obtained via question-

5https://books.google.com/ngrams/
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naires and Prolific demographic data) on the medi-
cal terms complexity.

4.1 Respondents’ Profiles and Terms Analysis

The mean and median age of all questionnaire re-
spondents were 39.1 and 37.0, respectively. The
age distribution was right-skewed, with one-third
of participants under 30 years of age.

Most of the participants were from the US, the
UK, South Africa and Canada, and more than 90%
were native English speakers. The gender distri-
bution was balanced, but the ethnicity was heavily
skewed toward White (70%), followed by Black
(20%) and Mixed/Asian/Other (10%).

For 231 respondents, it was known whether they
were students or not. Approximately 70% (170
people) were not students at the time of the survey,
with “Mathematics and Computer Science” and
“Health Sciences” being the most popular fields of
education. Only 3% of respondents reported hav-
ing less than a high school diploma, while 23% had
only a high school diploma. In addition to collect-
ing socioeconomic data, we collected information
on participants’ confidence in medical terminology
and whether they considered themselves medical
professionals. Participants rated their confidence in
medical terminology highly, with a mean of 6.3 on
a 0-10 Likert scale, a median of 7.0, and a standard
deviation of 2.4. Approximately 20% of the par-
ticipants identified as trained or practising medical
professionals (e.g., doctors, nurses, etc.).

To estimate participants’ fine-grained self-
reported knowledge of medical terms, a new vari-
able, familiarity score (y), was introduced:
y = 1 ∗ x1 + 2 ∗ x2 + 3 ∗ x3 + 4 ∗ x4, where:
x1 = number of times that the option “I had never
heard of this term before” was selected;
x2 = selections of “I possibly heard this term before
but I don’t know its meaning”;
x3 = selections of “I think I know something about
this term and know something about its definition”;
x4 = selections of “I know this term and know what
it means”.

With 40 terms per questionnaire, the possible
familiarity score ranges from 40 (if all responses
scored 1) to 160 (if all responses scored 4). The
distribution of familiarity scores was tested for nor-
mality using the Kolmogorov-Smirnov test (KS
statistic = 0.0708, p = 0.1523, n = 252), which did
not reject the null hypothesis of normality. How-
ever, the Shapiro-Wilk and D’Agostino K2 tests

suggested non-normality. The scores had a mean
of 112 and a median of 111 (SD = 23), with a
skewness of 0.08 and kurtosis of -0.7.

Let us examine how accurately participants se-
lected the correct definitions for all 40 terms in
the survey (participants’ accuracy score). The
mean and median values of the correct definition
selection score were approximately 0.6, indicating
that on average each participant correctly identified
about 24 out of the 40 terms.

Similarly, the term complexity score is deter-
mined by the success rate of participants in select-
ing its correct definition (calculated as the number
of correct selections divided by the total number
of attempts). A score close to zero indicates a very
difficult term (understood correctly by none of the
participants), while a score close to one represents
a very simple term (understood correctly by all
participants). The mean and median complexity
scores of the medical terms were approximately
0.6. The distribution showed slight negative skew-
ness (-0.24, indicating a tendency towards simpler
terms) and platykurtic kurtosis (-0.71).

We calculated the correlation between n-gram
frequencies (originally used for the selection of
medical terms, from ngrams.dev) and term famil-
iarity scores, finding both Pearson (r = 0.065) and
Spearman (ρ = 0.087) correlations to be negligible.
We then analysed absolute term frequencies using
an English Wikipedia dataset from BEEspoke Data
(2023) (counting total word occurrences). Here,
the Spearman correlation remained weak, though
slightly stronger (ρ = 0.25), while Pearson’s cor-
relation remained close to zero (r = 0.05). Finally,
we examined the correlation between term famil-
iarity scores and the number of Wikipedia docu-
ments containing each term, obtaining similar re-
sults (Pearson r = -0.03; Spearman ρ = 0.31).

4.2 Medical Terms Complexity Modelling

Understanding the complexity of medical terms is
valuable for improving readability and accessibility
in healthcare communication. It is interesting to
examine the features that contribute to term com-
plexity. Three sets of features (discussed in Sec-
tion 3.4) were analysed. For the score prediction
task (regression), multiple machine learning mod-
els were tested for each feature set, including linear
regression, decision tree, random forest, multilayer
perceptron (MLP), CatBoost, and support vector re-
gression (SVR) (Pedregosa et al., 2011; Dorogush
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et al., 2018), using 5-fold cross-validation.

First, as a baseline, a simple model based solely
on term frequencies (including n-gram frequency
from ngrams.dev, absolute term frequency from
Wikipedia, and the count of Wikipedia documents
in which a term appeared BEEspoke Data (2023))
was tested. The best-performing model was the
decision tree regressor, with an RMSE of 0.23 and
a Median Absolute Error (Median AE) of 0.17.
A second baseline was tested, which simply pre-
dicted the mean term complexity score of 0.62 (for
RMSE) and the median term complexity of 0.6 (for
Median AE). For this baseline, the RMSE was 0.23
and the Median AE was 0.20. Third, the aforemen-
tioned models were trained using only the familiar-
ity score. Here, the SVR and Decision Tree models
performed best, achieving an RMSE of around 0.20
and a Median AE of around 0.13. However, the
familiarity score was not used in subsequent exper-
iments, as it is a data leak in a way.

The best-performing model using the features
from Dalvean (2024) was CatBoost regression,
with an RMSE of 0.23 and a Median AE of 0.18
(while the decision tree regression model achieved
comparable results). The most important features,
based on CatBoost’s feature importance analysis,
were d1, n4, t1, u5, s5, s3, s2, and t3.

Among the models using features from
Cheng Sheang et al. (2022), random forest regres-
sion and CatBoost regression performed best, with
RMSE values around 0.22 and median absolute
errors around 0.16. For the CatBoost regressor, we
analysed both feature importance and Shapley val-
ues. The most influential features were Word Rank
from FastText, Embedding 0, and Embedding 3.

A model incorporating features from Mosquera
(2021) was explored. Again, the CatBoost regres-
sor performed best, while the decision tree regres-
sor and random forest regressor achieved compa-
rable results. The CatBoost model achieved an
RMSE of around 0.22 and a median absolute error
(AE) of 0.16. For this model, feature importance
and Shapley values were analysed. The most impor-
tant features included Zipf Frequency, Morpheme
Count, Google N-gram Frequency, Absolute Word
Frequency, Wikipedia Document Count, and Aver-
age Age of Acquisition. Finally, the BERT Base
Uncased model (Devlin et al., 2018) was fine-tuned
to predict the target scores based solely on the terms
themselves. This model achieved an RMSE of 0.23
and a median AE of 0.16.

Overall, the best models performed comparably,
with an RMSE of around 0.22 and a median AE of
around 0.16. These results are close to the baseline
model’s mean and median scores (0.23 and 0.20,
respectively). However, the performance remains
poor given that the target variable’s mean and me-
dian values are approximately 0.6. This suggests
that the tested variables provide little predictive
benefit.

4.3 LLMs Scoring and Ranking Capabilities
of Medical Terms Complexity Evaluation

The ranking and scoring abilities of LLMs were ex-
plored to predict the complexity of medical terms.
Table 1 presents the overall results for each LLM
(using both 0–4 and 0–10 evaluation scales). As
shown, Mistral-Small-3.1:24B and Phi-4:14B per-
formed best in terms of both RMSE and Median
AE. Contrary to the conclusion in Leng et al.
(2023), the 0–10 scale evaluation yielded better
results than the smaller 0–4 scale. The RMSE and
Median AE scores suggest that LLMs have some
potential for medical term complexity evaluation,
outperforming the approach of training ML models
using standard features (as discussed in the pre-
vious section). Additionally, refining prompts to
include conditions aligned with the target audience
may further improve performance.
LLM RMSE MAE
DeepSeek-R1 0.24 (0.26) 0.17 (0.20)
Gemma-3:27B 0.28 (0.30) 0.20 (0.22)
ChatGPT-4.1 0.28 (0.30) 0.20 (0.20)
Llama-3.3:70B 0.27 (0.28) 0.20 (0.20)
Mistral-Small-3.1:24B 0.21 (0.22) 0.14 (0.15)
Phi-4:14B 0.21 (0.21) 0.12 (0.15)

Table 1: Summary of LLMs complexity prediction re-
sults; MAE means Medium Absolute Error. The results
in parentheses are for 0-4 scale.

To compare the correlation between human and
LLM errors, we analysed the errors of DeepSeek-
R1 with a 0–10 scale (terms sorted by the absolute
difference between predicted and actual complexity
scores) and human error (terms sorted by the abso-
lute difference between normalised term familiarity
scores and actual complexity scores). The corre-
lation values were approximately 0.42 for Pear-
son and Spearman rank correlations and 0.3 for
Kendall’s Tau, indicating weak to moderate rela-
tionships. We also evaluated the Pearson and Spear-
man rank correlations between LLM-evaluated
complexity scores and ground-truth human-based
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scores to assess how well LLMs align with human
judgments. DeepSeek-R1 (0–10 scale) achieved
the highest overall correlation (0.51 Pearson, 0.52
Spearman), while other models showed compara-
ble results (Pearson: 0.42-0.50; Spearman: 0.46-
0.51).

The ranking abilities of LLMs were tested for
the task of ranking medical terms by complexity.
First, term complexities were derived from rank-
ings using the procedure described in Section 3.3.
The lowest RMSE score (0.25) was achieved by
the DeepSeek-R1 and ChatGPT-4.1 models, which
was very close to the other models’ scores (with a
maximum RMSE of 0.27). The median absolute
error was 0.20 for all models. Pearson and Spear-
man rank correlations between LLM-evaluated and
ground-truth complexity scores were also mea-
sured. ChatGPT-4.1 had the highest overall cor-
relation (Pearson: 0.48; Spearman: 0.50), while
Gemma-3:27B and Phi-4-14B had the lowest (Pear-
son: 0.36; Spearman: 0.39). Similarly, to compare
human and LLM errors, we analysed the correla-
tion between the absolute error of LLM rankings
and human error. This analysis yielded weaker
correlations: 0.25 for Pearson and Spearman, and
0.18 for Kendall’s Tau.

5 Discussion

The study analysed the complexity and awareness
of medical terms among respondents, mainly from
English-speaking countries. Most of the respon-
dents were confident in their knowledge of medical
terminology. Machine learning models showed lim-
ited success in predicting the complexity of medical
terms. CatBoost regression performed the best but
was only slightly better than the mean-guessing
baseline. LLMs demonstrated potential in assess-
ing term complexity, outperforming traditional ML
models. However, in terms of RMSE scores, both
traditional ML models and LLM achieved compa-
rable results (0.22 and 0.21, respectively), which
were only marginally better than baseline (0.23).
This suggests the inherent difficulty of the task and
the limitations of the features used for complexity
prediction. An important consideration is whether
the computational cost of LLMs (especially, “rea-
soning” ones) justifies such a small improvement.

6 Limitations

While Prolific provided a diverse participant pool,
its users do not fully represent real patient popu-

lations due to platform access requirements (e.g.,
often English proficiency, digital literacy). In ad-
dition, participants viewed isolated medical terms
without any context, which may affect understand-
ing in real world settings. Furthermore, although
we tested basic comprehension of terms from mul-
tiple medical domains, patients are typically more
familiar with terms related to their personal health
conditions. Medical terms are inherently com-
plex, and brief definitions (e.g., defining ADHD
as “a neurodevelopmental disorder with inatten-
tion/hyperactivity symptom”) cannot capture all
nuances (e.g. subtypes, life impact, or treatment
options). Thus, even selecting an accurate defini-
tion does not ensure full comprehension of a term.

7 Future work

For direct extensions of this work, testing patients
on medical terms from their own health records
would better assess their understanding of rele-
vant terminology. Another important consideration
is public misconceptions about medications. For
example, in our study, only 1 in 10 participants
correctly identified metronidazole as an antibiotic;
most incorrectly associated it with viral infections
or blood pressure management. Although based
on a small sample, such misunderstandings could
contribute to antibiotic resistance (Naghavi) and
warrant further investigation.

8 Conclusion

The results suggest that participants generally rate
their knowledge of medical terms highly, although
their actual understanding may vary. Despite the
modest performance gains of machine learning
models, LLMs offer a promising alternative for
assessing the complexity of medical terms. Further
development and integration of contextual and de-
mographic data could improve predictive accuracy
in future studies.
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Bubeck, Ronen Eldan, Suriya Gunasekar, Michael
Harrison, Russell J. Hewett, Mojan Javaheripi, Piero
Kauffmann, James R. Lee, Yin Tat Lee, Yuanzhi
Li, Weishung Liu, Caio C. T. Mendes, Anh Nguyen,
Eric Price, Gustavo de Rosa, Olli Saarikivi, Adil
Salim, Shital Shah, Xin Wang, Rachel Ward, Yue
Wu, Dingli Yu, Cyril Zhang, and Yi Zhang. 2024.
Phi-4 Technical Report.

Robert D. Acland. a. Acland’s Video Atlas of Human
Anatomy: A-Z INDEX. Accessed in October, 2024.

Robert D. Acland. b. Acland’s Video Atlas of Human
Anatomy: Glossary. Accessed in October, 2024.

AI21. 2025. What is LLM temperature? Accessed in
May, 2025.

Hilal Al Shamsi, Abdullah G. Almutairi, Sulaiman
Al Mashrafi, and Talib Al Kalbani. 2020. Impli-
cations of language barriers for Healthcare: A sys-
tematic review. Oman Medical Journal, 35(2).

Marco Alfano, Biagio Lenzitti, Giosuè Lo Bosco, Cinzia
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