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Abstract

Understanding the internal decision-making
process of NLP models in high-stakes do-
mains such as the financial sector is particularly
challenging due to the complexity of domain-
specific terminology and the need for trans-
parency and accountability. Although SHAP
is a widely used model-agnostic method for at-
tributing model predictions to input features, its
standard formulation treats input tokens as inde-
pendent units, failing to capture the influence of
collocations that often carry non-compositional
meaning, instead modeled by the current lan-
guage models. We introduce C-SHAP, an exten-
sion of SHAP that incorporates collocational
dependencies into the explanation process to
account for word combinations in the finan-
cial sector. C-SHAP dynamically groups to-
kens into significant collocations using a finan-
cial glossary and computes Shapley values over
these structured units. The proposed approach
has been evaluated to explain sentiment classifi-
cation of Federal Reserve Minutes, demonstrat-
ing improved alignment with human rationales
and better association to model behaviour com-
pared to the standard token-level approach. 1

1 Introduction

In recent years, the adaptation of language mod-
els, particularly BERT-like (Devlin et al., 2019)
architectures, to the financial domain has trans-
formed text analysis, allowing a more nuanced
understanding of financial documents. However,
while these models excel at capturing the complex
relationships within textual data, explaining their
decisions remains a significant challenge. SHAP
(Lundberg and Lee, 2017) (SHapley Additive ex-
Planations) has emerged as a popular method to
interpret model outputs by quantifying the con-
tribution of individual features, such as words or

1The views and opinions expressed are those of the authors
and do not necessarily reflect the views of Intesa Sanpaolo, its
affiliates or its employees.

tokens, to the overall prediction. However, SHAP
considers each feature independently, failing to ex-
plicitly model the influence of collocations that
often carry non-compositional meaning, which are
instead effectively captured by modern language
models. In this paper, we investigate the enhance-
ments of SHAP-based explainability methods when
applied to BERT-like models in the financial do-
main, with a particular focus on sentiment clas-
sification using the FinBERT model (Liu et al.,
2021). In financial texts, where meaning is often
conveyed through domain-specific collocations and
non-compositional expressions, understanding the
internal decision-making process of language mod-
els requires methods that go beyond token-level at-
tributions. To address this issue, we develop a novel
extension of SHAP that accounts for collocational
dependencies by grouping tokens into meaningful
word combinations, guided by a financial glossary.
In particular, we introduce C-SHAP (Collocation-
based SHAP) as an extension of SHAP that incor-
porates collocations into the explanation process to
account for word combinations that are peculiar in
the financial sector.

2 Related Works

In the foundational paper (Lundberg and Lee, 2017)
Scott Lundberg and Su-In Lee introduce SHAP
(SHapley Additive exPlanations) as a unified frame-
work for interpreting model predictions. SHAP
leverages concepts from cooperative game theory,
specifically Shapley values, to attribute the output
of a model to its input features in a manner that sat-
isfies certain desirable properties. Although SHAP
has been widely applied across domains, its appli-
cation to text has focused primarily on token-level
attributions (Kokalj et al., 2021; Chen et al., 2023;
Amara et al., 2024), which do not always align
with human interpretability, especially in cases in-
volving multi-word expressions or domain-specific
terminology.
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Despite this limitation, the integration of SHAP
and BERT (Bidirectional Encoder Representations
from Transformers) in the financial domain has be-
come an increasingly prominent area of research.
In particular, BERT has been widely adopted in var-
ious financial applications, such as sentiment anal-
ysis (Bhadouria et al., 2025), credit risk assessment
(Mienye et al., 2024), and stock price prediction
(jun Gu et al., 2024), due to its ability to capture nu-
anced language patterns in financial texts, coupled
with SHAP to explain the models’ predictions. Fin-
BERT (Liu et al., 2021), i.e. a BERT-based model
trained for financial sentiment analysis, has also
been interpreted using SHAP to validate model
behavior against domain expectations. Some ef-
fort has been devoted to combine SHAP with hi-
erarchical structures (Chen et al., 2020), but the
modeling of multi-word financial terms remains
underexplored. Our work addresses this gap by ex-
tending SHAP to consider significant collocations,
which often convey non-compositional meaning
vital in financial texts.

3 Original SHAP

SHAP values are used to understand which to-
kens have a greater impact on the prediction of
the model: the positive SHAP values have a pos-
itive effect on predicting the considered label, i.e.
they push the classification of the given sentence
towards that label, while negatively contributing
features influence the model’s output in a direction
opposite to the target label.

In the context of text classification, each word or
token in the text can be considered a feature. The
SHAP value ϕti , for a token ti of a word wi in sen-
tence i, represents its contribution to the difference
between the prediction of the model for the given
text and the baseline prediction. The SHAP values
are computed on the following principles:

• Efficiency: The sum of the SHAP values for
all the features of an instance (in this case, for
all the tokens composing a sentence) equals
the difference between the model’s prediction
for the instance and the average prediction
over all instances.

• Symmetry: If two features contribute equally
to all possible subsets of features, they receive
the same SHAP value.

• Dummy: Words that do not affect the predic-
tion have a SHAP value of zero.

• Additivity: For models combined linearly, the
SHAP values of the combined model are the
sum of the SHAP values of the individual
models.

From a practical point of view, computing the ex-
act SHAP values requires evaluating the model on
all possible subsets of features, which is computa-
tionally infeasible for texts with many words. To
address this, approximation methods such as Ker-
nel SHAP are used. Kernel SHAP estimates SHAP
values by sampling subsets of features and weigh-
ing them appropriately. In text classification, this
involves:

1. Sampling Subsets: Randomly selecting sub-
sets of words from the text

2. Perturbation: Creating perturbed versions of
the text by masking tokens or words

3. Clustering: Create clusters of tokens (in order
to improve efficiency, semantic coherence and
quality of explanations) to group related fea-
tures and mask them together during coalition
creation

4. Model Evaluation: Passing these perturbed
texts through the model to observe changes in
predictions

5. Weighting and Regression: Using the observed
changes to solve a weighted linear regression
that estimates the SHAP values

All of these steps have the main goal of balancing
computational efficiency with the need for accurate
feature attribution. Since each token is considered
independent with respect to the others, it is nec-
essary to sum up the SHAP values obtained by
tokenizing a single word. Given a word wi com-
posed of tokens ti1 , ..., tin , and the SHAP values
ϕtij estimated for each token tij ∈ wi, the SHAP
value of wi is estimated as:

Φi =
n∑

j=1

ϕtij (1)

4 C-SHAP

In order to take into account specific (financial)
collocations, we reformulate the original SHAP
problem. In particular, we revised the two main
steps of the original Kernel SHAP, i.e. Perturbation
and Clustering.
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Perturbation The core idea is that tokens that
compose each collocation have to be considered
together, i.e. in the masking phase, they have to be
masked or unmasked always together.

More formally, let x = (x1, x2, . . . , xM ) ∈
X ⊂ RM be the original input vector with M
atomic features (e.g., words/tokens) and G =
{g1, g2, . . . , gK} be a partition of the index set
{1, 2, . . . ,M}, where each gk ⊂ {1, . . . ,M} is
a collocation group. Each gk corresponds to each
collocation and x(G) = (xg1 , xg2 , . . . , xgK ), where
each xgk = {xj | j ∈ gk}.

We define a coalition vector z ∈ {0, 1}K , where
each zk = 1 means group gk is included and zk = 0
means it is excluded. Let hz : {0, 1}K → X be the
mapping that reconstructs the full input x̃ = hz(z),
such that:

x̃j =

{
xj , if ∃k such that j ∈ gk and zk = 1

xbaseline
j , otherwise

(2)

where if zk = 1 then xgk is included, while if
zk = 0 then the values in xgk are replaced with a
baseline xbaselinej (e.g., zero embedding).

Now, let f : X → R be the prediction function.
The C-SHAP value ϕk for the collocation group gk
is:

ϕk =
∑

S⊆G\{gk}

|S|!(K − |S| − 1)!

K!
×

× [f(hz(S ∪ {gk})) −f(hz(S))] (3)

This quantifies the marginal contribution of the
collocation group gk to the prediction f(x).

The C-SHAP values are obtained by modifying
the Perturbation phase: every time a token that
composes a collocation is unmasked, we unmask
all the other masked tokens of the same collocation,
so that at each iteration the whole collocation we
are considering is fully either masked or unmasked.
Once we obtain the C-SHAP value for each token,
the same procedure as in the original SHAP can
be used, i.e. we sum up the C-SHAP values of the
tokens belonging to the same word as reported in
Equation 1. This method, where only the perturba-
tion step has been revised (i.e., the clustering step
corresponds to the original one), will be denoted as
C-SHAP (P).

Clustering To emphasize that tokens belonging
to a collocation should be considered together, we
also revised the Clustering phase, whose main goal
is to mask blocks of correlated features instead of

generating random masks on individual features.
In particular, we ensure that tokens belonging to
the same collocations are clustered together first,
followed by individual tokens, and finally the entire
text.

More formally, let x = (x1, x2, . . . , xM ) be
an input sequence composed of M tokens, ϕ =
(ϕ1, ϕ2, . . . , ϕM ) be the corresponding SHAP val-
ues, and C = {c1, c2, . . . , cK} be a set of collo-
cation groups, where each ck ⊂ {1, . . . ,M} and
ci ∩ cj = ∅. The goal is to build a binary hierar-
chical clustering tree T over the tokens xi, subject
to merging priorities: (1) tokens belonging to the
same collocation ck must be merged first, (2) indi-
vidual non-collocation tokens merge next, and (3)
the entire sequence of tokens is finally clustered.

To this purpose, we define a clustering state Pt as
a partition of {1, . . . ,M} at time t. For candidate
merges A,B ⊆ {1, . . . ,M}:

H(A,B) =


0, if A ∪B ⊆ ck,∀ck ∈ C

1, if A ∪B ⊆ {1, . . . ,M} \
⋃K

k=1 ck

2, otherwise
(4)

A clustering cost function π(A,B) is therefore
defined to include a penalty term to respect the
hierarchy of the merging priorities:

π(A,B) = λH(A,B) · d(A,B) (5)

where and λ > 1 is a scaling constant enforcing
merge priority, and d(A,B) is the absolute SHAP
difference defined as:

d(A,B) =

∣∣∣∣∣∣ 1

|A|
∑
i∈A

ϕi −
1

|B|
∑
j∈B

ϕj

∣∣∣∣∣∣ (6)

Finally, as before, once the C-SHAP value for
each token is obtained, we sum up the coefficients
of the tokens belonging to the same word. This
approach, where both the perturbation and the clus-
tering step have been modified, will be denoted as
C-SHAP (P+C).

5 Experimental Settings

Financial Glossary In order to use real-world
collocations that are relevant for the financial do-
main, we download a financial glossary, keeping
just the terms, without their explanations. At this
point, we divide the abbreviations from their long
forms, e.g., we start from APR (Annual Percentage

"https://www.consumerfinance.gov/consumer-tools/educator-tools/youth-financial-education/glossary/"
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Figure 1: Example of plot for SHAP values computed with different methodologies.

Rate), getting separately APR and Annual Percent-
age Rate. Finally, we obtain plural forms starting
from singular terms, obtaining a final dataset com-
posed of 492 financial collocations.

FinBert To demonstrate the effect of the pro-
posed C-SHAP, we adopted the FinBERT model
to predict the sentiment of the FED communica-
tions over time presented in (Menzio et al., 2024).
The model classifies each sentence belonging to
any Federal Reserve System (FED) minutes and
speeches mentioning a given Forex as positive, neg-
ative and neutral. In particular, we maintain only
those sentences that contain at least one financial
collocation and that mention the term dollar.

Model Comparison In order to evaluate the ex-
plainability, we compared:

• SHAP: the original Kernel SHAP, where both
Perturbation and Clustering correspond to the
standard implementation;

• C-SHAP (P): Kernel SHAP where only the
masking strategy in the Perturbation step is
constrained to deal with collocations, while
maintaining the original Clustering;

• C-SHAP (P+C): Kernel SHAP where both
masking and clustering in the Perturbation
step have been revised to deal with colloca-
tions.

6 Results

In order to verify that the proposed C-SHAP bet-
ter captures the impact of tokens and collocations
when FinBert makes the prediction, we have quan-
titatively and qualitatively evaluated the obtained
coefficients. In Figure 1, we report one of the pro-
cessed sentences:

The dollar’s strength largely reflected
increasing investor concerns about the
global growth outlook as well as widen-
ing interest rate differentials between the
United States and Japan.

which sentiment predicted by FinBERT is positive
with a probability of 83.21%.

We can easily note that the original SHAP values
associated with the terms that contribute positively
towards the positive predicted class do not change
significantly, i.e. “strength” and “widening” still
have the highest impact. On the other hand, the
SHAP values associated with the terms belonging
to the collocation suffer changes, in particular:

• SHAP: interest contributes positively to the
positive sentiment prediction while rates is
reported to have a negative influence, denoting
a counterintuitive explanation;

• C-SHAP (P): interest and rates are character-
ized by the same positive direction, showing
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a more natural view that reflects what is ex-
pected by human beings when considering
explanations of sentences with multi-word ex-
pressions;

• C-SHAP (P+C): interest and rates are char-
acterized by the same positive direction, they
assume the same value and the contribution
of other relevant terms (e.g. widening) has
been correctly increased to explain the posi-
tive class prediction.

To summarize, the value of the term interest is
high in the original SHAP estimation, but decreases
in the two C-SHAP variants, confirming that it is
itself a word that positively contributes to the pre-
dicted class, but loses some of its nuance when it
is in the context of interest rate. In Table 1, we re-
port the computed values per word in the example
sentence, emphasizing the positive effect of consid-
ering collocations in a real scenario. In particular,
in green are highlighted the SHAP values associ-
ated with words that contribute positively from a
financial point of view (i.e. strength, increasing
and widening) and in blue those of the considered
collocation (interest rates).

To perform a more in-depth analysis, we per-
formed a human evaluation. In particular, we en-
gaged three experts in the financial domain, focus-
ing in particular on SHAP and C-SHAP (P+C)
evaluation. For each sentence to be evaluated, we
provided both a summary plot and the importance
values estimated according to the two methodolo-
gies. In particular, 75 sentences containing the
collocation interest rates or interest rate and men-
tioning either USD or dollars have been selected
and qualitatively evaluated. For each sentence, we
computed the FinBERT sentiment and proposed
a comparative evaluation between SHAP and C-
SHAP (P+C) attribution to each expert. More pre-
cisely, each expert had to verify:

1. If both terms interest and rate(s), in each
considered sentence, are characterized by the
same direction and magnitude;

2. If the C-SHAP values are equal to or better
than the original SHAP to explain the Fin-
BERT prediction for positive, negative or neu-
tral sentences.

In most cases, participants agreed that the C-
SHAP (P+C) improved the explainability of the
FinBERT sentiment predictions. Specifically, the

Token SHAP C-SHAP (P) C-SHAP (P+C)

The 0.003948897 0.003948897 0.003948897
dollar 0.025454779 0.025454779 0.026967511
s 0.012090307 0.012090307 0.010853442
strength 0.202259242 0.202259242 0.202259242
largely 0.059940234 0.059940234 0.059940234
reflected 0.016159069 0.016159069 0.015453395
increasing 0.024084724 0.024084724 0.024790398
investor 0.001884158 0.001884158 0.006974796
concerns -0.013412408 -0.013412408 -0.018503046
about -0.018805247 -0.018805247 -0.022663266
the -0.011388901 -0.011388901 -0.007530882
global 0.012222551 0.012222551 0.0160888678
growth 0.018790853 0.018790853 0.019432703
outlook 0.026559501 0.026559501 0.023421457
as 0.027899526 0.027899526 0.027052584
well 0.018600295 0.018600295 0.031671853
as 0.011720734 0.011720734 0.013915665
widening 0.051761419 0.043687571 0.07646786
interest 0.023654868 0.014355783 0.011946663
rate -0.00580821 0.011564722 0.011946663
differentials 0.06677462 0.06677462 0.017884071
between 0.025588451 0.025588451 0.018577721
the 0.025588451 0.025588451 0.013350865
United 0.00689604 0.00808703 0.008385395
States 0.00689604 0.00808703 0.008385395
and 0.010469012 0.00808703 0.015912918
Japan -0.008443049 -0.008443049 0.002357103

Table 1: SHAP values computed for the words in the
example sentence with different methodologies.

terms identified as most influential for the predicted
sentiment were more consistent with domain-
expert expectations in the financial context. The
following summarizes the expert evaluation con-
ducted on the set of 75 proposed sentences:

• In 16 out of 75 cases, the interpretations pro-
duced by SHAP and C-SHAP (P+C) are equiv-
alent.

• In the remaining 59 sentences, differences be-
tween the two methods are observed. Specifi-
cally:

– In 49 of these 59 cases, C-SHAP (P+C)
are preferred over SHAP by 3 annotators.

– In 54 of the 59 cases, C-SHAP (P+C)
are judged superior by at least 2 out of
3 annotators. In only 5 cases, SHAP is
favored by the majority.

Among the 54 cases where C-SHAP (P+C) is
considered better than SHAP, 21 exhibited a sub-
stantial shift in the importance of non-collocation
tokens, therefore enhancing the overall inter-
pretability of the explanations. This indicates that
the proposed method not only redistributes atten-
tion among relevant tokens but also surfaces pre-
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viously underemphasized elements that are rele-
vant to the model’s decision-making process. Such
shifts are crucial, as they can provide more com-
prehensive and human-aligned explanations, espe-
cially in domains where interpretability is essential
for trust and accountability.

In addition to the qualitative evaluation, we also
performed a comparative analysis of the most im-
portant words identified by both SHAP and C-
SHAP (P+C). We report in Table 2 and Table 3
the top-10 words that contribute more to the pos-
itive and negative labels2. The results show that
both methods are effective in identifying the most
relevant terms, which align with general expecta-
tions regarding their association with positive and
negative sentiment. In fact, despite small differ-
ences in the importance scores associated with each
token, the top-ranked words remained consistent
between the two methods. This equivalence in the
highest-ranked token suggests that C-SHAP (P+C)
preserves the core attribution signal of the original
SHAP method while enhancing the interpretabil-
ity of the remaining token contributions. This is
a signal that C-SHAP (P+C) revises the original
interpretive structure, ensuring that the most im-
pacting tokens remain identifiable globally while
offering a more context-aware explanation at the
sentence level.

WORD SHAP C-SHAP (C+P)
strengthened 0.323008513 0.323008513
rose 0.263572386 0.263556974
increased 0.184566060 0.178510886
gain 0.175477574 0.175477574
appreciated 0.167780896 0.164011725
lifted 0.166353529 0.166353529
improving 0.152232815 0.152232815
supported 0.151366703 0.151366703
strength 0.134751284 0.132725641
up 0.134126606 0.134126606

Table 2: Top-10 of words that mostly contribute to the
positive class label. The SHAP and C-SHAP values
have been estimated as the mean over the sentences
where the term occurs.

The complete dataset, including sentences, ref-
erences to the Federal Reserve minutes and im-
portance scores, is available at the following link
https://github.com/MIND-Lab/C-SHAP.

2For each term, we estimated the mean of the correspond-
ing relevance score across sentences.

WORD SHAP C-SHAP (C+P)
pessimistic 0.446069581 0.446069581
declined 0.445957771 0.433646462
fell 0.418518330 0.418518330
depreciated 0.303336474 0.303336474
down 0.296005961 0.295835777
decline 0.291008095 0.291008095
mixed 0.267927359 0.26792735
weaker 0.221566260 0.221566260
declining 0.213053765 0.213053765
depressed 0.176661988 0.176661988

Table 3: Top-10 of words that mostly contribute to the
negative class label. The SHAP and C-SHAP values
have been estimated as the mean over the sentences
where the term occurs.

7 Conclusions and Future Work

In this paper, we addressed the challenge of
interpreting the decision-making processes of
NLP models in high-stakes domains such as fi-
nance, where domain-specific terminology and non-
compositional language structures are prevalent.
While SHAP remains a standard model-agnostic
method for attributing predictions to input features,
its token-level independence assumption limits its
effectiveness in capturing the semantic impact of
collocations, i.e., structures that are often critical in
financial language and well-represented in large
language models. To overcome this limitation,
we proposed C-SHAP, an extension of SHAP that
integrates collocation constraints into the expla-
nation process. When applied to the sentiment
classification task of Federal Reserve Minutes,
C-SHAP demonstrated improved interpretability
and stronger alignment with expert expectations.
These results highlight the potential of incorporat-
ing domain-aware linguistic structures into expla-
nation methods for enhancing the accountability of
NLP systems in specialized domain. Future work
will be devoted to enhance the C-SHAP estimation
by incorporating probabilistic information about
word sequences to produce more accurate linguis-
tically plausible explanations. We also plan to ex-
plore a broader range of explainability techniques
(e.g. LIME or Integrated Gradients) as well as alter-
native financial NLP models. Finally, integrating
context-aware collocation detection methods that
can learn collocations directly from large corpora
could reduce dependence on manually curated glos-
saries and improve adaptability across subdomains.

https://github.com/MIND-Lab/C-SHAP


717

References
Kenza Amara, Rita Sevastjanova, and Mennatallah El-

Assady. 2024. SyntaxShap: Syntax-aware explain-
ability method for text generation. In Findings of
the Association for Computational Linguistics: ACL
2024, pages 4551–4566, Bangkok, Thailand. Associ-
ation for Computational Linguistics.

Aashi Singh Bhadouria, Anamika Ahirwar, and Ma-
hendra Singh Panwar. 2025. Analyzing financial
sentiments using bert model: A deep dive into mar-
ket perception and investor behavior for informed
investment decisions. In Utilizing AI and Machine
Learning in Financial Analysis, pages 213–244. IGI
Global Scientific Publishing.

Hanjie Chen, Guangtao Zheng, and Yangfeng Ji. 2020.
Generating hierarchical explanations on text classifi-
cation via feature interaction detection. In Proceed-
ings of the 58th Annual Meeting of the Association
for Computational Linguistics, pages 5578–5593, On-
line. Association for Computational Linguistics.

Hugh Chen, Ian C Covert, Scott M Lundberg, and Su-
In Lee. 2023. Algorithms to estimate shapley value
feature attributions. Nature Machine Intelligence,
5(6):590–601.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. In Proceedings of the 2019 conference of the
North American chapter of the association for com-
putational linguistics: human language technologies,
volume 1 (long and short papers), pages 4171–4186.

Wen jun Gu, Yi hao Zhong, Shi zun Li, Chang song Wei,
Li ting Dong, Zhuo yue Wang, and Chao Yan. 2024.
Predicting stock prices with finbert-lstm: Integrating
news sentiment analysis. In Proceedings of the 2024
8th International Conference on Cloud and Big Data
Computing, pages 67–72.

Enja Kokalj, Blaž Škrlj, Nada Lavrač, Senja Pollak, and
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