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Abstract

We investigate the use of Aspect-Based Sen-
timent Analysis (ABSA) to analyze polariza-
tion in online discourse. For the analysis, we
use a corpus of over 3 million user comments
and replies from four state-funded media chan-
nels from YouTube Shorts in the context of the
2023 Israel-Hamas war. We first annotate a
subsample of approx. 5 000 comments for pos-
itive, negative, and neutral sentiment towards
a list of topic related aspects. After training
an ABSA model (Yang et al., 2023) on the cor-
pus, we evaluate its performance on this task
intrinsically, before evaluating the usability of
the automatic analysis of the whole corpus for
analyzing polarization. Our results show that
the ABSA model achieves an F1 score of 77.9.
The longitudinal and outlet analyses corrob-
orate known trends and offer subject experts
more fine-grained information about the use
of domain-specific language in user-generated
content.

1 Introduction

Polarization in online discourse has increased over
the last decade. However, polarization is a linguis-
tic phenomenon that is difficult to define in a way
that allows for an automatic analysis of large cor-
pora. Prior work has investigated polarization pri-
marily through small-scale or short-term datasets
(Alamsyabh et al., 2024; Zeitzoff, 2016), primarily
qualitative analyses (Harel et al., 2020), or coarse
computational methods such as stance detection or
user clustering, often applied to Twitter data (Be-
catti et al., 2019). This focus reflects the dominant
role of Facebook and Twitter as platforms for polit-
ical communication and information-seeking (Stier
et al., 2018), which has led to a research landscape
heavily concentrated on these two platforms. In
contrast, polarization processes are rarely exam-
ined on YouTube or using longitudinal datasets that
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incorporate fine-grained sentiment analysis focused
on specific actors or ideological targets.

One way of approaching the automatic analy-
sis of polarization is to investigate sentiment to-
wards central actors and topics in the discourse in
question. We propose to use Aspect-Based Senti-
ment Analysis (ABSA) to analyze such polariza-
tion. ABSA is particularly suited to analyzing com-
plex opinions in online discourse, where a single
sentence may express multiple sentiments toward
different entities (Chauhan and Meena, 2019; Mai
and Le, 2021). Traditional sentence-level sentiment
analysis is limited in such contexts, as it assigns
a single sentiment label to an entire sentence. In
contrast, ABSA allows for a more granular analy-
sis, enabling targeted sentiment detection for each
mentioned entity. The following example illus-
trates multiple sentiments directed toward different
aspects:

(D) So what. The Israeli government IS com-
mitting genocide. Just look at the civilian
death tolls. That doesn’t diminish the need
to condemn for their terrorist and
bloody attack on civilians. Both can be true
at the same time. Greta is awesome. She
didn’t back down, but she remained calm.
As a fellow , I’'m very proud of her.

This comment illustrates how sentiment is dis-
tributed across multiple entities: Israel, Hamas,
Greta, Swede. Each of those is associated with
distinct emotional evaluations. ABSA enables the
detection of such distinctions, providing insight
into how users express affective positions toward
various actors within the same comment. When
applied to large-scale discourse, this fine-grained
mapping of sentiment allows us to observe how
alignment with or opposition to ideological actors
shifts over time, offering a complementary linguis-
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tic lens to polarization as a dynamic process driven
by social influence and persuasive communication
(Treuillier et al., 2024).

Our data consists of user-generated content tied
to YouTube Shorts, vertical videos, often under
60 seconds in length, closely resembling the con-
tent format of TikTok. We have collected over
3 million comments and replies across four state-
funded media channels (Al Jazeera, TRT World,
BBC News, and Deutsche Welle) to examine emo-
tional responses toward geopolitical actors (Israel,
Hamas, Palestinians, Zionists, Jews, and Muslims)
over a 12-month period of the Israel-Hamas war'.
Our goal for the work presented here is to deter-
mine whether we can use a current ABSA model
(Yang et al., 2021, 2023) to gain insights into po-
larization. This requires an intrinsic analysis of the
quality of the ABSA system on the current task
along with an extrinsic evaluation of the usability
of ABSA for analyzing polarization.

This study applies Aspect-Based Sentiment
Analysis (ABSA) to model fine-grained sentiment
trajectories towards geopolitical actors. If the ap-
proach is successful, it will enable us to trace how
affective alignments shift in response to distinct
conflict-related events across state-funded media
contexts.

Our work addresses the following research ques-
tions:

RQ1: How well is a current ABSA model suited
to analyze sentiment towards geopolitical ac-
tors?

RQ2: How well does the automatic sentiment analy-
sis model known trends in polarization?

The remainder of this paper is structured as fol-
lows: We describe related work in Section 2 and
our methodology in Section 3. Section 4 discusses
the results of RQI1, and Section 5 the results of
RQ2. We conclude in Section 6.

2 Related Work

Prior research has extensively addressed hate
speech, misinformation, bias, and political extrem-
ism in online spaces (Brown et al., 2024; Finkel-
stein et al., 2023; Rieger et al., 2020), including in
the context of the Israel-Hamas War (Becker et al.,
2023; Miner and Ortega, 2024; Zaghouani et al.,

"Note that we are not taking a political stance on this con-
flict, our interest is in analyzing how different sides polarize.
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2024; Topor, 2024). Building on these foundations,
sentiment analysis has emerged as a key method to
model ideological alignment, polarization, and user
engagement in socio-political discourse. Studies
such as the one by Jamison et al. (2023) demon-
strate that shifts in media sentiment can precede
conflict outbreaks, while others have shown how
sentiment dynamics reflect affective polarization
(Lerman et al., 2024).

Existing studies have applied sentiment and
stance analysis to online political discourse, e.g., in
the contexts of US Supreme Court decisions (Wang
et al., 2014), Brexit (Vorakit et al., 2020), gun con-
trol and immigration (Roy and Goldwasser, 2021),
political debate on Twitter (Sirisha and Chandana,
2022), and various forms of longitudinal polariza-
tion (Amendola et al., 2024).

Recent research further expands the methodolog-
ical scope of sentiment modeling in socio-political
event analysis. Mufioz et al. (2024) proposed a
sentiment-informed algorithm to track political
polarization across online networks. KuSen and
Strembeck (2023) demonstrated how emotional ex-
posure on social media during the early stages of
the Ukraine war influenced user affect over time,
while Win Myint et al. (2024) advanced multi-task
emotion classification in crisis discourse, identify-
ing base emotions such as anger, fear, and sadness.
To capture the implicit and coded nature of politi-
cal speech, Subramanian et al. (2023) and Young
et al. (2024) emphasize the importance of context-
sensitive sentiment models capable of interpreting
nuance in polarized discourse.

ABSA has gained traction as a method for
extracting sentiment toward discrete entities or
themes, particularly in domains such as hate speech
detection (Mughal et al., 2024; Zainuddin et al.,
2016, 2018; Zhang et al., 2024), political commu-
nication (Gold et al., 2018; Miok et al., 2023; Seno
et al., 2024), and changing attitudes towards ar-
eas of a country (Davoodi et al., 2024). ABSA
offers more scalable solutions for user-generated
discourse, enabling robust, transformer-based sen-
timent extraction at the aspect level across multiple
targets within the same comment (Rietzler et al.,
2020; Zhang et al., 2022), making it suitable for
modeling longitudinal sentiment variation in politi-
cally charged online discussions.



Outlet Videos Comments Users Aspect Negative Neutral Positive
DW 84 9172 6521 Hamas 576 422 225

Al 958 1187470 388 384 Hezbollah 5 14 12
BBC 70 23 039 13517 Israel 296 278 376
TRT 1258 2224981 773773 Jews 192 244 109
Total 2370 3444662 787157 Muslims 112 272 234
Palestine 175 186 101

Table 1: Statistics of the full dataset across media out- Palestinians 272 261 260
lets. Zionists 228 272 25
Total 1 856 1949 1342

3 Methodology

3.1 Dataset

We collected the dataset from YouTube via the
official YouTube API?. Data collection began ap-
proximately two weeks after the Hamas-led attacks
on Israel on October 7, 20233. To narrow the scope,
we focused on collecting posts in English from four
state-funded media outlets: TRT World (Turkey),
BBC News (United Kingdom), Al Jazeera English
(Qatar), and Deutsche Welle (Germany)“. These
outlets represent divergent geopolitical perspec-
tives and serve as influential platforms for shap-
ing regional and global narratives. We collected
all Shorts and manually selected a subset based
on their topical relevance. Over a twelve-month
data collection period, we gathered more than 3.4
million comments and replies associated with these
four sources, generated by 787 157 unique users.
Table 1 provides an overview of the number of
unique video IDs, user-generated comments, and
distinct user counts per outlet.

3.2 Preprocessing

A multi-step preprocessing pipeline was imple-
mented to prepare the dataset for analysis. Files
were scanned for structural validity, filtering mal-
formed JSON lines and removing entries with
missing fields. User mentions (e.g., @Qusername)
were normalized, and only English-language com-
ments were retained using the langdetect li-
brary®. To ensure linguistic quality, we computed
an English lexical coverage ratio based on the

2https ://developers.google.com/youtube/v3/docs

3A retrospective attempt to collect pre-October 7 data
revealed that nearly 50% of the original material had been
deleted, likely due to YouTube’s evolving content moderation
policies.

“While TRT World has stated that it is not directly affiliated
with the Turkish government, the other three channels are
publicly funded state broadcasters.

Shttps: //pypi.org/project/langdetect/

Table 2: Distribution of annotated segments by aspect
and sentiment label.

nltk.corpus.words vocabulary, discarding com-
ments with less than 40% English terms®.

After preprocessing, n = 868 094 comments
and replies remained from an initial n = 1071 630
aspect-bearing instances.

3.3 Annotating Aspect-Based Sentiment

The annotated dataset comprises 5 147 text seg-
ments / sentences’. We selected sentences contain-
ing the following aspect terms: Jews, Israel, Zion-
ists, Palestinians, Palestine, Hezbollah, and Hamas.
Due to a low number of occurrences, Hezbollah
was excluded from the data. To ensure linguistic di-
versity, we discarded near-duplicate or semantically
redundant content and selected varied comments
and replies per aspect category. The selection of
segments was carried out iteratively with the goal
of balancing the data with respect to sentiment as
far as possible in order to avoid prejudicing the
classifier towards a specific sentiment. However,
this was not always possible: Especially the aspect
term Zionists predominantly occurs with negative
sentiment, with only a limited number of positive
samples. Table 2 summarizes the final distribution
of annotated examples by aspect and sentiment.
We performed the manual annotation of the se-
lected data using Label Studio, an open-source
data labeling tool (Tkachenko et al., 2025). The
annotations combine identifying spans containing

°https ://www.nltk.org/_modules/nltk/corpus/
reader/wordlist.html

"Each segment corresponds to a dependency-parsed analy-
sis containing at least one target aspect. While most segments
are sentence-length, some extend across multiple clauses or
sentences, resulting from informal punctuation, ellipses, and
unstructured phrasing in user-generated content, which oc-
casionally led the parser to treat longer passages as single
units.
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Sentiment Cohen’s x Krippendorff’s o
Negative 0.850 0.850
Neutral 0.867 0.868
Positive 0.869 0.869
Overall 0.862 0.855

Table 3: Inter-annotator agreement scores across senti-
ment classes.

Aspect Train Test
Hamas 996 227
Hezbollah 24 7
Israel 770 180
Jews 443 102
Muslims 494 124
Palestine 348 114
Palestinians 640 153
Zionists 406 119

Table 4: Train/test split of annotated dataset by aspect
category.

relevant aspect categories and sentiment labels.
Aspect spans were chosen based on dependency
parses (see Section 3.4). Sentiment was annotated
as positive, neutral, or negative. The annotations
were primarily conducted by a domain expert with
specialized knowledge in political communication,
linguistics, and online discourse, including exper-
tise in coded language and sentiment analysis.

To assess annotation reliability, we followed the
approach of Agarwal et al. (2011) and constructed
a stratified sample of 500 annotations, to ensure
balanced coverage of aspect categories and senti-
ment labels. From the (aspect, sentiment) pairs, we
uniformly sampled up to a fixed per-group quota.
Where individual categories contained insufficient
data, sampling with replacement was applied to
preserve proportionality. This sample was indepen-
dently labeled by a second expert and was used
to calculate inter-annotator agreement (IAA). We
report IAA in Table 3, showing a strong inter-
annotator agreement across all sentiment classes,
with Cohen’s k = 0.862 and Krippendorff’s o =
0.855.

To create the training and test data for the ABSA
model, we performed an 80/20 random split of the
annotated dataset. See Table 4 for statistics of the
training and test data.

We used the test set for the intrinsic evaluation
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before running the model on the full dataset for the
extrinsic evaluation.

3.4 Dependency Parsing

We used the biaffine graph-based dependency
parser (Dozat and Manning, 2017), implemented
in the SuPar library®, to extract syntactic struc-
tures and align aspect terms with their grammat-
ical heads. Parsing was performed using the pre-
trained biaffine-dep-en model, trained on En-
glish Universal Dependencies (UD) treebanks. The
parser was run on a GPU using batch-wise predic-
tion over tokenized user-generated content. While
dependency parsing enhanced aspect-term extrac-
tion, it did not fully resolve ambiguities in senti-
ment attribution. Future improvements may result
from incorporating contrastive learning techniques
or domain-adapted embeddings to better capture
context-sensitive sentiment in highly polarized po-
litical discourse.

3.5 ABSA Model

For aspect-based sentiment analysis, we used
the end-to-end DeBERTa-v3-large-absa-v1.1
model provided in the pyABSA library (Yang
et al., 2021, 2023). We initially compared Mi-
crosoft’s DeBERTa-v3-base (He et al., 2021) with
DeBERTa-v3-large-absa-v1.1. The latter out-
performed the base model on a held-out validation
subset of our data and was therefore selected for
task-specific finetuning. The pretrained model was
trained on English-language benchmark datasets
including Twitter and SemEval corpora for aspect-
based sentiment classification”. We then finetuned
it for 5 epochs on our task-specific training set us-
ing an NVIDIA A100 GPU. We set the batch size
to 2 and applied gradient accumulation over 8 steps
(effective batch size of 16). We used a cosine learn-
ing rate scheduler with an initial learning rate of
1 x 107°. Since we did not define a separate devel-
opment set, we selected the best model checkpoint
based on validation loss. To align with the aspect-
prompted classification (APC) framework, aspect
terms in each sentence were replaced with a $T$
marker. Sequences were truncated at 512 tokens.

8https ://github.com/yzhangcs/parser

“While the model was originally trained on social media
data, our domain is considerably different from the training
data, especially wrt. the specific targets we are interested in.
Performance on a held-out subset indicated the need for further
domain adaptation via finetuning.


https://github.com/yzhangcs/parser

Class Prec. Rec. F1
Negative 73.5 844 78.6
Neutral 784 719 750
Positive 85.0 779 813
Avg. 784 780 779

Table 5: Overall sentiment classification performance
on the test set.
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Figure 1: Confusion matrix for sentiment classification
on the test set.

4 RQI1: Model Evaluation on Test Data

To evaluate model performance intrinsically, Ta-
ble 5 reports the overall precision, recall, and across
sentiment classes. The model achieves an overall
F1 of 77.9, demonstrating robust performance in
classifying explicit sentiment expressions for our
aspect terms. Figure 1 shows the confusion ma-
trix of the experiment. This shows that the model
most frequently misclassifies neutral sentences as
negative, the opposite direction causes the second
highest error rate.

Since we are interested in the sentiment towards
specific targets, we also evaluated how well the
model performs on individual aspects. Table 6
shows these results. While overall performance
is robust, notable differences exist across aspects.
Slightly higher accuracies were observed for cat-
egories that tend to be framed in direct evaluative
terms, see examples (2) and (3).

2) I wanna go help fight against Israel free
Palestine.

3) You have to pay for what you did with Pales-
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Aspect Acc. Prec. Rec. Fl1
Hamas 75.1  75.0 75.1 746
Hezbollah 90.3 90.6 90.3 90.3
Israel 754 76.6 754 75.6
Jews 743 749 743 743
Muslims 854 858 854 855
Palestine 81.6 819 81.6 815
Palestinians 789 789 789 78.7
Zionists 79.0 79.6 79.0 78.7

Table 6: Per-aspect sentiment performance on the test
set.

tine and you will beg to MUSLIMS to for-
give them InshaAllah.

In example (2), the model correctly identifies the
comment as expressing positive sentiment toward
Palestine. When analyzed with respect to the as-
pect Israel, the same sentence is classified as neg-
ative, demonstrating the model’s ability to assign
distinct sentiment values to co-occurring targets. In
contrast, aspects such as Israel, or Zionists often in-
volve sentiment that is expressed indirectly through
metaphor, irony, or euphemism. For example, the
comments in (4) and (5) reflect negative sentiment
through accusatory rhetorical contrast, a strategy
that encodes stance implicitly.

“4) What Hitler did to Jews. Jews are doing the
same to ISRAEL.

) One politician who is not afraid of the
ZIONISTS.

An error analysis revealed three primary chal-
lenges: 1) the difficulty in detecting implicit senti-
ment, particularly in sarcastic or coded language; 2)
the misclassification of sentences containing multi-
ple possible targets, e.g., example (6); and 3) chal-
lenges in processing mixed-language comments
and transliterations, where sentiment-bearing terms
appeared in hybrid forms (e.g., Arabic-English
transliterations). Our error analysis also shows the
difficulty of capturing emotional nuance in politi-
cally charged and multilingual discourse, which is
a major obstacle in analyzing user-generated con-
tent to real-world conflict events, especially when
narrative framing relies on coded language or dog
whistles.

(6) Free Jews from Israel



Sentiment Trends Over Time (Faceted by Aspect)
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Figure 2: Sentiment trends over time across seven aspects. Each subplot shows smoothed counts of aspect-level
sentiment predictions. Note: Y-axis scales differ across facets to account for large variation in volume of user-

generated content. X-axis shows monthly aggregation.

5 RQ2: Using ABSA to Investigate
Polarization

In order to determine whether we can use automat-
ically annotated sentiment analysis to investigate
polarization, we run the finetuned model on all seg-
ments that contain at least one aspect term in the
complete dataset and analyze the results. While we
do analyze polarization, our primary aim is to as-
sess whether the proposed methodology can yield
meaningful insights from large-scale datasets that
are too extensive for manual analysis. We first
show a longitudinal analysis of the sentiment per
aspect and then an analysis of the sentiment across
outlets.

5.1 Longitudinal Sentiment Dynamics

Figure 2 presents sentiment trends across seven as-
pects from October 7, 2023, to October 7, 2024.
Emotionally charged discourse was most visible
after the Hamas-led attacks, with sharp peaks in
negative sentiment toward Hamas, Israel, and Zion-
ists. Although overall comment volume declined
after November 2023, engagement (and sentiment-
carrying language) resurged in spring 2024, reflect-
ing the temporal impact of external events.
Characteristics of these curves correspond to
findings in earlier work that show increased so-
cial media activity around historical anniversaries
(Royesh and Grossman, 2021; Miehling, 2024) and
illustrate how sentiment differs in response to ex-
ternal trigger events. To show the relevance of the
ABSA analysis for analyzing polarization in the

comments, we investigate three sentiment peaks
between October 2023 and May 2024 by align-
ing aspect-level sentiment with weekly comment
volume and comparing them to the corresponding
Shorts videos!?.

During the first peak (May 6-19), positive sen-
timent toward Palestine was primarily driven by
user reactions to Shorts related to the Eurovision
Song Contest, featuring repetitive expressions of
solidarity such as “Free Palestine,” as well as to
anti-Gaza war student protests, which included ac-
cusations of genocide against Israel. The second
peak (May 13-26) coincides with Israel’s Indepen-
dence Day. The peak reflects negative sentiment
towards Israel shaped by discourse around identity
and indigeneity, as reflected in trigrams such as
“Canaan Palestinians descendants” and “indigenous
people Palestinians”, together with accusations of
genocide. The third peak, also in late May, tar-
geted Zionists and was linked to campus protest
reactions, with frequent terms such as “occupation
colonization” and “Zionists declared terrorists”.

All of those findings of the longitudinal analysis
show that we can find patterns that are known from
prior work and that are interpretable given events
during the time frame in which they occurred, thus
corroborating our hypothesis that ABSA will be
a useful tool for analyzing polarization in online
discourse.

%For each peak, we looked at the most commented-on
video IDs, reviewed their descriptions, and checked the corre-
sponding video content to contextualize sentiment patterns.

723



5.2 Sentiment Across Outlets

Figure 3 highlights outlet-specific sentiment vari-
ation. Again, we can connect trends in this figure
to prior work, thus corroborating that the ABSA
analysis provides reliable insights into the polar-
ization of the discourse. For example, Palestine is
framed more positively in Middle Eastern outlets
such as TRT and Al Jazeera. BBC and DW offer
more mixed portrayals where most sentiment to-
wards Palestine is positive or neutral. Hamas is
framed negatively across all outlets, though senti-
ment strength varies; for AJ, BBC, and TRT, nega-
tive emotions range in the 71-73% range while for
DW, the same emotion reaches 63%.

However, Figure 3 also shows that the aspect
muslims is not represented in Deutsche Welle (DW)
and appears a total of 12 times in the Al Jazeera
(AJ) corpus (after dependency parsing). While the
raw data contain 133 instances referencing muslims,
the majority were excluded due to codeswitched
content or syntactic filtering. This absence likely
reflects a combination of platform-specific modera-
tion policies, audience composition, and differing
levels of salience in user-generated responses.

The aspect term Zionists consistently receives
negative sentiment across all channels. However,
this is based on a small sample size, since we only
found a very limited number of mentions of this
aspect. Thus, this analysis needs to be taken with a
grain of salt. Here, a closer look at the comments
is warranted.

Our results demonstrate that sentiment varies
significantly across media outlets, confirming pre-
viously observed biases while offering new insights
into polarization. User-generated discourse re-
sponding to content from Middle Eastern outlets
such as AJ and TRT tends to frame Palestine and
Palestinians more positively, contrasting with more
mixed portrayals in BBC and DW. Negative sen-
timent toward Hamas is dominant across all plat-
forms but varies in intensity. Our findings extend
existing work that highlights the role of sentiment
modeling in capturing ideological alignment and
emotional intensity during geopolitical crises. For
example, prior research has shown that shifts in
affective tone in media coverage can predict or co-
incide with conflict events (Jamison et al., 2023),
and that emotional exposure on social media can
amplify polarization over time, particularly when
communication occurs with out-groups and ideo-
logical alignment diverges (Lerman et al., 2024).

Our aspect-level analysis refines this perspective by
revealing how such dynamics manifest across ide-
ological categories in the digital mainstream, cap-
turing fine-grained sentiment distinctions within
user-generated content; distinctions that are often
obscured by global sentiment scores alone. Al-
though our study analyzes polarization across mul-
tiple aspect terms, it also builds on the findings by
Alamsyabh et al. (2024), who examined the volume
of pro-Israel and pro-Palestinian narratives on X
(formerly Twitter) after October 7 and found the
latter to be more prevalent. Our longitudinal sen-
timent analysis corroborates this imbalance and
reveals how such patterns evolve across multiple
outlets and intensify over the course of a year.

6 Conclusion and Future Work

We have investigated whether the use of aspect-
based sentiment analysis of a large-scale corpus
can provide useful insights for the study of polar-
ization in discourse. We show that a current ABSA
system can be successfully trained and used on
more than 3.4 million YouTube comments we have
collected. The intrinsic evaluation shows that the
ABSA system reaches an F1 of 77.9, and the results
are balanced between the three sentiment classes.
Our extrinsic evaluation shows that the longitudi-
nal analysis as well as the analysis across outlets
corroborate known trends as well as provide more
fine-grained or additional information that can be
interpreted by a subject expert.

For the future, we are planning to evaluate the
approach on a larger number of aspects. Since it
is impossible for us to annotate enough data for
training a model on all of those aspects, we will ex-
periment with methods to determine the aspects au-
tomatically in combination with a zero-shot ABSA
approach for the lower frequency aspects. Addi-
tionally, we are planning to use the large-scale sen-
timent annotations to investigate polarization in the
Israel-Hamas war.

Limitations

Annotations: Some statements lack clear intent
markers (e.g., sarcasm, irony, rhetorical questions).
We inferred meaning based on domain-specific ex-
pertise using established patterns of dog whistles
and coded language, but some ambiguous cases
remain unresolved.

Dataset Constraints: Several initial aspects
(e.g., Hezbollah) were discarded because many
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Sentiment Heatmap Aspects by Outlet
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Figure 3: Heatmap for aspect sentiment across the four outlets.

comments failed the language threshold (> 40%
English), indicating widespread codeswitching.
Other aspects (e.g., Zionists) had very few posi-
tive examples, which led to class imbalance that
impacted model performance. However, while data
augmentation could mitigate some of these limita-
tions, generating synthetic samples, particularly in
sensitive political domains, raises ethical concerns.

Platform Coverage: The results on user-
generated content from Deutsche Welle (DW) and
BBC should be interpreted with caution: due to
limited number of short-video content published
by these outlets, our dataset contains significantly
fewer samples from these sources compared to TRT
and Al Jazeera (AJ), reflecting outlet-specific con-
tent creation practices and not necessarily a lack of
coverage of developments in our targeted topic.
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