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Abstract

Language models exhibit inherent security vul-
nerabilities, which may be related to several
factors, among them the malicious alteration
of the input data. Such weaknesses compro-
mise the robustness of language models, which
is more critical when adversarial attacks are
stealthy and do not require high computational
resources. In this work, we study how vulnera-
ble English language models are to adversarial
attacks based on subtle modifications of the in-
put of pretrained English language models. We
claim that the attack may be more effective if
it is targeted to the most salient words for the
discriminative task of the language models. Ac-
cordingly, we propose a new attack built upon
a two-step approach: first, we use a posteriori
explainability methods to identify the most in-
fluential words for the classification task, and
second, we replace them with contextual syn-
onyms retrieved by a small language model.
Since the attack has to be as stealthy as possi-
ble, we also propose a new evaluation measure
that combines the effectiveness of the attack
with the number of modifications performed.
The results show that pretrained English lan-
guage models are vulnerable to minimal se-
mantic changes, which makes the design of
countermeasure methods imperative.

1 Introduction

The incessant growing of application scenarios of
artificial intelligence (AI), and in particular natu-
ral language processing (NLP) services, is raising
the concern on the robustness against adversarial
attacks. The dominant paradigm in NLP is data-
driven machine learning, which is known to be
vulnerable to different types of attacks in training
that perturb the behaviour of the learning models,
and even in inference time, in which in addition
it is possible to raise privacy leaks (Irfan et al.,
2021). Hence, current NLP models may be victims
of these adversarial attacks (Goyal et al., 2023).

The attack to a model may be performed in train-
ing or inference time. Those in training time re-
quire access to the learning model during training
or to the training data. This exposing of the train-
ing model or the training data is unusual in stan-
dard centralised machine learning,1 but it is a real
threat in distributed and federated machine learning
(Rodrı́guez-Barroso et al., 2023). Inference-time at-
tacks may aim to alter the learning model behaviour
or to cause privacy leaks. In this work, we focus
on the threat posed by the harmful modification of
the learning model behaviour.

The data-based manipulation of learning models
in inference time may have a specific target or not,
but both attacks are based on the stealthy modifi-
cation of the input to manipulate the output of the
model (Goyal et al., 2023). Large language models
(LLMs) stand out for their capacity of generating
language (Xuanfan and Piji, 2023), thus they can
be used as weapons to obtain the subtle modifica-
tion that triggers the variation of the output of a
learning model, in particular a pretrained language
model (LM).

In this work, we claim that an adversarial attack
against LM that only seeks to alter the outcome of
LM in inference time may be more effective and
sneaky if it is targeted to the most salient words for
the discriminative task. Accordingly, we propose a
new adversarial attack grounded in a strategy that
minimise the number of modifications and keep
almost unchanged the semantic meaning of the in-
put. Hence, we first identify the salient words that
drive the decision of the victim model. This selec-
tion is built upon a posteriori explainable artificial
intelligence (XAI) methods that allow us to know
the prominent features for the victim LM in this
case. In particular, we evaluate the performance
of LIME (Ribeiro et al., 2016), SHAP (Lundberg

1It is out of the scope of the paper the data poisoning of
learning models since depends on a poor cleansing of the
training data.
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and Lee, 2017) and Captum (Kokhlikyan et al.,
2020). Second, we propose replacing those salient
words with their closest contextual synonym. In
this case, we compare the performance of six small
language models (SLM), namely Llama-3.1-8B-
Instruct, Llama-3.2-1B-Instruct, gemma-2-9b-it,
Gemma-3-1b-it, Qwen2.5-7B-Instruct and Mistral-
7B-Instruct-v0.3.

As far as we know, there is no standard evalua-
tion measure that combines the success of an un-
targeted data-driven adversarial attack at inference
time and its stealthiness, since an attack cannot be
considered successful if it is evident. We thus pro-
pose a new evaluation measure called Attack Score
Metric (ASM) that takes into account the amount
of output perturbations of the victim LM and the
amount of words changed in the input, since the
quality of the attack weakens the higher the number
of modifications and the greater the change from
the original meaning. We also measure how the
attack keeps the semantic meaning of the original
text seeking to maintain it. We evaluate our untar-
geted adversarial attack in four text classification
datasets of two different tasks (hate speech, and
sentiment analysis) and of different text genres: re-
views, comments on social media and dialogues.
We perform the attack against three pre-trained LM:
bert-base-cased, distilroberta-base and xlnet-base-
cased. Although there are differences amongst the
dataset, the results show that the joint leveraging of
XAI methods and LLMs enables a more effective
and stealthy adversarial attack

The main contributions of this paper are:

• A new untargeted adversarial attack against
LMs leveraging a posteriori XAI methods and
LLMs.

• A new evaluation metric to assess the effec-
tiveness of an adversarial attack considering
its success and the amount of modifications
made to the input text.

The structure of this paper is as follows. Section
2 summarises the main related works. Section 3
introduces our untargeted adversarial attack. In
Section 4, we show the results of the evaluation,
which is analysed in Section 5. Finally, in Section
6, we present the main conclusions and future lines
of work.

2 Related Works

The security landscape for language models (LMs)
continues to evolve rapidly, presenting significant

challenges across deployment environments. These
models face vulnerabilities stemming from their ar-
chitectural design and training methodologies, with
threats amplified by the dual nature of generative
AI as both security tool and attack vector (Yao et al.,
2024). Recent frameworks like Greedy Coordinate
Gradient have demonstrated concerning capabili-
ties to bypass conventional defenses by iteratively
optimizing adversarial suffixes that induce harm-
ful outputs while maintaining semantic coherence
(Zou et al., 2023).

Jailbreak attacks represent another critical vul-
nerability class, with methods like AutoDAN (Liu
et al., 2024) combining prompt engineering with
automated adversarial optimization. The adversar-
ial landscape extends to data poisoning scenarios,
where techniques such as ModelSonar identify un-
detectable backdoors (Jia et al., 2022).

Adversary attacks pose particular threats in dis-
tributed learning environments, where malicious
clients can submit corrupted updates to compro-
mise global model performance. These attacks
prove especially challenging in federated learning
frameworks, as demonstrated in medical named
entity recognition tasks where encrypted feder-
ated learning faces significant obstacles balancing
computational efficiency and adversary resilience
(Pontes et al., 2024).

Generative models significantly amplify adver-
sarial threats. The PoisonedRAG framework (Zou
et al., 2024) illustrates how retrievable content can
be manipulated to influence LLM outputs while
evading semantic similarity checks.

The dual-use paradox remains a challenge in LM
security. While defensive frameworks like Seman-
ticSmooth (Ji et al., 2024) employ semantic trans-
formations to improve jailbreak resistance through
consensus aggregation across multiple prompts,
these same techniques can be repurposed for attack
optimization. This paradox extends to red-teaming
methodologies, where tools designed to identify
vulnerabilities simultaneously serve as blueprints
for exploitation (Perez et al., 2022).

The integration of generative models into cyber-
security workflows introduces additional complex-
ity, facilitating both threat detection and sophisti-
cated attacks, necessitating comprehensive ethical
guidelines and regulatory frameworks (da Silva,
2025). In this work we show that LLMs can be
used as a tool for generating poisoning data for
attacking pre-trained LM.
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3 Untargeted Adversarial Attack

We propose an adversarial attack against LM based
on (1) the identification of the salient words that
determine the decision of the model, and (2) the use
of LLMs to change them by their closest contextual
synonym. Figure 1 depicts the structure of our
attack, which we explain as follows.

3.1 Salient Words Identification with XAI

The attack is based on the sensibility of language
models to alterations of the input. Additionally,
the modification has to be as furtive as possible at
lexical and semantic level in order to not be easily
identified. Hence, the amount of variations of the
input of data have to be as minimum as possible.

We argue that it is necessary to identify the min-
imum number of words that trigger the decision of
the LM for reducing the amount of alterations of
the input. In this sense, we propose to use a poste-
riori XAI methods to find out the salient features
for a learning model. In this work, we evaluate the
following a posteriori XAI methods.

LIME it works by perturbing input data and
analysing how these changes affect the model’s pre-
dictions, providing localized insights into decision-
making processes. For text data, LIME works
at word level, which ensures explanations are se-
mantically coherent and interpretable for humans
(Ribeiro et al., 2016).

SHAP it uses Shapley values from cooperative
game theory to fairly distribute feature relevancy
scores across all input features, offering a globally
consistent explanation framework. SHAP divides
words into subwords or parts of words, like prefixes
or suffixes, depending on the tokenization scheme
of the model. This allows a more precise attribu-
tion of relevancy to the individual parts of a word
(Lundberg and Lee, 2017).

Captum it is specifically designed for PyTorch-
based models, provides a range of attribution al-
gorithms that can analyse feature importance at
multiple levels, from individual neurons to entire
layers. Captum works at word or subword level for
text data, enabling detailed analysis of how parts
of a word contribute to model predictions.

3.2 Synonym Generation Module

The identified salient words compose the set of
candidate words to be replaced by their synonym.2

We leverage the text generation capacity of LLMs
in order to generate contextual synonyms given an
specific word and its sentence as context. Figure 2
shows the prompt designed to constrain an LLM to
give a unique synonym word.

There are words that do not have synonyms or
the LLM does not return any synonym words. In
this case, we do not replace that word.

4 Experimental Framework

The evaluation of our untargeted adversarial attack
previously require the definition of the attacker
model (see Section 4.1), the victim model (see Sec-
tion 4.2), the data to train the victim model (see
Section 4.3) and the evaluation metric to measure
the effectiveness and the stealthiness of the adver-
sarial attack (see Section 4.4).

4.1 The Attacker Model

The attacker model is composed of two modules to
select the salient words and then generate their cor-
responding synonyms. The first one corresponds to
the a posteriori XAI method. As explained in Sec-
tion 3.1, we compare the methods LIME, SHAP
and Captum.

The second component is the synonym genera-
tion module, which is grounded in generation ca-
pacity of LLMs. We settle that the attack should
consume short computational resources, since it
will be queried several times. However, this is
not a restriction of our proposal, which could
also be elaborated with high computationally over-
head LLMs. Accordingly, we evaluate the follow-
ing small language models (SLM): Llama-3.1-8B-
Instruct (Grattafiori et al., 2024), Llama-3.2-1B-
Instruct (Grattafiori et al., 2024), gemma-2-9b-it
(Team et al., 2024), Gemma-3-1b-it (Team et al.,
2025), Qwen2.5-7B-Instruct (Yang et al., 2024)
(Team, 2024) and Mistral-7B-Instruct-v0.3 (Jiang
et al., 2023). All SLMs are smaller than 9B param-
eters. Likewise, all the SLMs used are instructed
in order to assure a better realisation of a specific
instruction prompt.

2We clarify that in the case of SHAP and Captum we do
not replace the entire word when a subword is returned as
salient feature.
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Figure 1: This is the outline of our untargeted adversarial attack.

You are an assistant that replaces a single given word in a
provided phrase with a contextually appropriate synonym.
Instructions:
1. Carefully analyze the meaning and usage of the word
within the context of the entire phrase provided.
2. Respond with a single replacement word that best fits the
intended meaning in that specific context.
3. Your response must contain only the replacement word,
with no extra text, punctuation, or explanation.
4. If no suitable contextual synonym exists, return a word
that is as close as possible in meaning, even if not a perfect
synonym.
5. Consider the phrase’s tone, register, and intended meaning
to ensure the replacement is natural and appropriate.
Replace the word: WORD in this phrase: PHRASE

Figure 2: The prompt used for the synonym generation
attack stage. WORD is the word we want to replace and
PHRASE the sentence where is the word to replace.

4.2 The Victim Model

The victim models are pretrained language mod-
els (LM) for discriminative tasks. We evaluate
our attack against four LMs, which means that we
also assess their vulnerability against them. The
LMs used are: bert-base-cased (Devlin et al., 2019),
distilroberta-base (Sanh et al., 2019) and xlnet-
base-cased (Yang et al., 2019). They represent
a diversification in terms of their training scheme
(Bert vs. Roberta vs. XLNet). We remark Captum
could not be applied to xlnet-base-cased because of
differences between their architectures and discrep-
ancies among Captum tensor management and the
tensor strcuture of xlnet-base-cased. All the LMs
were fine-tuned in the three discriminative tasks.

4.3 Data

The attack evaluation was performed on four dis-
criminative tasks. The LM were fine-tuned on the
training set and evaluated on the test set of the
following datasets.

rotten tomatoes:3 It is a sentiment analysis
dataset of reviews from films. The size of the train-
ing set is 8,530 documents and of the test set 1,066
documents. The mean length of the test documents
is 21.22 tokens (Pang and Lee, 2005).

FRENK-hate-en:4 It is the English subset of
the FRENK dataset (Ljubešić et al., 2021), a hate
speech dataset. The size of the training set is 8,404
documents and of the test set of 2,301 documents.
The mean length of the test documents is of 33.34
tokens (Ljubešić et al., 2019).

RECCON:5 It is a dataset from conversations,
indicating whether they contain emotions. The size
of the training set is of 2,405 documents and of
the test set of 816 documents. The mean length of
the test documents is of 14.01 tokens (Poria et al.,
2021).

sst2:6 It is composed of sentences extracted from
film reviews. The size of the training set is of
53,879 documents and of the test set of 872 docu-
ments. The mean length of the test documents is of
19.55 tokens (Socher et al., 2013).

4.4 Evaluation Metrics
We perform a two tier evaluation of our adversarial
attack. We first evaluate its capacity of harming
the performance of the victim model, and then we
assess the robustness of the attack according to
the number of labels change, the number of words

3https://huggingface.co/datasets/
cornell-movie-review-data/rotten_
tomatoes

4https://huggingface.co/datasets/
classla/FRENK-hate-en

5https://huggingface.co/datasets/
Deysi/sentences-and-emotions

6https://huggingface.co/datasets/
stanfordnlp/sst2

https://huggingface.co/datasets/cornell-movie-review-data/rotten_tomatoes
https://huggingface.co/datasets/cornell-movie-review-data/rotten_tomatoes
https://huggingface.co/datasets/cornell-movie-review-data/rotten_tomatoes
https://huggingface.co/datasets/classla/FRENK-hate-en
https://huggingface.co/datasets/classla/FRENK-hate-en
https://huggingface.co/datasets/Deysi/sentences-and-emotions
https://huggingface.co/datasets/Deysi/sentences-and-emotions
https://huggingface.co/datasets/stanfordnlp/sst2
https://huggingface.co/datasets/stanfordnlp/sst2
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change and its capacity of keeping the meaning of
the original input text.

The first evaluation level is performed with stan-
dard text classification measures, namely the ac-
curacy and the F1-score. These evaluation mea-
sures shows the different performance of the non-
attacked and attacked LMs, but they do not shed
light regarding the effectiveness of the attack. In
this context, the related literature lacks of a con-
sensus on how to evaluate it. Hence, we propose a
new evaluation measure that is based on the ratio
of the amount of labels flipped and its rectification
according to the amount of words modified in the
input data.

Attack Success Rate (ASR) (Wu et al., 2021):
It measures the success of an attack by the ratio
of the number of labels flipped according to the
number of documents. It allows us to compare
the effectiveness of maliciously flipping the output
of the victim model amongst adversarial attacks.
Equation 1 settles the ASR metric.

ASR =
Number of labels changed
Number of texts attacked

(1)

The ASR does not give any information about
the stealth of the attack, hence we propose the ASM
evaluation measure.

Attack Score Metric (ASM): It rectifies the
ASR with respect to the amount of modifications
carried out in the input data. Hence, the more mod-
ifications performed, the more the ASR value will
be reduced. We calculate the level of perturbation
of the input data taking into account the ratio of the
words changed with respect to the number of words
in the input document. Text perturbation (TP) and
ASM are calculated as follows:

TP =
−1

n. of texts

n. of texts∑
i=1

log

(
n. changed words in texti

words in each texti

)
(2)

ASM = ASR · Sigmoid (TP) (3)

Cosine Similarity (CS): We pose that adversar-
ial attacks have to keep the semantic similarity
amongst the original input and the maliciously
altered one. Hence, we also considered the co-
sine similarity as an additional criterion to assess
the adversarial attack. We computed this similar-
ity by a vector representation of the original and

manipulated text with the embedding model jina-
embeddings-v3 model (Sturua et al., 2024). Then,
we calculate the cosine value of the two vectors.

5 Results and Analysis

We analyse the results of our adversarial attack eval-
uation from different perspectives. First, we focus
on XAI methods, assessing how effectively they
identify salient words in order to increase the prob-
ability of success of the attack, and we examine the
impact of these attacks on victim language models,
measuring changes in their performance with the
F1-Score measure (see Section 5.1). Finally, we
study the role of the SLMs in the synonym genera-
tion stage by analysing errors related to incorrect or
missing synonyms replacement (see Section 5.2),
and conducting an ablation study to determine the
importance of both identification of salient words
and contextual synonym replacement in the overall
attack process (see Section 5.3).

5.1 Adversarial Attack Performance Analysis

First, we analyse the performance of XAI methods
under different experimental conditions, and subse-
quently evaluate how adversarial attacks substan-
tially alter the performance of language models.

XAI method. The Figure 3 compares the XAI
method using the ASM, where a higher value in-
dicates that the XAI method is more effective at
identifying key words whose substitution leads to
successful attacks with less alterations of the input.
In this context, LIME stands out with the highest
ASM (0.1107), suggesting it is the most efficient at
pinpointing impactful words for adversarial modi-
fications, followed by Captum (0.0895), which is
almost exactly at the general mean (0.0893), and
Shap (0.0676), which is less effective by this metric.
Thus, LIME provides the greatest leverage for ad-
versarial interventions, while Shap is the least sus-
ceptible, with Captum occupying a middle ground.

Victim model. Since LIME performs better than
the other two XAI methods in the selection of
salient words, we show the effect of the attack
on the LM using LIME as the XAI method. Fig-
ures 4, 5 and 6 show how the attack significantly
harms the different LMs using the different LLMs.7

We see that xlnet-base-cased consistently stands

7McNemar’s test was used to calculate the performance
difference between attacked and non-attacked LMs.
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Figure 3: Comparison of ASM across xAI methods.
The red dashed line sets the mean value.

out for its robust and stable performance, main-
taining high effectiveness across tasks and show-
ing resilience even in more challenging scenar-
ios, bert-base-cased aexhibits slightly greater drops
in F1 scores under attack, especially on datasets
such as FRENK-hate-en and RECCON. In contrast,
distilroberta-base, is more susceptible to perfor-
mance degradation in demanding contexts, reflect-
ing a trade-off between efficiency and robustness.
These patterns highlight the distinct strengths and
limitations of each architecture, with xlnet-base-
cased excelling in stability, bert-base-cased offer-
ing a balanced profile but slightly less robust profile,
and distilroberta-base prioritizing efficiency at the
expense of some resilience.

Small Language Model. The figures 7 and 8
clearly illustrate the Attack Score Metric (ASM)
and semantic preservation (cosine similarity)
achieved by different generative models across all
discriminative tasks. It is evident that Llama-3.2-
1B-Instruct reached the highest mean ASM value
(0.1072), significantly above the general mean of
0.0893, demonstrating its superior capability in
generating synonyms that effectively alter the out-
put of classification models. Interestingly, this
comes at a cost to semantic preservation, as its
cosine similarity (0.8283) falls below the general
mean of 0.8461. By contrast, Qwen2.5-7B-Instruct
shows the highest semantic preservation with a
cosine similarity of 0.8717, but achieves the low-
est ASM (0.0767) among all models. gemma-3-
1b-it and Llama-3.1-8B-Instruct offer a more bal-
anced performance, with ASM values of 0.0945
and 0.0853 respectively, and moderate cosine sim-
ilarities. The results suggest that model size does
not necessarily correlate with attack effectiveness,
as the 1B parameter Llama-3.2-1B-Instruct outper-

forms larger models like Mistral-7B-Instruct-v0.3
and Llama-3.1-8B-Instruct in terms of ASM, chal-
lenging the assumption that larger models would
generate more effective adversarial examples.

Table 1 shows some examples of how the SLM
proposes synonyms that keep the original meaning
and cause the alteration of the classification label.
This also make evident that is not difficult to attack
LM leveraging the language generation skills of
LLMs.

5.2 Error analysis
We only analysed the errors of the SLM generating
synonyms, because we do not really know the real
words that determine the classification of the LM,
and we have to trust in the selection of the XAI
method. Accordingly, we focus our error analysis
on the generation of synonyms by the LLMs.

The errors observed in our adversarial attack
primarily stem from the incorrect generation of
synonyms or the absence of suitable replacements.
Table 2 illustrates several examples of these issues.
In the first case, the model switches the language
of the target word. In the second, rather than re-
placing the word with a synonym, the model re-
tains the original term and instead paraphrases the
entire sentence, indicating a tendency to favor para-
phrasing over direct substitution. In the third exam-
ple, the model introduces additional words, thereby
altering the original structure and expanding the
content. These errors are attributable to the lan-
guage model not strictly adhering to the prompt
instructions, which may be due to limitations in the
prompt design or inherent constraints of the model
itself.

5.3 Ablation Analysis
Our adversarial attack is built upon the selection
of salient words with a a posteriori XAI method,
and replace them with synonym words returned
by a SLM. We therefore analyse the relevance
of these two steps by selecting only two random
words and replacing the salient words with random
words. We perform this analysis on the short size
datasets (RECCON and sst2) and two SLMs. Table
3 shows the results, and we see: (1) identifying
salient words leads to a higher ASR compared to
selecting words at random. However, this strategy
may result in lower ASM values, since a LM might
depend on more than two salient words to accu-
rately classify an input text; and (2) the random
replacement of the salient words tends to reach low
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Figure 4: Performance comparison (F1 Score) of bert-base-cased on classification tasks without attacks and under
generative model attacks across datasets.
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Figure 5: Performance comparison (F1 Score) of distilroberta-base on classification tasks without attacks and under
generative model attacks across datasets.
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Figure 6: Performance comparison (F1 Score) of xlnet-base-cased on classification tasks without attacks and under
generative model attacks across datasets.

Original text Modified text Attacker model

says the bigot says the prejudiced Llama-3.1-8B-Instruct

a moving and not infrequently
breathtaking film.

an captivating and not occasionally
stunning film.

Qwen2.5-7B-Instruct

Dad, I’m scared. Dad, I’m terrified. gemma-3-1b-it

Table 1: Examples salient words (underlined ones) replacement with their synonyms by SLMs.

semantic similarity values. Therefore, we conclude
that our claim holds and the adversarial attack is

more harmful if it is focuses on the salient words,
and it is more stealthy if it replace those words with
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Original text Modified text Attack model

how dare you! how胆敢 you! Qwen2.5-7B-Instruct

The same to you . The same Same (as) you. same to me Mistral-7B-Instruct-v0.3

Good morning, Mary! Good Good day, Hello! gemma-2-9b-it

Table 2: Salient words (underlined ones) unfair replacement with their synonyms by SLMs.

SLM Dataset ASR ASM CS Change

Gemma-2-9b-it

RECCON
0.0895 0.0598 0.8513 Our attack
0.0539 0.0378 0.9107 2 random words with synonyms
0.3775 0.2524 0.3235 XAI random word

sst2
0.1525 0.1008 0.8168 Our attack
0.0401 0.0284 0.9389 2 random words with synonyms
0.4885 0.3229 0.2295 XAI random word

Llama-3.1-8B-Instruct

RECCON
0.1017 0.0680 0.8294 Our attack
0.0539 0.0377 0.8997 2 random words with synonyms
0.2500 0.1672 0.4092 XAI random word

sst2
0.1732 0.1144 0.8029 Our attack
0.0390 0.0276 0.9325 2 random words with synonyms
0.6353 0.4198 0.3091 XAI random word

Table 3: Ablation analysis comparing the effectiveness of the proposed adversarial attack (targeted synonym
replacement of salient words) with two baselines: (1) replacing two random words with synonyms, and (2) replacing
salient words with random words.

Llama-3.1-8B-Instruct

Llama-3.2-1B-Instruct

Mistral-7B-Instruct-v0.3

Qwen2.5-7B-Instruct
gemma-2-9b-it

gemma-3-1b-it
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Figure 7: Comparison of ASM across SLMs. The red
dashed line sets the mean value.

their contextual synonyms.

6 Conclusions

This research introduces an untargeted adversar-
ial attack against language models, leveraging the
capabilities of LLMs and XAI methods. Our exper-
imental results demonstrate that language models
are vulnerable to subtle input modifications, par-
ticularly when these modifications target salient
words.

The results allow us to conclude that our claim
holds and contributes to: (1) a novel untargeted
adversarial attack that preserves the semantic mean-

Llama-3.1-8B-Instruct

Llama-3.2-1B-Instruct

Mistral-7B-Instruct-v0.3

Qwen2.5-7B-Instruct
gemma-2-9b-it
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0.8537 0.8284 0.8229
0.8716 0.8683

0.8318

Cosine Similarity by Generative model (general mean)

General mean: 0.8461

Figure 8: Comparison of CS across SLMs. The red
dashed line sets the mean value.

ing of the input while achieving high success rates
in altering model predictions; (2) a new evaluation
measure for adversarial attacks in text that com-
bine the effectiveness of the attack (ASR) and the
amount of alterations produced in the text (ASM),
as well as to also take into consideration of the
semantic similarity.

As future work, we will keep working in the
stealthiness of the adversarial attack by enhancing
the process of maintaining unchanged the general
meaning of the text. We will also work on target
attacks to reach specific goals that lead to more
harmful attacks.
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The FRENK Datasets of Socially Unacceptable Dis-
course in Slovene and English.

Scott M Lundberg and Su-In Lee. 2017. A unified ap-
proach to interpreting model predictions. Advances
in neural information processing systems, 30.

Bo Pang and Lillian Lee. 2005. Seeing stars: Exploiting
class relationships for sentiment categorization with
respect to rating scales . In Proceedings of the ACL.

Ethan Perez, Saffron Huang, Francis Song, Trevor Cai,
Roman Ring, John Aslanides, Amelia Glaese, Nat
McAleese, and Geoffrey Irving. 2022. Red Team-
ing Language Models with Language Models. URL
https://arxiv. org/abs/2202.03286.

Marcos F. Pontes, Rodrigo C. Pedrosa, Pedro H. Lopes,
and Eduardo J. S. Luz. 2024. Evaluating Federated
Learning with Homomorphic Encryption for Medi-
cal Named Entity Recognition Using Compact BERT
Models. Anais do XV Simpósio Brasileiro de Tecnolo-
gia da Informação e da Linguagem Humana (STIL
2024).

Soujanya Poria, Navonil Majumder, Devamanyu Haz-
arika, Deepanway Ghosal, Rishabh Bhardwaj, Sam-
son Yu Bai Jian, Pengfei Hong, Romila Ghosh, Ab-
hinaba Roy, Niyati Chhaya, et al. 2021. Recognizing
Emotion Cause in Conversations. Cognitive Compu-
tation, 13:1317–1332.

Marco Tulio Ribeiro, Sameer Singh, and Carlos
Guestrin. 2016. ”Why Should I Trust You?”: Ex-
plaining the Predictions of Any Classifier. In Pro-
ceedings of the 22nd ACM SIGKDD international
conference on knowledge discovery and data mining,
pages 1135–1144.

https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.1145/3593042
https://doi.org/10.1145/3593042
https://doi.org/10.1109/ICAI52203.2021.9445247
https://doi.org/10.1109/ICAI52203.2021.9445247
http://arxiv.org/abs/2310.06825
https://openreview.net/forum?id=7Jwpw4qKkb
https://openreview.net/forum?id=7Jwpw4qKkb
http://hdl.handle.net/11356/1433
http://hdl.handle.net/11356/1433
http://arxiv.org/abs/1906.02045
http://arxiv.org/abs/1906.02045
http://arxiv.org/abs/2202.03286
http://arxiv.org/abs/2202.03286
https://api.semanticscholar.org/CorpusID:274616374
https://api.semanticscholar.org/CorpusID:274616374
https://api.semanticscholar.org/CorpusID:274616374
https://api.semanticscholar.org/CorpusID:274616374


757

Nuria Rodrı́guez-Barroso, Daniel Jiménez-López,
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