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Abstract
The emergence of complex reasoning abilities
in large language models (LLMs) has sparked
great interest, and a variety of prompting tech-
niques was proposed to coax them into emulat-
ing human thought processes. In this work, we
introduce Think Node-by-Node, a graph-based
reasoning framework inspired by mind maps,
flowcharts, and other visual aids that help hu-
mans tackle complex problems. Rather than
generating images directly, our approach lever-
ages standard graph-building and rendering li-
braries, and requires no fine-tuning, only the
model’s native coding capabilities. We further
explore a “Fast Thinking” regime, in which
a graph-reasoning example provided in the
prompt, but the model generates the answers
directly, without the full thought process re-
construction. Surprisingly, this approach leads
to significant improvement upon baseline in
general-knowledge tasks. Remarkably, Think
Node-by-Node maintains strong performance
even under a strict 25-token budget for an-
swer generation. Across two instruction-tuned
LLMs (0.5B and 7B parameters), our Fast-
TNbN strategy outperforms baseline prompting
techniques, improving accuracy by up to 10%,
and exceeds the capabilities of other structured
prompting methods under equivalent genera-
tion constraints.

1 Introduction

Improvement of reasoning ability is an important
task for modern LLMs developers. It was shown
recently, that asking a model to output intermedi-
ate reasoning steps significantly improves its per-
formance on the wide range of tasks involving
logic, planning and sophisticated analysis (Wei
et al., 2022; Wang et al., 2023). Although even
meaningless intermediate output can be used by
LLMs as a “thinking” process (Pfau et al., 2024),
in general the structure of thoughts can signifi-
cantly improve the model’s performance on sep-
arate tasks, especially for the smaller models that

are less sensitive to instruction tuning and that
perform significantly worse in accurate logical in-
ference (Lu et al., 2024). Many novel thought
schemas have been proposed, including multi-
agent, graph-based, sampling-based and others ap-
proaches (Rasal, 2024; Yao et al., 2024; Ding et al.,
2024).

Most of modern LLMs, besides language, can
also generate software code samples. It has been
demonstrated that adding code data to the pretrain-
ing phase implicitly increases the model’s reason-
ing ability (Shi et al., 2023). Coding skills can
be also explicitly used in the form of code-style
prompting, improving on a separate type of reason-
ing in natural language (Puerto et al., 2024).

Another line of research inspiring our method
is the attempts to integrate a non-linear thinking
process (Wen et al., 2024). Indeed, in chain-of-
thoughts and most of its variations, thought steps
are organized linearly, forming a chain graph. But
often mindmaps or charts could represent the prob-
lem better. The issue is that it is not clear how to
represent non-linear structure inside the framework
of token-by-token text generation.

In our work, we propose to utilize the model’s
coding skills in order to build a graph, or mindmap,
for the thought process enchancement. For our
experiments, we first select the models able to gen-
erate code (drawing the graph) in Python. Then,
we prompt a model with a graph-building example
(single example for each evaluation dataset), and
ask to answer the question, then draw the graph
(i.e. generate the graph code) and re-consider the
answer. We found that, first, even relatively small
models understands the task well and are able to
output meaningful graph representing thought pro-
cess; and, more importantly, the performance of
the models on general NLP reasoning benchmarks
increases when the graph reasoning is involved.

Investigating structured-prompting techniques
on smaller LLMs (under 10B parameters), we ob-



759

served that many models struggle to stay within
a practical generation budget, limiting real-world
applicability. In exploring ways to reduce redun-
dant output, we made the surprising discovery that
most structured-prompting methods remain effec-
tive even if the model does not actually produce the
full thought sequence.

Building on this insight, we introduce Fast Think-
ing, in which the model is shown an example
of structured reasoning but is prompted to emit
only a preliminary answer—halting before the full
thought chain—with a strict 25-token limit. Across
multiple benchmarks, Fast Thinking boosts answer
quality by up to 10% compared to standard prompt-
ing, and methods such as Tree of Thoughts (Yao
et al., 2023) and Program of Thoughts (Chen et al.,
2023) perform robustly in this regime.

We further propose Think Node-by-Node
(TNbN)—a new graph-based prompting strategy
that excels under Fast Thinking. Without any
weight updates, FastTNbN delivers improvements
of up to 10% across diverse datasets, while
keeping generation under 25 tokens. We vali-
date our approach on two instruction-tuned mod-
els from different families—Qwen2.5-0.5B and
Mistral-v3-7B—demonstrating that, with suffi-
cient coding proficiency, even models as small as
0.5 B parameters can benefit substantially.

2 Literature Review

The manipulation with prompt has emerged as a
crucial technique for enhancing the capabilities
of pre-trained large language models (Radford
et al., 2019; Brown et al., 2020). The Chain-of-
Thought prompting technique introduced in (Wei
et al., 2022), and its extensions (Zhang et al., 2024;
Yang et al., 2024; Long, 2023) compels the lan-
guage model to produce not merely the final an-
swer but also a coherent sequence of intermediate
reasoning steps. The Graph-of-Thoughts (GoT)
method was firstly proposed by (Besta et al., 2024).
The process from now is not just a simple prompt
engineering but a two-stage framework with the
particular module for the graph construction. How-
ever, the methodological foundation for GoT can
be traced to the earlier Tree of Thoughts (ToT)
paradigm in (Yao et al., 2023). ToT generalizes the
popular Chain of Thought approach to prompting
language models, and enables exploration over co-
herent units of text (thoughts). ToT allows LMs
to perform deliberate decision making by consid-

ering multiple different reasoning paths and self-
evaluating choices to decide the next course of
action, as well as looking ahead or backtracking
when necessary to make global choices.

Significant advancements have also been made
to enhance reasoning by leveraging code and pro-
gramming within the Program of Thoughts (Chen
et al., 2023) method. Encouraging models to “dig
inward” to arrive at an answer can be interpreted
in various ways. However, approaches that compel
large language models (LLMs) to produce clearer
and more accurate responses without relying on
additional information are undeniably worth ex-
ploring. A prime example is the Zero-shot method
augmented with the prompt “Take a deep breath
and work on this problem step-by-step.” (Yang
et al., 2024) (Zero-shot with TDB) prepended to
the question. This technique has proven effective
in guiding models toward more structured and pre-
cise reasoning. It is also worth noting the method
that facilitates reasoning by employing a so-called
"step back", enabling the model to approach the
problem from a different perspective. This tech-
nique, known as Step-Back Prompting (Zheng
et al., 2024), encourages the model to pause and re-
assess the problem, often leading to more insightful
and creative solutions.

3 Method

3.1 Fast Thinking

In this work, we leverage the notion of fast thinking,
which can be integrated with any structured prompt-
ing framework. Specifically, we present the model
with few-shot examples of the desired reasoning
structure, but inspect the answer obtained before
the thought process. To encourage the model to pro-
duce this initial answer, we append a preliminary
short response to each example, formatting them as
[question][preliminary answer][thought][answer].
During inference, the generation can be halted once
the preliminary answer is produced; in practice, we
just restrict the generation by 25 tokens. In Section
4.6, we demonstrate that this method is surprisingly
effective in combination with the existing prompt-
ing techniques , and with our Think Node-by-Node
method.

3.2 Think Node-by-Node Prompting

We introduce a novel prompting technique de-
signed to stimulate graphical reasoning in smaller
LLMs without relying on a visual interface. Our
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Figure 1: (top) The structure of TNbN output. (bot-
tom) Generalized corresponding graph obtained from
the code.

approach represents the model’s thought graph via
a Python script using the graphviz library. This
choice of representation is both formally precise
and readily interpretable by the model, since LLMs
cannot natively ingest graph structures.

The prompt includes a single working example
(see Fig. 1). First, the code defines each graph
node and assigns its label. Next, it specifies the
edges connecting those nodes. Finally, the stan-
dard graphviz layout and drawing commands pro-
duce the visual representation. For certain do-
mains—such as the ARC science questions—we
optionally include edge labels to capture relation-
ships between scientific concepts. Additionally, we
ask the model to render the edge leading to the
final answer in bold. This format is highly gen-
eral and can be adapted to any task. Depending
on the application, nodes might represent hypothe-
ses, intermediate reasoning steps, answer choices,
scientific phenomena, named entities, calculations,

Figure 2: Sample graphs produced by Qwen2.5-0.5B-
Instruct (dataset SciQ).

Figure 3: Sample graphs produced by Mistral-7B-
Instruct-v0.3 (dataset ARC-Challenge).

and so on. The essential component is the “graph
thinking” pattern itself, which we present to the
model in three distinct variants:

Choice(Figure 2) This pattern is good for exam-
like questions with answer options choice, which
do not require complex reasoning. The first node
corresponds to the whole question. Then, the model
analyses each option separately, creating one node
per option, and writing some commentary to it as a
node label. Edges are connecting the question node
with the options, and correct option is emphasized.

Relations(Figure 3) is the pattern focused on
the analysis of relations between entities. Here,
the node names represent entities, node descrip-
tions represent the type of the connections to the
previously introduced entities, and edges show the
causal or other connections between them.

Flow(Figure 4) represents the process of think-
ing for general tasks with open-ended questions.
Fist, the model generate nodes containing elemen-
tary claims, extracted from the task, or derived
from the previous ones. Then, it draws direct edges
representing the derivation process.

Overall, the code is well structured: the reason-
ing process remains clear even without rendering
the graph (see Figure 1).
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Figure 4: Sample graphs produced by Mistral-7B-
Instruct-v0.3 (dataset GSM8K).

Figure 5: The level of format retention across differ-
ent models for the Base (Baseline), CoT (Chain-of-
Thoughts), and TNbN (Think Node by Node) methods.
Cases where format retention is at least 0.7 are high-
lighted in yellow. Additionally, cases where both the
primary response and subsequent format retention are
maintained are highlighted in green.

4 Experiments

4.1 Structured Prompting Baselines

Here, we list the main types of logical thinking and
several examples of benchmarks that test them.

The reasoning process for each method is dis-
tinct: Baseline represents the classic approach, pro-
viding a direct answer followed by an explanation.
Chain-of-Thoughts (Wei et al., 2022) involves a
structured sequence of reasoning steps. Program
of Thoughts (Chen et al., 2023) leverages a code-
based reasoning framework. Step-Back Prompt-
ing (Zheng et al., 2024) encourages reflective, in-
ternal textual reasoning, allowing the model to re-
frame the question by taking a metaphorical "step
back." Zero-shot with TDB (Yang et al., 2024)
operates without examples or additional conditions,
relying solely on self-declarative instructions. Tree
of Thoughts (Yao et al., 2023) considers several
different lines of reasoning and independently eval-
uates choices to decide on the next course of action,
and looks ahead or back when necessary to make
a global choice. Graph of Thoughts (Besta et al.,
2024) this approach enables combining arbitrary
LLM thoughts into synergistic outcomes, distill-
ing the essence of whole networks of thoughts, or
enhancing thoughts using feedback loops.

4.2 Datasets

We evaluate the capabilities of the methods across
diverse domains and problem types. For general
multiple-choice science questions, we select SciQ
(Moore et al., 2023), ARC (Bhakthavatsalam et al.,
2021), MMLU (Wang et al., 2024). Mathematical
skills are covered by GSM8K (Cobbe et al., 2021),
AQuA (Ling et al., 2017), SVAMP (Patel et al.,
2021), TabMWP (Kang et al., 2024), MultiArith
(Roy et al., 2015). Multi-hop reasoning data in-
cludes StrategyQA (Geva et al., 2021), MuSiQue
(Trivedi et al., 2022). Finally, we add special knowl-
edge taks: time-related question from TimeQA
(Chen et al., 2021), and financial reasoning FinQA
(Chen et al., 2022b) and ConvFinQA (Chen et al.,
2022a).

4.3 Models

For our preliminary experiments, we chose LLMs
from different families: Gemma-2-9B-it (Team
et al., 2024), Llama-3-8B, Llama-3-8B-Instruct
(Grattafiori et al., 2024), Phi-3-Mini-128K-Instruct
(Abdin et al., 2024), Vicuna-13B-v1.5 (Zheng et al.,
2023), Qwen2.5-0.5B-Instruct (Yang et al., 2025),
and Mistral-7B-Instruct-v0.3 (Jiang et al., 2023).
On the second stage of evaluation, only the latter
two models were used.

4.4 Experimental Setup

We conduct a two-stage experimental evaluation.
In the first (model-selection) phase, we test each
model’s ability to interpret and reproduce our
graph-reasoning patterns and to follow the re-
quired output format. We choose three bench-
marks—ARC, SciQ, and GSM8K—and compare
three reasoning strategies: Baseline, Chain-of-
Thought (CoT), and Think Node-by-Node (TNbN).
Each model is evaluated on 100 randomly sam-
pled instances per dataset, and outputs are assessed
manually. We perform this selection phase because
our method depends on the model’s programming
proficiency and familiarity with graph-rendering
libraries; only those that reliably follow the prompt
can meaningfully benefit from our approach.

In the second (main-experiment) phase, we re-
strict our analysis to the top-performing models
identified in phase one and carry out a comprehen-
sive evaluation across all benchmarks. For each
dataset, we generate a graph-reasoning example
(presented here: https://github.com/MorKir/graph-
reasoning-examples.git) by selecting a random



762

question and asking GPT-4 to produce Graphviz
code that visualizes the reasoning process. Infer-
ence uses greedy decoding; for the Fast Thinking
experiments, we enforce a 25-token limit on gener-
ation.

4.5 Evaluation of LLM’s Ability to Follow
Graph Reasoning Format

In this phase, we are evaluating models based on
their ability to handle specific reasoning formats.

In Figure 5, each model is evaluated by two met-
rics: the primary score—the probability of produc-
ing the preliminary answer immediately, as demon-
strated in the example—and the secondary score
(in parentheses)—the probability of maintaining
the required format throughout the subsequent rea-
soning steps after that answer. Our results show
that the TNbN format is remarkably accessible to
these models: four out of six achieve a perfect
secondary score, outperforming both the baseline
and CoT prompts in format compliance. Strict ad-
herence to the answer format is often a bottleneck
for smaller LLMs, so this improvement is espe-
cially significant. Across all models, Mistral-7B-
Instruct-v0.3 leads in format-compliant answer gen-
eration, followed by Qwen2.5-0.5B-Instruct and
then Phi-3-Mini-128K-Instruct. Although Gemma-
2-9B-it and Llama-3-8B-Instruct also attain perfect
primary scores under all prompting methods and
perfect TNbN secondary scores, they fail to sustain
the full reasoning pattern, resulting in near-zero
secondary scores for CoT and baseline. Notably,
model size does not predict format compliance:
among the 7–8B models, only Mistral consistently
follows the prescribed format under both CoT and
TNbN. Based on these summary metrics, we select
Mistral-7B-Instruct and Qwen2.5-0.5B for the full
evaluation. In Section 5, we provide more details
about format compliance issues of the evaluated
models.

4.6 Main Results
Table 3 report the Fast Thinking results under a
25-token generation limit for each prompting strat-
egy. In both models, structured prompts consis-
tently outperform the baseline, with improvements
of up to 10 % on certain datasets. Among the meth-
ods tested, TNbN achieves the highest accuracy on
most benchmarks.

Table 1 shows the average ranking score for each
method. For each dataset, we rank the methods
from best to worst and assign scores of {1.0, 0.8,

Figure 6: Generalized results of the methods for Mistral-
7B-Instruct-v0.3.

0.6, 0.4, 0.2, 0.0} accordingly; these scores are then
averaged across datasets. FastTNbN, PoT, and ToT
all exceed the baseline in the Fast Thinking regime,
with FastTNbN emerging as the clear leader.

In Table 4, we compare FastTNbN to its slower
counterpart by reporting accuracy on the primary
answers (before reasoning), the final answers (af-
ter the full thought process), and the intermedi-
ate answers extracted via regular expressions from
each model’s output. Mathematics is the only do-
main in which full reasoning consistently boosts
the primary answer accuracy –— most notably on
GSM8K, AQuA-Q, and MMLU Math –— while
MMLU Economics and Psychology also benefit
for Mistral. On other datasets, primary answer ac-
curacy is equal to or better than final accuracy. This
suggests that, for many tasks, generating reason-
ing tokens is not strictly necessary to improve the
model’s internal reasoning, although the choice of
prompting strategy remains critical. In classical
domains, the primary LLM response requires mini-
mal cognitive effort (functioning as an automatic
thinking system (Kahneman, 2011; Zhang et al.,
2025) ). In FastTNbN, this capability—along with
graphical reasoning—is actively engaged (and is
effectively applied immediately based on the given
example). For other methods we also ask to repeat
the reasoning process.

5 Analysis and Ablation Study

Format compliance issues of different models.
Here, we describe typical issues with thought gen-
eration, observed in experiments in Sec. 4.5

• Gemma-2-9B-it. Thought generation exhib-
ited structural breakdowns and irrational inter-
ruptions in thought flow. Final answers were
frequently missing or misplaced in the output.
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Mistral-7B-Instruct-v0.3
Baseline CoT PoT SBP Z-TDB ToT GoT FastTNbN(Ours)
15.6 18.6 16.2 10.4 10.6 17.2 18.2 19.6

Qwen2.5-0.5B-Instruct
Baseline CoT PoT SBP Z-TDB ToT GoT FastTNbN(Ours)
18.2 10.4 19.0 5.4 9.6 10.8 18.8 20.4

Table 1: Mistral-7B-Instruct-v0.3 and Qwen2.5-0.5B-Instruct average ranking score. The score of different
approaches to thinking in LLM are presented: Baseline, CoT - Chain-of-Thoughts, PoT - Program of Thoughts,
SBP - Step-Back Prompting, Z-TDB - Zero-shot with TDB, ToT - Tree of Thoughts, GoT - Graph of Thoughts,
FastTNbN - Fast Thought Node by Node.

GraphQA-Easy GraphQA-Hard
Mistral-7B Qwen-0.5 Mistral-7B Qwen-0.5B

Overall 0.38 0.18 Overall 0.33 0.15
Connected Nodes 0.38 0.01 Node Classification 0.72 0.36
Edge Existence 0.57 0.56 Maximum Flow 0.08 0.00
Node Degree 0.07 0.07 Disconnected Nodes 0.07 0.03
Node Count 0.35 0.02 Reachability 0.85 0.32
Cycle Check 0.92 0.36 Shortest Path 0.23 0.14
Edge Count 0.00 0.03 Triangle Counting 0.02 0.03

Table 2: Evaluating the models ability to solve graph-based problems.

Figure 7: Generalized results of the methods for
Qwen2.5-0.5B-Instruct.

• Llama-3-8B. Code generation lost its structure
and meaning, the content of the thought pro-
cess was looped or interrupted without good
reason. The final answer could be missing
despite an adequate thought process.

• Llama-3-8B-Instruct. There was a clear trend
whereby LLMs did not complete the second
part (code generation), let alone the final an-
swer. The second part of the answer fre-
quently contained repetitive content and in-
formation unrelated to the question.

• Phi-3-Mini-128K-Instruct. The LLM fre-
quently failed to complete the second part

(thought generation), often stopping short of
producing the final answer.

• Vicuna-13B-v1.5. The primary answer was
improperly presented. Failure to comply with
the response format in principle, its absence,
the output of information that is completely
unrelated to the request.

Generalized results comparison. The results
presented in Table 1 were compiled to clearly
demonstrate the overall success of our method
across the set of considered domains for both Mis-
tral (Fig. 6) and Qwen (Fig. 7).

Graph reasoning skills of the selected models.
The models ability to support the required format
was verified earlier. The next step is to ensure that
the selected models are fundamentally capable of
solving graph-related problems. For this purpose,
the GraphQA-Easy and GraphQA-Hard datasets
are utilized. Each model is evaluated using 100
questions per problem category from these datasets.

The results in Table 2 show that both se-
lected models can solve graph-structured
problems, with Mistral-7B-Instruct-v0.3
demonstrating roughly twice the accuracy of
Qwen2.5-0.5B-Instruct. Since both models
perform strongly under the FastTNbN setup, we
detect the elements of graph reasoning which are
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Qwen2.5-0.5B-Instruct
# Base CoT PoT SBP Z-TDB ToT GoT FastTNbN

Science Question
SciQ 1000 0.42 0.36 0.45 0.21 0.26 0.09 0.21 0.51
ARC-Easy 2375 0.24 0.13 0.23 0.05 0.19 0.07 0.32 0.30
ARC-Challenge 1172 0.19 0.12 0.22 0.04 0.14 0.04 0.30 0.28
Overall MMLU 12032 0.15 0.10 0.17 0.09 0.10 0.14 0.16 0.17
STEM-MMLU 4873 0.15 0.10 0.18 0.09 0.09 0.15 0.15 0.15
NOT-STEM-MMLU 7159 0.15 0.10 0.16 0.09 0.11 0.13 0.17 0.18
Math
GSM8K 1319 0.08 0.04 0.12 0.02 0.02 0.01 0.05 0.14
AQuA 254 0.10 0.19 0.15 0.02 0.01 0.03 0.22 0.21
SVAMP 1000 0.19 0.07 0.16 0.04 0.10 0.04 0.11 0.10
TabMWP 751 0.17 0.10 0.07 0.08 0.14 0.05 0.17 0.11
MultiArith 420 0.08 0.04 0.08 0.02 0.04 0.03 0.03 0.04

Multi-Hop Reasoning
StrategyQA 1603 0.42 0.18 0.17 0.14 0.18 0.05 0.32 0.12
MuSiQue 2417 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.01
Special Knowledge QA
TimeQA Easy 2996 0.01 0.01 0.01 0.01 0.05 0.00 0.00 0.03
TimeQA Hard 3078 0.01 0.01 0.00 0.00 0.05 0.01 0.00 0.03
FinQA 1146 0.01 0.01 0.00 0.01 0.01 0.00 0.01 0.01
ConvFinQA 3037 0.02 0.05 0.02 0.05 0.01 0.06 0.04 0.02

Mistral-7B-Instruct-v0.3
Science Question
SciQ 1000 0.84 0.85 0.86 0.86 0.77 0.13 0.84 0.85
ARC-Easy 2375 0.65 0.83 0.83 0.81 0.77 0.83 0.85 0.83
ARC-Challenge 1172 0.60 0.72 0.71 0.69 0.63 0.68 0.68 0.71
Overall MMLU 12032 0.27 0.28 0.26 0.24 0.24 0.28 0.28 0.27
STEM-MMLU 4873 0.25 0.26 0.24 0.22 0.22 0.26 0.26 0.24
NOT-STEM-MMLU 7159 0.30 0.30 0.28 0.27 0.25 0.31 0.30 0.30

Math Word Problems
GSM8K 1319 0.14 0.09 0.09 0.11 0.05 0.04 0.04 0.10
AQuA 254 0.20 0.20 0.24 0.12 0.07 0.20 0.23 0.22
SVAMP 1000 0.47 0.55 0.56 0.55 0.54 0.57 0.59 0.57
TabMWP 751 0.39 0.46 0.40 0.25 0.42 0.46 0.42 0.43
MultiArith 420 0.13 0.15 0.15 0.13 0.12 0.15 0.11 0.14
Multi-Hop Reasoning
StrategyQA 1603 0.82 0.81 0.81 0.69 0.75 0.68 0.68 0.83
MuSiQue 2417 0.10 0.05 0.06 0.02 0.09 0.04 0.06 0.11
Special Knowledge QA
TimeQA Easy 2996 0.31 0.34 0.36 0.06 0.40 0.30 0.35 0.39
TimeQA Hard 3078 0.23 0.22 0.21 0.02 0.31 0.22 0.25 0.24
FinQA 1146 0.04 0.05 0.03 0.01 0.04 0.03 0.04 0.05
ConvFinQA 3037 0.01 0.02 0.02 0.02 0.01 0.02 0.01 0.02

Table 3: Qwen2.5-0.5B-Instruct and Mistral-7B-Instruct-v0.3 results on datasets. The results of different approaches
to thinking in LLM are presented: Baseline, CoT - Chain-of-Thoughts, PoT - Program of Thoughts, SBP - Step-Back
Prompting, Z-TDB - Zero-shot with TDB, ToT - Tree of Thoughts, GoT - Graph of Thoughts, FastTNbN - Fast
Thought Node by Node.
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Mistral-7B-Instruct-v0.3 Qwen2.5-0.5B-Instruct
Primary In the process Final Primary In the process Final

SciQ 0.85 0.58 0.82 0.51 0.46 0.43
ARC-Easy 0.83 0.24 0.64 0.30 0.16 0.38
ARC-Challenge 0.71 0.19 0.54 0.28 0.14 0.35
STEM-MMLU 0.24 0.13 0.24 0.15 0.04 0.14
NOT-STEM-MMLU 0.30 0.16 0.31 0.18 0.06 0.15
GSM8K 0.10 0.03 0.25 0.14 0.03 0.05
AQuA 0.22 0.13 0.38 0.21 0.26 0.55
SVAMP 0.57 0.00 0.08 0.10 0.00 0.00
StrategyQA 0.83 0.11 0.35 0.12 0.00 0.00
MuSiQue 0.11 0.19 0.20 0.01 0.01 0.01

Table 4: Comparison of the accuracy of Fast and Thoughtful TNbN approaches

essential for this technique. It can be said that the
borderline versions of models from what can be
called line small models are being tested.

Specifically, both models excel at existence and
classification tasks — such as Edge Existence, Cy-
cle Detection, Node Classification, and Reachabil-
ity —- but struggle with counting-based problems
(Node Degree, Node Count, Edge Count) and more
complex algorithms like Maximum Flow. Their
performance on Shortest Path queries is modest yet
nontrivial. These findings suggest that fundamental
graph-understanding abilities suffice for effective
FastTNbN prompting.

6 Conclusion

In this work, we demonstrate the effectiveness of
Fast Thinking: a method in which the model is
provided an example of structured reasoning, yet
reasoning-chain generation is curtailed to as few
as 25 tokens. This approach is far more com-
putationally efficient than conventional Chain-of-
Thought prompting and other structured reasoning
techniques. While it is often assumed that such
methods succeed primarily through extended au-
toregressive computation, we show that structured
prompting remains effective even with minimal to-
ken generation. In Fast Thinking, the bulk of com-
putation shifts to prompt processing — performed
in a single inference step — and can be further
accelerated (e.g., via KV-cache optimizations) to
reduce answer latency.

Next, we introduce a novel structured-prompting
technique that leverages the LLM’s programming
capabilities to generate a task schema as a graph,
encoded in a standard graph-rendering library. We
find that this method excels in the Fast Thinking

regime, outperforming both the baseline and alter-
native structured prompts by up to 10 % on various
datasets under a 25-token generation budget. Re-
markably, our approach remains effective even with
very small models (starting at 0.5 B parameters). It
requires no weight updates and is domain-agnostic,
making it compatible with any training or adapta-
tion pipeline. Although our technique depends on
models with strong coding proficiency, we believe
it offers valuable insights into LLM reasoning and
control, and can enable efficient LLM-based sys-
tems in settings where inference speed and model
size are constrained.

7 Limitations

In this work, we present the TNbN prompting strat-
egy along with its optimized modification, the Fast-
TNbN prompting strategy, allowing to utilize the
model’s coding skills for structuring general reason-
ing process. This is the main limitation of our work:
our method is applicable only to code-language
models, requires strict adherence to a specific for-
mat, and many existing LLMs are not supported.
We checked our approach on several standard rea-
soning benchmarks, but it does not necessarily lead
to high performance on general real-world situa-
tions. In our further research, we plan to extend the
scenarios for testing our novel graph-code prompt-
ing approach, and consider its applicability for plan-
ning and general real life-related problems.
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