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Abstract

We propose a user-aware attention-based frame-
work for early detection of mental health risks
from social media posts. Our model com-
bines DisorBERT, a mental health—adapted
transformer encoder, with a user-level atten-
tion mechanism that produces transparent post-
level explanations. To assess whether these
explanations are faithful, i.e., aligned with the
model’s true decision process, we apply ad-
versarial training and quantify attention faith-
fulness using the AtteFa metric. Experiments
on four eRisk tasks (depression, anorexia,
self-harm, and pathological gambling) show
that our model achieves competitive latency-
weighted F1 scores while relying on a sparse
subset of posts per user. We also evaluate at-
tention robustness and conduct ablations, con-
firming the model’s reliance on high-weighted
posts. Our work extends prior explainability
studies by integrating faithfulness assessment
in a real-world high-stakes application. We ar-
gue that systems combining predictive accuracy
with faithful and transparent explanations offer
a promising path toward safe and trustworthy
Al for mental health support.

1 Introduction

Mental health disorders are major public health con-
cerns, and early identification of conditions such
as depression, anorexia, self-harm, and pathologi-
cal gambling is critical. As social media becomes
a widespread platform for self-expression, online
posts have emerged as valuable data sources for
detecting mental health risks. Prior shared tasks,
notably the eRisk challenges, have facilitated re-
search on early risk prediction from Reddit posts,
encouraging models that can issue timely and ac-
curate alerts for at-risk individuals (Losada et al.,
2017, 2018, 2019, 2020; Parapar et al., 2021, 2022,
2023, 2024).

However, deploying such systems in practice
requires not just predictive accuracy but also trust-
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worthy explanations. Black-box decisions can be
problematic in sensitive domains like mental health,
where users and clinicians need to understand the
reasoning behind predictions. Attention mecha-
nisms have been widely used in neural NLP mod-
els as a means of offering transparency, producing
weights over input segments that are often inter-
preted as explanations.

Yet, recent work has called this interpretability
into question. Jain and Wallace (2019) showed
that attention weights are often not faithful—that
is, they may not align with the model’s actual de-
cision logic. Wiegreffe and Pinter (2019) argued
that attention can still be useful if properly vali-
dated. The distinction between plausibility (i.e.,
what seems intuitive to humans) and faithfulness
(what the model actually uses) has since become
central in explainability research (Jacovi and Gold-
berg, 2020; Moradi et al., 2021). In high-stakes
settings like mental health, faithfulness is essential.

In this work, we propose a user-aware attention-
based framework for early detection of mental
health risks on social media. Our model combines
DisorBERT (Aragon et al., 2023), a BERT model
adapted to mental health and social media domains,
with a user-level attention mechanism that iden-
tifies the most informative posts as explanations.
To evaluate the faithfulness of these explanations,
we further employ adversarial training to evaluate
attention faithfulness using AtteFa (Amini and Kos-
seim, 2022), a metric that quantifies how accurately
the attention weights reflect the true importance
of input features in the model’s actual decision-
making process.

We validate our framework on four eRisk tasks
(depression, anorexia, self-harm, and pathological
gambling), achieving competitive latency-weighted
F1 scores. Our analysis confirms that the model
typically relies on a sparse subset of posts to make
predictions, underscoring both the rarity of strong
mental health signals and the value of faithful ex-
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planations in this domain.
Our main contributions are as follows:

* We propose a novel user-aware attention-
based architecture for early detection of men-
tal health risks from social media, integrating
DisorBERT with user-level attention for post-
level explainability.

* We quantitatively evaluate the faithfulness of
user-level attention weights through adversar-
ial training and the use of the AtfeFa metric.

* We conduct extensive experiments on four
eRisk shared tasks (depression, anorexia,
self-harm, pathological gambling), achieving
competitive latency-weighted F1 scores and
demonstrating that only a small subset of posts
are typically required for accurate classifica-
tion.

2 Related Work

2.1 Mental Health Detection from Social

Media

Early work demonstrated the feasibility of using
linguistic and behavioral patterns from social me-
dia to detect mental health conditions (De Choud-
hury et al., 2013; Coppersmith et al., 2014, 2015).
The CLEF eRisk shared tasks (LLosada et al., 2017,
2018, 2019, 2020; Parapar et al., 2021, 2022,
2023, 2024) formalized early detection tasks across
several disorders, emphasizing timely decision-
making over Reddit data.

More recent approaches leverage transformer-
encoder-based models, fine-tuned on Reddit or
Twitter datasets. Murarka et al. (2021) used
RoBERTa (Zhuang et al., 2021) to detect multiple
mental disorders with strong performance. Aragon
et al. (2023) introduced DisorBERT, a variant of
BERT (Devlin et al., 2019) adapted first to social
media language and then to mental health con-
tent, showing improved accuracy across the eRisk
datasets.

User-level modeling has also gained traction, of-
ten using hierarchical architectures to aggregate
post representations. Hierarchical attention net-
works (HANs; Yang et al., 2016) allow models
to weight each post, highlighting the most indica-
tive content. Zogan et al. (2022) proposed a multi-
aspect HAN that augmented attention-based signals
with user metadata, improving both interpretability
and performance for depression detection.
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While these models provide some degree of
transparency through their built-in attention mech-
anism, few studies have systematically assessed
whether explanations reflect the model’s decision
process. This gap motivates a deeper examination
of attention faithfulness in the detection of mental
health risks using social media.

2.2 Explainability and Attention Faithfulness

Attention mechanisms are often viewed as provid-
ing interpretable insights into neural predictions.
However, Jain and Wallace (2019) showed that at-
tention distributions can be manipulated without
affecting model outputs, questioning their explana-
tory power. Wiegreffe and Pinter (2019) argued
that attention can serve as explanation if validated
using diagnostic tests, including adversarial atten-
tion training.

Other studies proposed ways to evaluate faith-
fulness of the attention mechanism. Serrano and
Smith (2019) and Chen et al. (2020) used input
ablation to measure the impact of attended to-
kens. Chrysostomou and Aletras (2021) introduced
Task-Specific Scaling to bias attention weights to-
ward task-relevant tokens. More recently, Amini
and Kosseim (2022) proposed ATTEFA, a metric
that quantifies how well attention weights reflect a
model’s prediction under adversarial perturbations.

Our work builds on these efforts by enforcing
faithfulness through adversarial training and evalu-
ating explanation integrity via ATTEFA. We extend
attention-based interpretability to the user level in a
real-world task, showing that faithful explanations
can enhance trust in systems for mental health sup-
port.

3 Methodology

In this section, we describe our user-aware
attention-based framework for early detection of
mental health risks from social media. The model
operates at two levels: a post-level encoder gener-
ates contextualized embeddings for each user post,
and a user-level attention mechanism aggregates
these embeddings to produce a prediction, while
simultaneously providing post-level interpretability.
We employ DisorBERT as the base encoder, lever-
aging its domain adaptation to social media and
mental health language. To ensure that attention-
based explanations are faithful to the model’s de-
cision process, we apply adversarial training and
quantify explanation faithfulness using the AtteFa



metric. We also outline our training setup, adver-
sarial objective, datasets, and evaluation protocol.

3.1 Model

Figure 1 shows the overall architecture of the
model, together with the inputs and outputs for
each layer. The model classifies each user as at
risk or without risk based on its social media posts.
In the following subsections, we will review each
layer separately.
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Figure 1: Model Architecture. p1, po,...Dp, represent
the posts by user u, e;,, and w,,, denote the embedding
and the attention weight for the post p;, and e, is the
final embedding of the user v that is output by the atten-
tion.

3.1.1 Post-level Encoder

The post-level encoder layer is responsible for com-
puting the 1D embedding (e,,) for each individual
post by the user (p;).

As the encoding model, we used DisorBERT
(Aragon et al., 2023), which is a BERT-based
model that is domain-adapted to both the mental
health domain and social media language. We ap-
plied first pooling to extract the representation of
the [CLS] token as the embedding for each post

(ep;)-

3.1.2 User-level Attention

Given a user u with posts p1, p2, ..., Pn, we first
compute the logit [,,, for each post p; using Equa-
tion 1:

l,, =F2

(tanh(F1(ep,))) (1)
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where e, is the embedding for the post p;,
computed using the post-level encoder (see Sec-
tion 3.1.1). F1 is a fully connected layer, with
lep;| input and |e,, | /2 output nodes. F2 is also a
fully connected layer, with |e,, |/2 input nodes and
1 output node'.

Having the logits for all posts, the attention
weight w, for each post p; is computed through
softmax, as shown in Equation 2:

el
P S exp(ly)

Lastly, the embedding e,, for the user u is com-
puted through a weighted average over e, , €,, ...,
€pn»> With wpy,, wp,, ..., wp, as weights:

n
€y = E :wpz‘epi
=1

The attention layer returns both e, (fed to
the classification head), along with the vector
[Wp, , Wy, - - ., Wp, ], which we use to determine
the informativeness of each post.

2

3)

3.1.3 Classification Head

The classification head is composed of a dropout
(with p = 0.1), followed by a feed-forward layer
with one output node, followed by a sigmoid acti-
vation. Having e,, as the input, this component is
used to predict the likelihood of the user u being at
risk for the corresponding mental health problem.

3.2 Training Process

In this section, we describe the training proce-
dures for the base and adversarial models. The
base model is trained to detect mental health
risks from user posts. In contrast, the adversar-
ial model is specifically optimized to replicate the
base model’s predictions while assigning different
attention weights to the user’s posts. This approach
enables a rigorous evaluation of whether the atten-
tion mechanism faithfully reflects the model’s true
decision process.

3.2.1 Base Model

Training is done using PyTorch (Paszke et al., 2019)
and HuggingFace Transformers (Wolf et al., 2020).
We initialize the Post-level Encoder from the pre-
trained checkpoint of DisorBERT. The rest of the
parameters in the model are randomly initialized.

'In our experiments, |e,,, | was equal to 768 (i.e. the hidden
size of DisorBERT).



Training is done using binary cross-entropy as
the loss function. While the loss is back-propagated
on a per-sample basis, we use gradient accumula-
tion to leverage an effective batch size of 4. In
order not to overflow the GPU memory, we enable
gradient checkpointing (Chen et al., 2016), and
feed the posts in minibatch sizes of 32. The text for
each post is created through joining the title and
the body of the corresponding post with a newline
character (\n)2.

AdamW (Loshchilov and Hutter, 2019) is used as
the optimizer. We set the learning rate to le—>5, and
use the default values in Pytorch for the remaining
optimizer hyperparameters.

Training is continued until the area under
precision-recall curve (AUC-PR) over the test
dataset does not improve in 10 consecutive epochs,
or a maximum of 50 epochs is reached. After the
completion of training, the trained model check-
point is picked at the epoch where the maximum
AUC-PR over the test dataset was reached. We then
set the prediction threshold so that it maximizes the
F1 score on the test data.

3.2.2 Adversarial Model

We follow a similar approach to Amini and Kos-
seim (2022) to train the adversarial model. Using
the trained base model, we compute the prediction
and the user-level attention weights for each user
in the dataset.

For each sample, the prediction loss is initially
calculated as the absolute difference between the
outputs of the base and adversarial models:

Ly = Yo — U] “4)

where y and y}; denote the outputs of the adver-
sarial and the base models, respectively, on sam-
ple 7.

We then compute the Jensen-Shannon Diver-
gence (JSD) between the user-level attention
weights between the adversarial and the base mod-
els. With o, and ag representing the attention
weights of the adversarial and the base models, re-
spectively, for sample 4, and &; aé;a;’, the JSD
between o, and ozf) is computed using Equation 5:

ISD(a, o) = 5KLD(af[[c;) + 3KLD(ajl|ai) (5)

’To accelerate training, we limited each post to its first 200
tokens.
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To compute the Kullback-Leibler Divergence
(KLD), we use ¢ = 1le — 10 to avoid a mathemati-
cal error when computing the log(0). With this e,
the maximum possible value for JSD is ~0.6931,
which we will later refer to as JS D42

We then compute the second portion of the loss,
using the following equation:

_ ISD(ay, o)

Ea JSDma:Jc

(6)
The division by J.S D4, ensures the same the-
oretical range (i.e., between 0 and 1) for both E?
and L£,. With £}, and £}, at hand, the adversarial

loss for sample ¢ is computed using Equation 7:
L= L, + Ly, @)

During training, the final loss to be back-
propagated for each batch is computed by aver-
aging the individual values of adversarial loss (£?)
for each sample within the batch.

We use the average adversarial loss over the test
data as the early stopping criterion. Aside from
the computation of loss and the early stopping
criterion, the remaining setup for the adversarial
training phase is similar to the training of the base
model.

Amini and Kosseim (2022) observed that max-
imizing the JSD between the user-level attention
weights of the adversarial and the base model is
a simpler task compared to minimizing the dis-
tance between the outputs of the two models. We
argue that this would increase the chances of con-
vergence to a local minima, where the [,iy compo-
nent of the loss is not fully optimized. To avoid
such a problem, we have performed the adversarial
training from both random initialization and the
trained base checkpoints, with the earlier case us-
ing a similar setup as Amini and Kosseim (2022).
In the latter scenario, ﬁ; starts from a value close
to zero®, which would theoretically guide the ad-
versarial model to retain close predictions to the
trained base model.

3.3 Datasets and Tasks

We evaluate our setup using the following 4
datasets from the eRisk shared task series (Losada
et al., 2017, 2018, 2019, 2020; Parapar et al., 2021,
2022, 2023). The datasets contain a collection of

*Due to the use of regularization techniques during train-
ing, the value of L, is not exactly zero.



reddit posts and comments*, grouped by users and
sorted in chronological order. Each user is labelled
as at risk or without risk for the corresponding men-
tal health issue, using the methodology proposed
in Losada and Crestani (2016). Table 1 shows the
sources for each dataset, and Table 2 shows the
distribution of the number of positive (i.e., at risk)
and negative (i.e., without risk) samples (users) in
the training and test datasets for each task.

Dataset Subset Source(s)
Anorexia Train | eRisk 2018 - T2 (Losada et al., 2018)
Test | eRisk 2019 - T1 (Losada et al., 2019)
Train eRisk 2017 - T1 (Losada et al., 2017)
Depression eRisk 2018 - T1 (Losada et al., 2018)
Test | eRisk 2022 - T2 (Parapar et al., 2022)
Train eRisk 2021 - T1 (Parapar et al., 2021)
Gambling eRisk 2022 - T1 (Parapar et al., 2022)
Test | eRisk 2023 - T2 (Parapar et al., 2023)
Train eRisk 2019 - T2 (Losada et al., 2019)
Self-harm eRisk 2020 - T1 (Losada et al., 2020)
Test | eRisk 2021 - T2 (Parapar et al., 2021)

Table 1: Sources of the datasets.

Dataset Train Test
pos neg pos neg
Anorexia 61 411 73 742
Depression 214 1,493 98 1,302
Gambling 245 4,182 103 2,071
Self-harm 145 618 152 1,296

Table 2: Distribution of the number of users in each
dataset.

3.4 Evaluation Method

We evaluate the precision, recall, F1, accuracy, and
the PR-AUC for the trained base models. Further-
more, in order to determine how well our trained
model performs compared to the top-performing
models in each shared task, we compute the
latency-weighted F1 score of our models, using
decision-based evaluation protocol proposed by the
eRisk shared task organizers (Losada et al., 2019,
2020; Parapar et al., 2021, 2022):

1. For each user in the test data, the model pro-
cesses their posts in chronological order and
issues a binary prediction on whether they are
at risk or not. Once a user is detected as at
risk by the model, the prediction cannot be
reverted back after observing more posts.

*For simplicity, the term “post” is used throughout this
paper to encompass both posts and comments.
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2. At each time step, the F1 score is computed

based on the correctness of the prediction.

. For each true positive (i.e., a correct prediction
for an at-risk user), we record the number of
posts k,, that the system has to process in order
to make this prediction.

A latency penalty to each true positive is com-
puted using Equation 8:

2
1 + e_p(ku_l)

penalty(k,) = —1 + 3)

where p = 0.0078, calibrated so the penalty
equals 0.5 at the median number of posts in
the dataset.

. The overall detection speed is computed using
Equation 9:

speed = 1 — median{penalty(k,)} (9)

which ranges from 1 (instance detection) to 0
(very late detection).

. The latency-weighted F1 is computed using
Equation 10:

lwp1 = F1 - speed (10)

Lastly, we compute AtfeFa (Amini and Kosseim,
2022) on the test datasets to assess the faithfulness
of the user-level attention weights, using Equation

11:
71> (11)

N

AtteFa = — i

cra N ;mm (

where y} and y/, correspond to the output pre-
dictions of the base and the adversarial models,
respectively, for user ¢; o; and oy, represent the
user-level attention weights; N is the total number
of users in the test dataset; and JS D, =~ 0.6931,
as stated in Section 3.2.2.

‘yé - yé| - JSDinaa
ISD(ad, o)

4 Results and Discussion

In this section, we present the results of our pro-
posed framework on four mental health detection
tasks from the eRisk benchmark: anorexia, depres-
sion, pathological gambling, and self-harm. We
first evaluate the predictive performance of our
base model using standard and latency-weighted
metrics, comparing its competitiveness against top-
performing systems from the shared tasks. We then
analyze the faithfulness of the user-level attention
weights via the AtteFa metric.



4.1 Base Model Evaluation

Table 3 shows the precision, recall, F1, accuracy,
and PR-AUC of the trained based models on each
task. The results show that the proposed approach
is capable of detecting mental health issues with a
high accuracy and a relatively high F1 score.

Dataset P R F1 A PR-AUC
Anorexia 0.896 0.822 0.857 0.975 0.921
Depression 0.734 0.816 0.773 0.966 0.786
Gambling 0971 0981 0976 0.998 0.998
Self-harm  0.860 0.684 0.762 0.955 0.807

Table 3: Base Results on test datasets.

To assess the competitiveness of our approach
compared to the best-performing models in each
eRisk shared task, Table 4 provides the ranking of
our trained model according to latency-weighted
F1, compared to the participating models in the cor-
responding shared task. The results show that our
approach is able to provide better or competitive
results to the best models, showing promise in our
approach.

4.2 Faithfulness of the User-level Attention

Table 5 shows the AtteFa scores for each model,
along with the average £, and L, over the test
datasets.

Dataset Initialization AtteFa L, Lo
Anorexia Random 0.527 0476 0916
Trained 0.524 0.481 0.931
Depression Random 0.497 0.464 0.943
Trained 0.487 0455 0944
Gambling Ran.dom 0.512 0.493 0.968
Trained 0.731 0.581 0.777
Self-harm Random 0.538 0.495 0.931
Trained 0.539 0.490 0.920

Table 5: Adversarial Results.

The AtteFa scores reported in Table 5 average
around 0.5. In light of the findings by Amini and
Kosseim (2022), we hypothesize that, on average,
only 10% or fewer of a user’s posts are informa-
tive for detecting a mental health problem.> This
aligns with prior studies (Song et al., 2018; Gui
et al., 2019; Amini and Kosseim, 2020), which in-
dicate that signs of mental health issues are sparse
in social media data. The results also reflect a high

5 Amini and Kosseim (2022) reported an AtteFa score of
0.5 on a synthetic dataset in which only 10 out of 100 tokens
per example carried sentiment weights.

80

degree of faithfulness: if the model attends to a dif-
ferent subset of posts, its predictions deviate consid-
erably from the optimal. This is further supported
by the observed £, values (approximately 0.5 on
average), suggesting that the adversarial models be-
have similarly to random predictors when attention
weights are perturbed.

Another notable observation in Table 5 is the
high values of £, for both types of weight ini-
tialization. This indicates that the initialization of
the weights does not play a significant role in the
convergence, and in almost all cases, maximizing
the divergence on the attention weights is a signifi-
cantly easier objective compared to minimizing the
distance between the predictions. The only excep-
tion where L, does not approach its upper bound
can be observed for the Gambling task with the
trained base checkpoint as the initialization. We
hypothesize that this is due to missing the optimal
model checkpoint during adversarial training, as
the Gambling dataset is larger than the others and
we only saved and evaluated checkpoints at the
end of each epoch. We believe that a more frequent
checkpointing and evaluation would help bridge the
gap on the final value of £, between this dataset
and the others.

5 A Closer Look at the Attention Weights

Amini and Kosseim (2020) demonstrated that atten-
tion weights typically correlate with the strength
of signals for mental health issues. In their work,
they sorted posts in a descending order according to
their corresponding attention weights, and obtained
the model’s prediction after passing only the top N
posts to the model. They observed that increasing
the number of posts results in an increasing trend
in the precision and a decreasing trend in the recall,
indicating that the model usually tends to predict a
user as at-risk, if the model only observed the very
few highest-weighted posts for that user.

In our study, we perform a variation of their ex-
periment: Instead of starting with only the highest-
weighted posts and gradually including the lower-
weighted ones, we start by feeding all of the posts
to the model and gradually remove the highest-
weighted posts one at a time and monitor the pre-
diction flips. Our hypotheses were the following:

1. For users predicted as without risk, the model
should consistently emit a no-risk prediction.
This is because the model did not predict those



Rank Anorexia (55) Depression (63) Gambling (50) Self-harm (56)

Team (Run) lwgq | Team (Run) lwpgy | Team (Run) lwgq | Team (Run) lwp
1 OURS 0.766 | NLPGroup-IISERB (0) 0.690 | ELiRF-UPV (0) 0.927 | UNSL (4) 0.622
2 CLaC (4) 0.690 | OURS 0.558 | NLP-UNED-2 (3) 0.877 | OURS 0.612
3 CLaC (1) 0.690 | BLUE (0) 0.540 | NLP-UNED-2 (1) 0.876 | UNSL (3) 0.583
4 CLaC (3) 0.680 | UNSL (2) 0.519 | Xabi_EHU (0) 0.875 | BLUE (2) 0.578
5 CLaC (2) 0.680 | NLPGroup-IISERB (3) 0.511 | NLP-UNED-2 (2) 0.875 | NLP-UNED (4) 0.564
6 INAOE-CIMAT (3) 0.630 | LauSAn (3) 0.498 | OURS 0.848 | Birmingham (0) 0.551
7 lirmm (0) 0.630 | NLPGroup-IISERB (1) 0.496 | Xabi_EHU (3) 0.844 | NLP-UNED (1) 0.546
8 INAOE-CIMAT (0) 0.620 | Biolnfo_UAVR (4) 0.494 | Xabi_EHU (1) 0.839 | NLP-UNED (0) 0.545
9 lirmm (1) 0.620 | Sunday-Rocker2 (1) 0.439 | NLP-UNED-2 (0) 0.833 | BLUE (3) 0.534
10 | INAOE-CIMAT (4) 0.610 | UNSL (1) 0.426 | Xabi_EHU (4) 0.823 | NLP-UNED (3) 0.524

Table 4: Model rankings for each task based on the latency-weighted F1 score. The number of participating models
in each task is indicated in parentheses in the header row. For details on the corresponding eRisk shared tasks,

please refer to the test dataset sources listed in Table 1.

users as at risk, even when it observed their
highest-weighted posts.

2. For users predicted as at risk, there should be
a cut-off point in the number of posts, at which
the model starts considering them as without
risk. Removing more high-weighted posts
should not change the model’s prediction.

3. As we expect that, on average, less than 10%
of posts contain signs of mental health issues
(see Section 4.2), the decision flip should of-
ten happen after the removal of <10% of the
posts.

In our experiment, the first hypothesis is shown
to be true for all instances in all 4 datasets. The sec-
ond hypothesis also turns out to be correct, with the
exception of 2 instances in the Depression dataset,
where the model’s prediction flips again from with-
out risk to at risk after removing one extra post after
the cut-off. But even in those 2 cases, the model
starts predicting without risk again after another re-
moval, which remains constant throughout the rest
of the process. We believe that this happens due
to the model not being fully optimized on the test
dataset, resulting in a small number of exceptions
where the attention weights do not fully correlate
with the degree of the sign of mental health issues.
But the fact that this occurs in fewer than 1% of
cases highlights the consistency with which the
user-level attention weights align with the degree
of mental health signal in the posts.

For the third hypothesis, for each test user that
was predicted as at risk, we calculate the cut-off
point at which the decision flip happens. In Table 6,
we report the average, median, and the standard
deviation of the median of the proportion of posts

(in percentage) that need to be removed in order
to observe a decision flip (from at risk to without
risk). Also in Figure 2, we provide the violin to
visually show the distribution of the cut-off points
in proportion to the total number of posts by each
user.

% Posts
Dataset Avg Med Std
Anorexia 627 318 7.71
Depression 492 1.04 7.99
Gambling  16.03 11.27 16.77
Self-harm 461 1.60 6.86

Table 6: Average, median, and standard deviation of the
percentage of the highest weighted posts per user that
need to be removed until a decision flip happens from 1
(at risk) to O (without risk).

Anorexia

Depression

Gambling

Self-harm

0 10 20 30 40 50 60 70 80

Figure 2: Distribution of the percentage of the highest
weighted posts per user that need to be removed until a
decision flip happens from 1 (at risk) to O (without risk).

As Table 6 shows, for the Anorexia, Depression,
and Self-harm datasets, the average cut-off is un-
der 10%. The median + standard deviation is ~
10% for the Anorexia dataset, while being lower
than 10% for Depression and Self-harm. These
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are also observable in the violin plots, where the
distribution is mostly centered below 10%. This
observation is aligned with the findings of Amini
and Kosseim (2022), where they observed that an
AtteFa of ~ 0.5 occurs when only 10% or fewer
samples within a data point are informative to the
task.

This behavior, however, is not exhibited in the
Gambling dataset, where the average and median
cut-off is above 10%. Further analysis is needed
to understand why this dataset exhibits this pattern.
While this may occur due to the model not being
fully optimized on this task (due to the infrequent
checkpointing and evaluation during training, as
stated in Section 5), it would be useful to perform
a deeper study to understand if an inherent charac-
teristic of this dataset has also played a role.

6 Limitations

As stated in Section 1, the focus of our study was to
assess the explainability of the user-level attention
mechanism, as opposed to achieving the state of
the art. Therefore, we aimed to develop a model
with comparable performance to the best perform-
ing models in the eRisk shared tasks through mini-
mal hyperparameter tuning and leveraging the test
dataset for early stopping and final checkpoint se-
lection. In order to understand the full extent of
performance and generalization capability for our
approach, the following work remains:

For a fair comparison, the test dataset should re-
main entirely unseen during training. This also al-
lows for a more accurate assessment of the model’s
generalization ability to unseen data. Furthermore,
our system should be benchmarked on a wider set
of tasks/datasets and against a larger number of
systems in the literature. Lastly, we need to further
adjust the model or training hyperparameters, and
experiment with different encoder models, in order
to achieve the most optimal results.

In terms of explainability assessment, our cur-
rent study focuses only on faithfulness and trans-
parency (i.e., what posts were deemed important
by the model). In order to fully claim that our
system is explainable, we should also assess the
notions of plausibility and sufficiency, which are
the other two pillars in explainability (Wiegreffe
and Pinter, 2019). Such assessments require human
assessment, potentially by experts in the field.

Lastly, in order to assess the feasibility of using
such a system in a real-life scenario, studies should
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be done in terms of computational cost and infer-
ence latency. In addition, further optimizations are
necessary in order to improve the system on those
fronts. An additional study would also be necessary
to evaluate the practical risks of deploying such a
system, in terms of privacy and ethical considera-
tions, and mitigate or reduce such risks as much as
possible.

7 Conclusion

In this paper, we introduced a user-aware, attention-
based framework for detecting mental health risks
from social media, designed to generate faithful
and transparent predictions. Our architecture com-
bines DisorBERT for post-level encoding with a
user-level attention mechanism that provides both
predictive performance and a potential means for
interpretability. To assess the faithfulness of the at-
tention weights, we employed adversarial training
and computed AtteFa, a metric designed to quantify
how faithfully attention reflects decision-relevant
input. Across four tasks in the eRisk shared task
series, our system achieved competitive latency-
weighted F1 scores and demonstrated high atten-
tion faithfulness, particularly in domains where
signals are rare and sparsely distributed across user
posts.

Our experimental analysis further confirmed that
a small fraction of posts — often under 10% — tend
to drive the model’s predictions, supporting the hy-
pothesis that mental health signals in social media
are both rare and concentrated. These findings un-
derscore the need for transparent and interpretable
systems, especially in sensitive domains like men-
tal health, where trust and explainability are essen-
tial for practical adoption.

While addressing the limitations presented in
Section 6 is a prominent future direction, another
line of work would be to further move from a sys-
tem that can detect individual mental health prob-
lems to a more general system to assess mental
health issues in social media. One promising start-
ing point is to train the model in a multi-task learn-
ing fashion (e.g., Kendall et al., 2018) on a combi-
nation of datasets related to the detection of mental
health issues, allowing the model to leverage shared
knowledge between different tasks.
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