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Abstract
Despite recent advances in large language mod-
els (LLMs), most question-answering (QA) sys-
tems remain English-centric and poorly suited
to domain-specific scientific texts. This linguis-
tic and domain bias poses a major challenge in
botany, where a substantial portion of knowl-
edge is documented in French.

We introduce F-LoRA-QA, a fine-tuned
LLaMA-based pipeline for French botanical
QA, leveraging Low-Rank Adaptation (LoRA)
for efficient domain adaptation. We construct a
specialized dataset of 16,962 question-answer
pairs extracted from scientific flora descriptions
and fine-tune LLaMA models to retrieve struc-
tured knowledge from unstructured botanical
texts.

Expert-based evaluation confirms the linguistic
quality and domain relevance of the generated
responses. Compared to baseline LLaMA mod-
els, F-LoRA-QA achieves a four-fold improve-
ment in BLEU, a 70% ROUGE-1 F1 gain, a
16.8% increase in BERTScore F1, and an Exact
Match improvement from 2.01% to 23.57%.

These results demonstrate the effectiveness of
adapting LLMs to low-resource scientific do-
mains and highlight the potential of our ap-
proach for automated trait extraction and biodi-
versity data structuring.

1 Introduction

As AI advances in biodiversity research, convert-
ing free-text morphological descriptions into struc-
tured, interoperable data remains a key challenge.
In botany, detailed but unstructured identification
keys hinder large-scale data curation, species com-
parison, and the integration of botanical knowledge
into digital descriptor-based systems.

Recent advances in artificial intelligence, partic-
ularly in large language models (LLMs) and fine-
tuning techniques, have significantly improved in-
formation extraction tasks such as Named Entity

Recognition (NER), Relation Extraction (RE), and
Question Answering (QA) (Touvron et al., 2023;
Dagdelen et al., 2024). However, these advance-
ments have primarily focused on general-domain
texts and are overwhelmingly English-centric, leav-
ing domain-specific and non-English applications
underexplored. This linguistic and domain bias lim-
its AI-driven breakthroughs in scientific disciplines
such as botany, where a vast body of knowledge is
documented in languages such as French.

French is a crucial language in botanical re-
search, as many classical and contemporary flora
documents, including taxonomic keys, species de-
scriptions, and herbarium records, are written in
French 1. However, existing LLM-based QA sys-
tems are predominantly trained on English corpora,
making them ineffective for processing such texts.
Although prior efforts such as FloraNER (Nainia
et al., 2024b) have focused on NER for species and
morphological terms, they do not address question-
answering or structured trait extraction. Conse-
quently, there remains a critical gap in developing
domain-adapted LLMs for French botanical QA.

Recent biodiversity NLP approaches have ex-
plored hybrid methods that combine rule-based
heuristics with transformer-based models for rela-
tion extraction (Gabud et al., 2023). While these
improve performance, they rely on hand-crafted
rules and lack flexibility for open-ended QA. In
contrast, LLMs have shown a strong potential for
automating large-scale information extraction.

For instance, a recent study on ecological data
extraction showed that LLMs can process scien-
tific data over 50 times faster than human experts,
achieving over 90% accuracy on categorical traits
while struggling with complex quantitative values
(Gougherty and Clipp, 2024). These findings high-
light both the efficiency and limitations of LLMs

1https://inpn.mnhn.fr/informations/
biodiversite/france

https://inpn.mnhn.fr/informations/biodiversite/france
https://inpn.mnhn.fr/informations/biodiversite/france
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in specialized domains, emphasizing the need for
domain adaptation and structured validation.

Domain-specific benchmarks such as BioASQ
(Krithara et al., 2023) and multilingual QA datasets
like XQuAD (Artetxe et al., 2020) have been in-
strumental in evaluating scientific QA systems, but
focus primarily on biomedical content and lack
biodiversity-specific coverage.

Earlier trait extraction systems like FloraTraiter
(Folk et al., 2024) relied on rule-based parsing and
domain-specific heuristics, whereas recent LLM-
based methods offer more flexible and scalable
approaches (Marcos et al., 2025). However, these
remain underexplored for biodiversity applications,
particularly in low-resource languages such as
French.

Despite growing accessibility, adapting LLMs to
specialized fields like biodiversity and biomedicine
is constrained by the high cost of full fine-tuning.
Low-Rank Adaptation (LoRA) addresses this by
introducing lightweight and trainable matrices, sig-
nificantly reducing memory and computation costs
while maintaining strong performance (Hu et al.,
2021).

Previous research has explored domain adapta-
tion for biomedical QA and NER, such as BioGPT
(Luo et al., 2022) and AliBERT (Berhe et al., 2023),
a French biomedical language model that outper-
forms general-purpose French LLMs like Camem-
BERT (Martin et al., 2020a) and FlauBERT (Le
et al., 2020). However, these efforts are limited to
biomedical tasks, often focus on classification or
NER, and lack generalizable QA capabilities for
biodiversity contexts.

To address these limitations, we propose F-
LoRA-QA, a two-stage pipeline for French botani-
cal QA, fine-tuned on a curated corpus of species
descriptions. First, the system transforms a prede-
fined list of standardized botanical traits (e.g., leaf
shape, flower color) into natural language ques-
tions tailored to each species description. These
questions are then used as prompts to extract the
corresponding trait values from the free-text de-
scription. This approach enables the automated
transformation of unstructured botanical text into
structured character-state pairs.

A key application of this work lies in enriching
descriptor-based systems such as Xper3 (Kerner
et al., 2025), which rely on structured matrices to
differentiate taxa. F-LoRA-QA aims to facilitate
the semi-automated population of such descriptor

models from legacy flora documents, supporting
the development of interactive identification tools
and enabling more efficient curation and integration
of biodiversity data.

Here are the main contributions of our work:

1. We introduce the first fine-tuned LLaMA-
based models for the generation and answer-
ing of botanical questions, adapted to French
botanical texts.

2. We construct the first botanical Q&A in-
struction dataset for fine-tuning, comprising
≈17,000 (16,962) sample question-answer
pairs with their botanical contexts, extracted
from scientific flora documents.

3. We conduct a comprehensive expert-based
evaluation, assessing our models on accuracy,
completeness, fluency, and the use of botani-
cal terminology to ensure both linguistic qual-
ity and domain relevance.

The remainder of this paper is structured as fol-
lows: Section 2 reviews related work on domain-
specific LLM adaptation, Section 3 details our
methodology for constructing the F-LoRA-QA
pipeline, Section 4 presents our experimental setup
and evaluation metrics, and Section 5 discusses the
results, implications, and future directions.

2 Related Work

Recent efforts in biodiversity NLP have focused on
extracting structured information from taxonomic
literature using Named Entity Recognition (NER)
and Relation Extraction (RE). TaxoNERD (Le Guil-
larme and Thuiller, 2022) applies deep learning to
identify taxonomic entities in ecological texts, sup-
porting species recognition in unstructured data.
FloraNER (Nainia et al., 2024b) extends this to
French botanical texts, introducing NER datasets
for species and morphological terms and underscor-
ing the need for multilingual adaptation.

While NER-based approaches like FloraNER
and TaxoNERD enable species identification, they
cannot provide structured answers to domain-
specific questions. BiodivNERE (Abdelmageed
et al., 2022) incorporates Relation Extraction (RE)
to link entities, but is limited by predefined rela-
tion types. Hybrid approaches (Gabud et al., 2023)
that combine rules and transformers improve RE
accuracy, while recent work (Montero et al., 2024)
uses LLaMA 2 and TaxoNERD for RE in English
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and Spanish. However, these methods do not cover
French taxonomic texts or explore question answer-
ing (QA) for more flexible information access.

In general, existing methods struggle with open-
ended knowledge retrieval and require manual defi-
nition of relation and entity types. While NER and
RE extract names and relations, they do not support
structured comparison of species descriptions.

Departing from this, QA offers adaptive, context-
aware responses that are particularly valuable for
biodiversity NLP, where descriptions are rich but
unstructured. Early domain-specific QA applica-
tions, such as ChatBBNJ (Wang et al., 2024), apply
LLMs to biodiversity law. However, biodiversity-
focused QA, especially for non-English taxonomic
literature, remains largely unexplored.

Other works explore cost-efficient domain adap-
tation for QA. LeanContext (Arefeen et al., 2024)
reduces inference costs by optimizing context se-
lection in Retrieval-Augmented Generation (RAG),
targeting input efficiency. This complements our
use of LoRA (Low-Rank Adaptation), which fo-
cuses on parameter-efficient fine-tuning. While
LeanContext reduces inference cost by selecting
compact input contexts, LoRA minimizes training
overhead by adapting only a subset of model pa-
rameters. Both strategies improve the efficiency
of domain-specific QA, but at different stages of
the pipeline. Similarly, FabricQA-Extractor (Wang
and Fernandez, 2024) demonstrates the use of QA
models for structured document extraction.

In contrast, traditional extractive QA models
trained on datasets like SQuAD (Rajpurkar et al.,
2016) rely on retrieval and lack generative flexi-
bility. Our work leverages LLaMA fine-tuning to
build a generative QA model capable of producing
more context-aware and adaptive responses.

Adapting LLMs to domain-specific tasks has
been a key focus in NLP, especially in biomedi-
cal and biodiversity contexts. BioGPT (Luo et al.,
2022) showed that pre-training on specialized cor-
pora improves performance for biomedical text gen-
eration and mining. Similarly, AliBERT (Berhe
et al., 2023), a French biomedical model, outper-
forms general-purpose models like CamemBERT
(Martin et al., 2020a) and FlauBERT (Le et al.,
2020) on domain-specific tasks, highlighting the
value of fine-tuning for non-English scientific texts.

Other biomedical LLMs, such as BioBERT (Lee
et al., 2019), SciBERT (Beltagy et al., 2019), and
PubMedBERT (Gu et al., 2021), further support the

benefits of domain adaptation. However, similar
efforts remain underexplored for biodiversity texts.
Despite significant progress in biomedical NLP,
particularly with ontology-linked entity linking us-
ing UMLS (Bodenreider, 2004) and MeSH2, biodi-
versity NLP lacks a comparable infrastructure for
taxonomic resources such as GBIF3 and TAXREF4,
emphasizing the need for domain-specific LLM
adaptation.

PLLaMa (Yang et al., 2024), an open-source
LLaMA-2 model trained on over 1.5 million plant
science documents, marks a major step toward gen-
erative plant knowledge retrieval. While effective
on domain-specific QA tasks, it focuses primarily
on English and does not address non-English taxo-
nomic literature or morphological trait extraction.

Building on prior work, we show that LoRA-
based fine-tuning can effectively adapt general-
purpose LLMs for French botanical QA. To our
knowledge, no LLM-based system currently re-
trieves French biodiversity knowledge. Our work
addresses this gap through efficient adaptation of
LLaMA for French botanical texts.

3 F-LoRA-QA Dataset Construction

The F-LoRA-QA dataset contains ≈17,000 sam-
ples (Table 1), where each sample consists of a
context, a question, and an answer.

F-LoRA-QA Statistics Value
Total Q&A Pairs for training 16,962
Total Unique Contexts 2,913
Avg. Q&A Pairs per Context 6
Total Q&A Pairs for evaluation 1697

Table 1: Statistics of the F-LoRA-QA dataset, including
total contexts, questions, and answers.

The context serves as the foundational botani-
cal knowledge, extracted from publicly available
flora documents (Step 1 in Figure 1), including the
FloraNER dataset (a dataset of morphological de-
scriptions from Flora of New Caledonia) (Nainia
et al., 2024a), Flore de Madagascar et des Co-
mores (1974, 1976, 1994), Flore du Cameroun
(1964, 1967, 1970, 1972, 1973, 1974), and Flore
du Gabon (1962, 1968, 1983). These sources pro-
vide scientifically reliable, literature-based morpho-

2https://www.nlm.nih.gov/mesh/meshhome.
html

3https://www.gbif.org/
4https://inpn.mnhn.fr/programme/

referentiel-taxonomique-taxref

https://www.nlm.nih.gov/mesh/meshhome.html
https://www.nlm.nih.gov/mesh/meshhome.html
https://www.gbif.org/
https://inpn.mnhn.fr/programme/referentiel-taxonomique-taxref
https://inpn.mnhn.fr/programme/referentiel-taxonomique-taxref
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Figure 1: Process of segmenting botanical descriptions and generating Q&A pairs for the F-LoRA-QA dataset. The
pipeline consists of four key steps: (1) Extracting plant species descriptions from flora documents, (2) Segmenting
long descriptions into semantically coherent chunks using GPT-3.5, (3) Generating question-answer pairs from
refined segments, and (4) Performing manual semantic verification to ensure that each generated question is
answerable within its provided context. (5) The final dataset is structured for both question generation and question
answering tasks.

logical descriptions of plant species, making them
well-suited for training a botanical QA system.

To ensure robust evaluation, we curated a sepa-
rate expert-based hold-out dataset of 1,697 exam-
ples, composed of botanical contexts exclusively
extracted from Flore du Sénégal. This dataset was
deliberately excluded from the fine-tuning corpus
to evaluate the model’s ability to generalize to un-
seen botanical texts from a distinct source.

Since botanical descriptions can be lengthy, di-
rectly using them as contexts could exceed the
model’s input limits, leading to excessive compu-
tational load. To address this, we segment the de-
scriptions into semantically coherent spans of 300
to 1,000 characters using GPT-3.5 (Step 2 in Fig-
ure 1). These segments were purely extracted from
the original descriptions and manually verified for
coherence and botanical relevance. Segments of
less than 300 characters were discarded to maintain
content density and consistency (prompt provided
in the supplementary material5).

Next, GPT-3.5 processed each segment inde-
pendently to generate question-answer (QA) pairs
(Step 3 in Figure 1). The model was prompted
to generate all relevant QA pairs for the segment,
with outputs structured in JSON format: each entry
included the context, a list of questions, and their
corresponding answers. The prompt (provided in
the supplementary material6) encouraged diversity
in the types of questions, including:

5doi:10.5281/zenodo.16993669
6doi:10.5281/zenodo.16993669

• General feature questions (e.g., What are
the key characteristics of this plant?)

• Specific detail questions (e.g., What is the
shape and size of the leaves?)

• Structural relationship questions (e.g.,
What part of the plant is connected to the in-
florescence?)

• Missing information questions (e.g., Are the
fruits described?)

The question-answer pairs form the unique en-
tries in the dataset, which means that a single
context can be associated with multiple question-
answer pairs as shown in Table 2. Since botanical
descriptions are highly detailed, they often contain
multiple pieces of relevant information that allow
for the generation of several questions per context.
This structure ensures that the dataset captures var-
ious aspects of plant morphology, taxonomy, and
botanical characteristics.

To ensure accuracy and domain relevance, the
generated question-answer pairs undergo a man-
ual verification process (Step 4 in Figure 1). Each
question was reviewed to determine whether its
subject was answerable using the given context
and whether the corresponding answer correctly re-
sponded to the question. Question-answer pairs
that did not meet these criteria were discarded.
This verification step ensures that only contextually
valid and botanically relevant pairs are retained in
the dataset to make it reliable for fine-tuning.

https://doi.org/10.5281/zenodo.16993669
https://doi.org/10.5281/zenodo.16993669
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The final F-LoRA-QA dataset was then restruc-
tured into two separate datasets (Step 5 in Figure 1):
one for question generation, which retains only
contexts and their corresponding questions (sam-
ple in Table 2), and another for question answering,
where each sample consists of a context, a question,
and its corresponding answer (sample in Table 3).

4 F-LoRA-QA Architecture

F-LoRA-QA is a two-stage pipeline for French
botanical Question-Answering (QA), designed to
extract standardized botanical traits from unstruc-
tured floristic descriptions. The system leverages
Low-Rank Adaptation (LoRA) to fine-tune LLaMA
2-7B and LLaMA 3-8B models for domain-specific
language understanding.

Our approach separates the task into two compo-
nents: question generation and answer generation.
The question generation model translates a prede-
fined list of botanical traits (e.g., leaf shape, flower
color) into natural language questions tailored to
each species description. This serves both to im-
prove trait retrieval and to support users who may
lack domain expertise to formulate precise queries.

The answer generation model is trained to re-
spond to these trait-specific questions using the
corresponding species description as context. Im-
portantly, it is fine-tuned on GPT-3.5-generated
question-answer pairs that were verified by human
experts to ensure consistency and high quality in
the training data.

4.1 Stage 1: Question Generation

This stage focuses on generating a list of questions
from botanical descriptions or any relevant botan-
ical context provided. Given a botanical context
x, the goal is to generate a structured sequence of
questions Q = (q1, q2, . . . , qn), where each ques-
tion qi is relevant to the information present in x
(prompt provided in the supplementary material7).

To achieve this, we fine-tuned LLaMA 2-7B8

and LLaMA 3-8B9 using our F-LoRA-QA dataset,
considering only context-question pairs. Each train-
ing sample consists of a botanical description (con-
text) and its corresponding list of questions, as
shown in Table 2.

The model is trained in a sequence-to-sequence
framework (Sutskever et al., 2014), where it learns

7doi:10.5281/zenodo.16993669
8LLaMA 2-7B, available on Hugging Face.
9LLaMA 3-8B, available on Hugging Face.

Input - Botanical Description (Context)
Each pinna has (5-)7-13 pairs of opposite,
sessile, leathery, subtrapezoidal or oblong,
sometimes slightly arched leaflets. The blade
is glabrous on both sides, with raised vena-
tion. The spike-like cluster inflorescences are
densely tomentose and pedunculated, measur-
ing 4 to 9 cm long.

Output - Questions
1. What is the length of the spike-like cluster
inflorescences?
2. What is the leaflet blade like in terms of
texture and venation?
3. Are the leaflets arched according to the text?
4. How many pairs of leaflets does each pinna
have?

Table 2: Example of a training sample for the Question
Generation stage. The model learns to generate a struc-
tured list of botanical questions from a given botanical
description.

to generate multiple relevant questions for a given
botanical passage. The model is optimized to out-
put a structured list of questions in a single output
sequence (Pan et al., 2020). At inference time, the
question generation model can generate multiple
questions per botanical passage, either as a batch
or interactively in response to user queries.

4.2 Stage 2: Answer Generation
In the second stage, the model is trained to generate
answers based on both the botanical context and
the question, as illustrated in Table 3. Here, the
fine-tuned LLaMA model takes both the context
and the generated question as input. The input
sequence is structured as follows:

x = [Context] ⊕ [Question] (1)

where x represents the input text that is the con-
catenation of the botanical context with the ques-
tion. The model then predicts a relevant answer in
an autoregressive manner.

This task is formally framed as a conditional
sequence generation problem, where the model
learns the probability distribution over answer to-
kens given the input context and question. This
follows the autoregressive decoding paradigm used
in large-scale language models (Brown et al., 2020),
where the model iteratively predicts tokens based

https://doi.org/10.5281/zenodo.16993669
https://huggingface.co/meta-llama/Llama-2-7b
https://huggingface.co/meta-llama/Meta-Llama-3-8B
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on input and previously generated sequence. For-
mally, our goal is to maximize the likelihood:

P (y | x) =
T∏
t=1

P (yt | y<t, x) (2)

where yt is the token generated at timestep t, and
y<t represents all previously generated tokens. The
model iteratively computes the probability distribu-
tion over possible next tokens, incorporating both
the input context and the sequence of preceding
tokens to ensure coherence and relevance.

At each timestep t, the model applies a causal
self-attention mechanism (Vaswani et al., 2017),
restricting attention to previously seen tokens. This
prevents information leakage from future tokens
and ensures that the model generates answers in a
left-to-right fashion, consistent with autoregressive
decoding.

Input - Botanical Description (Context)
Each pinna has (5-)7-13 pairs of opposite,
sessile, leathery, subtrapezoidal or oblong,
sometimes slightly arched leaflets. The blade
is glabrous on both sides, with raised vena-
tion. The spike-like cluster inflorescences are
densely tomentose and pedunculated, measur-
ing 4 to 9 cm long.

Input - Question
How long are the spike-like cluster inflores-
cences?

Output - Answer
The inflorescences measure 4 to 9 cm long.

Table 3: Example of a training sample for the Answer
Generation stage. The model learns to generate an an-
swer from a given context and question.

4.3 Low-Rank Adaptation (LoRA)

To efficiently adapt LLaMA models to the botanical
domain, we employ Low-Rank Adaptation (LoRA)
with a rank of 64 and a scaling factor of 16. The
rank parameter defines the dimensionality of the
low-rank update matrices, balancing the parame-
ter efficiency with the ability to capture domain-
specific adaptations. The scaling factor controls
how much LoRA-modified parameters contribute
to weight updates, which prevents excessive devi-
ation from the original model while still enabling
domain adaptation.

We apply LoRA modifications to the self-
attention layers (query, key, value, and output pro-
jections) and the feedforward network layers (gate,
up, and down projections), as these components pri-
marily govern contextual representation learning.
By fine-tuning these layers while keeping others
frozen, we enable F-LoRA-QA to effectively learn
botanical domain-specific patterns while retaining
the general linguistic knowledge embedded in the
base LLaMA model without introducing excessive
computational overhead.

To optimize memory usage, we enable gradient
checkpointing, which reduces memory consump-
tion during backpropagation and makes fine-tuning
feasible on limited hardware resources (an NVIDIA
A100 GPU provided by Google Colab). Addition-
ally, we employ AdamW (Loshchilov and Hutter,
2019) optimization with fused gradients to improve
training stability and accelerate convergence, en-
suring effective adaptation to the botanical QA task
while preserving generalization capabilities.

Due to hardware constraints (a single NVIDIA
A100 GPU), fine-tuning LLaMA 3.3 70B was in-
feasible, as it requires multiple high-memory GPUs.
LLaMA 2-7B and LLaMA 3-8B were chosen as
practical alternatives to balance performance and
resource efficiency.

5 Evaluation

To assess the effectiveness of F-LoRA-QA in botan-
ical question-answering, we conduct both auto-
matic and expert-based evaluations. Automatic
evaluation quantifies question and answer quality
using standard NLP metrics (ROUGE (Lin, 2004),
BLEU (Papineni et al., 2002), BERTScore (Zhang
et al., 2020)), while expert evaluation assesses five
qualitative aspects: Accuracy, Completeness, Rele-
vance, Fluency, and Botanical Terminology Usage.

5.1 Automatic Evaluation

We evaluate F-LoRA-QA by comparing its perfor-
mance against the base LLaMA models (LLaMA
2-7B and LLaMA 3-8B) without fine-tuning.

We report ROUGE-1, ROUGE-2, ROUGE-L,
BLEU, BERTScore, and Exact Match scores for
both base and fine-tuned models, including Preci-
sion, Recall, and F1 for each. ROUGE and BLEU
measure lexical similarity, BERTScore captures se-
mantic similarity, and Exact Match reflects strict an-
swer correctness. We include ROUGE-1, ROUGE-
2, and ROUGE-L to capture different granulari-
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Metric Base LLaMA-2 Base LLaMA-3 Fine-tuned LLaMA-2 Fine-tuned LLaMA-3
BLEU 10.99% 2.18% 44.51% 46.94%
ROUGE-1 Precision 48.28% 6.75% 76.04% 79.26%
ROUGE-1 Recall 51.03% 7.28% 81.84% 82.26%
ROUGE-1 F1 44.29% 5.78% 75.37% 78.23%
ROUGE-2 Precision 31.2% 4.86% 65.3% 69.17%
ROUGE-2 Recall 34.02% 5.19% 70.12% 71.89%
ROUGE-2 F1 29.02% 4.23% 64.48% 68.13%
ROUGE-L Precision 44.85% 6.59% 73.63% 77.03%
ROUGE-L Recall 47.02% 6.96% 79.14% 79.98%
ROUGE-L F1 40.97% 5.6% 72.98% 76.08%
BERTScore Precision 78.57% 67.31% 91.3% 92.5%
BERTScore Recall 79.08% 59.83% 92.64% 92.83%
BERTScore F1 78.58% 63.18% 91.8% 92.54%
Exact Match 2.01% 0.24% 23.57% 25.04%

Table 4: Automatic evaluation results comparing base and fine-tuned LLaMA models on the F-LoRA-QA dataset.

Metrics Definition
Accuracy Are the answers factually correct based on the provided context?
Completeness Do the answers sufficiently address all aspects of the question?
Relevance Are the answers focused and free of irrelevant details?
Fluency Are the answers grammatically correct and well-structured?
Botanical Terminology Usage Are domain-specific terms used correctly?

Table 5: Expert-based evaluation criteria, including their definitions and their scoring system.

ties: unigram overlap (content recall), bigram co-
occurrence (local fluency), and longest common
subsequence (sentence-level structure).

Although originally designed for summarization
and translation, these metrics are widely used in
question generation (Du et al., 2017). Since ques-
tion quality often extends beyond surface-level
overlap, BERTScore provides a more flexible eval-
uation of semantic alignment when wording varies.

Table 4 presents the performance comparison be-
tween the base and fine-tuned models across multi-
ple metrics.

5.2 Expert-Based Evaluation

To assess the quality of generated answers beyond
automated metrics, we conducted an expert-based
evaluation. We selected 100 random samples from
the evaluation dataset for expert assessment, fo-
cusing on responses generated by the fine-tuned
LLaMA 3-8B model, as it achieved the highest
performance in automatic evaluation.

The biodiversity expert rated each response on a
1-5 Likert scale across five key aspects: Accuracy,
Completeness, Relevance, Fluency, and Botanical
Terminology Usage, as defined in Table 5.

Table 6 presents the average scores, indicating

that the model performs consistently well across all
aspects, with particularly high ratings in Accuracy
(4.74) and Botanical Terminology Usage (4.78).

Evaluation Metrics Average Score
Accuracy 4.74 / 5
Completeness 4.53 / 5
Relevance 4.48 / 5
Fluency 4.48 / 5
Botanical Terminology Usage 4.78 / 5

Table 6: Average expert evaluation scores for responses
generated by the fine-tuned LLaMA 3-8B model.

6 Discussion

Exact Match scores remain relatively low, likely
reflecting the limitations of strict string matching in
a domain where multiple valid paraphrases can ex-
ist. As our reference answers, though verified, are
not exhaustive, Exact Match likely underestimates
correctness.

In contrast, consistently high BERTScores
across fine-tuned models indicate strong semantic
alignment with reference answers. Improvements
in BLEU, ROUGE, and Exact Match after fine-
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tuning confirm that F-LoRA-QA improves both
lexical precision and response relevance.

Since automatic metrics offer limited informa-
tion on output quality, we conducted expert eval-
uations covering accuracy, completeness, fluency,
and botanical terminology. This provided a more
comprehensive validation of the model’s outputs.

Although LoRA and instruction tuning are es-
tablished techniques, their application to French
botanical QA is, to our knowledge, novel. F-LoRA-
QA shows that domain-specific LLM adaptation
can support structured trait extraction from floristic
texts, addressing a key gap in biodiversity NLP.

Future directions include exploring encoder-only
models (e.g., CamemBERT (Martin et al., 2020b))
for trait classification or question filtering, as well
as multilingual extension and integration with sym-
bolic reasoning to enhance robustness and inter-
pretability.

Expert evaluation shows competitive perfor-
mance, with average scores ranging from 4.48
to 4.78 in all metrics (Table 6). Accuracy, com-
pleteness, and terminology usage are the model’s
strengths, while fluency and relevance show room
for improvement.

For example, the phrase ”of this plant” in ”The
flowers of this plant are white” is redundant and
reduces fluency. In terms of relevance, the model
sometimes overgenerates information, as in: ”The
reddish style surmounts the 3-celled ovary” in
response to the question ”What is the color of the
style located at the top of the ovary?”, where the
question asked only for color. In contrast, when
questions require multiple details, the model may
omit parts of the answer, leading to incompleteness.

These observations highlight opportunities to
refine the answer generation strategy.

7 Conclusion

We introduced F-LoRA-QA, a two-stage pipeline
for French botanical question-answering that fine-
tunes LLaMA models using LoRA for efficient
domain adaptation. By combining question and an-
swer generation, the system improves information
extraction from botanical texts.

Fine-tuning produced notable improvements
across BLEU, ROUGE, BERTScore, and Exact
Match, with expert evaluation confirming strong
performance (4.48–4.78/5), particularly in accu-
racy and terminology usage.

Although the model is well-adapted for botanical

QA, further improvements in fluency are needed.
Future directions include instruction tuning, rein-
forcement learning from human feedback (RLHF),
and integrating structured botanical knowledge to
enhance answer quality.

Beyond QA, our approach enables systematic
taxonomic comparison: Applying a standardized
set of questions across species descriptions can sur-
face morphological similarities, thereby offering a
scalable method for species identification and evo-
lutionary analysis. This complements traditional
biodiversity NLP by introducing automated trait-
level comparison.

Limitations

F-LoRA-QA shows strong performance in botan-
ical QA, but a few limitations remain. First, al-
though the training data include texts from mul-
tiple floristic regions, the generalization of the
model to unseen taxonomic structures or under-
represented traits remains untested. Second, de-
spite high expert-rated accuracy and terminology
use, a few answers lack fluency or completeness.
The use of QA pairs generated by GPT-3.5, even
with human verification, may introduce stylistic bi-
ases. Computational constraints limited fine-tuning
to LLaMA 2-7B and 3-8B, leaving larger mod-
els (e.g., LLaMA 3-70B) unexplored. Finally, the
model does not leverage structured botanical re-
sources such as TAXREF or GBIF, which could
improve factual grounding and trait comparison.

Addressing these limitations will enhance F-
LoRA-QA’s robustness and applicability in bio-
diversity research.
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