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Abstract

Small Language Models (SLMs) have become
increasingly important due to their efficiency
and performance to perform various language
tasks with minimal computational resources,
making them ideal for various settings includ-
ing on-device, mobile, edge devices, among
many others. In this article, we present a com-
prehensive survey on SLMs, focusing on their
architectures, training techniques, and model
compression techniques. We propose a novel
taxonomy for categorizing the methods used to
optimize SLMs, including model compression,
pruning, and quantization techniques. We sum-
marize the benchmark datasets that are useful
for benchmarking SLMs along with the evalua-
tion metrics commonly used. Additionally, we
highlight key open challenges that remain to be
addressed. Our survey aims to serve as a valu-
able resource for researchers and practitioners
interested in developing and deploying small
yet efficient language models.

1 Introduction

Although large language models (LLMs) have
demonstrated impressive performance on a wide
array of benchmarks and real-world situations,
their success comes at significant cost. LLMs are
resource-intensive to train and run, requiring signif-
icant compute and data. This often means that they
are run on centralized and specialized hardware for
both training and inference.

As a response to these challenges, there has
been a growing interest in small language mod-
els (SLMs). Small language models aim to retain

∗*These authors contributed equally to this work.

the accuracy and/or adaptability of large language
models, while being subject to some constraint(s),
such as training or inference hardware, data avail-
ability, bandwidth, or generation time. Improving
model performance relative to these constraints can
then improve downstream goals such as privacy,
cost, or the ability to run on consumer devices.

The inherent difficulty of a survey of small lan-
guage models is that the definitions of “small” and
“large” are a function of both context and time. GPT-
2, a “large language model” in 2019 at 1.5B param-
eters, is smaller than many “small” language mod-
els covered in this survey. However, although the
scale changes, the goals of training small language
models remain relatively stable.

In this survey, we explore the architectures, train-
ing, and model compression techniques that enable
the building and inferencing of SLMs. In addi-
tion, we summarize the benchmark datasets and
evaluation metrics commonly used in evaluating
SLM performance. For this, we propose a novel
taxonomy for organizing the methods along two
axes:

• The techniques used in pre-processing
(model architecture), training, and post-
processing (model compression) SLMs; and

• The constraints the technique is attempting
to optimize for, such as inference compute,
training time, speed, etc.

An overview of these axes can be found in Table 1
(techniques) and Table 2 (constraints).

It is important to note that progress on any one
of these goals does not necessarily imply progress
on the others. In fact, there are often trade-offs
between them. For instance, memory-efficient
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training methods like quantization-aware training
(Dettmers et al., 2022a, 2024) are often slower than
their full-precision counterparts. However, by us-
ing mixed precision to represent the weights and
gradients, they allow training or finetuning using
less memory. Finally, although there have been
several recent surveys on LLMs and their learn-
ing methods (Rogers et al., 2020; Min et al., 2021;
Zhu et al., 2023; Shen et al., 2023), to the best of
our knowledge, this is the first survey focused on
SLMs.

Organization of the Survey. This survey is struc-
tured into three main sections, each covering a key
aspect of optimizing SLMs. Section 2 focuses on
model architectures, including lightweight designs,
efficient self-attention approximations, and neu-
ral architecture search to efficiently build smaller
models. Section 3 covers efficient pre-training
and fine-tuning techniques to enhance performance
for SLMs while managing resource constraints.
Section 4 explores model compression techniques,
such as pruning, quantization, and knowledge dis-
tillation, which reduce model size and latency with-
out sacrificing significant accuracy. Section 5 intro-
duces an overview of benchmark datasets and eval-
uation metrics, providing a comprehensive frame-
work for assessing the effectiveness of these meth-
ods. Section 6 discusses the applications that are
enabled by SLMs, organized by constraints.

Summary of Main Contributions. The key con-
tributions of this work are as follows:

• A comprehensive survey of existing work on
small language models for practitioners. We
also survey the problem settings, evaluation
metrics, and datasets used in the literature.

• We introduce a few intuitive taxonomies for
SLMs and survey existing work using these
taxonomies.

• We identify important applications, open prob-
lems, and challenges of SLMs for future work
to address.

2 Model Architectures

This section discusses the architectural designs
for developing SLMs. Specifically, we cover
lightweight architectures (Section 2.1), efficient
self-attention approximations (Section 2.2), and
neural architecture search (Section 2.3).

2.1 Lightweight Architectures

Lightweight language model architectures are
designed to achieve efficient performance with
fewer parameters and reduced computational over-
head, which is ideal for deployment on resource-
constrained devices such as mobile phones, edge
devices, and embedded systems. Representative
lightweight models often follow the encoder-only
and decoder-only architectures.

Lightweight encoder-only architectures are
mostly optimized versions of BERT (Devlin et al.,
2019). For example, MobileBERT (Sun et al.,
2020) introduces an inverted-bottleneck structure
to maintain a balance between self-attention and
feed-forward networks, achieving a 4.3x size re-
duction and a 5.5x speedup compared to the base
version of BERT. DistilBERT (Sanh, 2019) and
TinyBERT (Jiao et al., 2019) achieve more than
96% of BERT’s performance while being less than
45% smaller and 60% faster by leveraging language
modeling, distillation, and cosine-distance losses.

Lightweight decoder-only architectures are de-
signed to scale down autoregressive language mod-
els, such as GPT (Radford et al., 2018, 2019)
and the LLaMA series (Touvron et al., 2023),
into compact and efficient models. These mod-
els emphasize knowledge distillation, memory
overhead optimization, parameter sharing, em-
bedding sharing to enhance efficiency and scal-
ability. BabyLLaMA (Timiryasov and Tastet,
2023a) and BabyLLaMA-2 (Tastet and Timiryasov,
2024) distill knowledge from multiple teachers into
a 58M-parameter model and a 345M-parameter
model respectively, demonstrating that distillation
can exceed teacher models’ performance partic-
ularly under data-constrained conditions. TinyL-
LaMA (Zhang et al., 2024), with only 1.1B pa-
rameters, achieves high efficiency by optimiz-
ing memory overhead, e.g., via FlashAttention
(Dao et al., 2022), while maintaining competi-
tive performance for various downstream tasks.
MobilLLaMA (Thawakar et al., 2024) applies a
parameter-sharing scheme that reduces both pre-
training and deployment costs, introducing a 0.5B-
parameter model for resource-constrained devices.
MobileLLM (Liu et al., 2024b) investigates the im-
pact of model depth (i.e., number of layers) and
width (i.e., number of heads) on performance, ef-
fectively conducting a targeted architecture search
within a smaller parameter range for language mod-
els with millions of parameters.
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3*Model Architectures (Sec. 2) Lightweight Models (Sec. 2.1) ✓ ✓ ✓ ✓

Efficient Self-Attention (Sec. 2.2) ✓ ✓ ✓ ✓

Neural Arch. Search (Sec. 2.3) ✓ ✓ ✓

3*Training Techniques (Sec. 3) Pre-training (Sec. 3.1) ✓ ✓ ✓ ✓ ✓

Finetuning (Sec. 3.2) ✓ ✓

4*Model Compression (Sec. 4) Pruning (Sec. 4.1) ✓ ✓ ✓ ✓

Quantization (Sec. 4.2) ✓ ✓ ✓ ✓

Knowledge Distillation (Sec. 4.3) ✓

Table 1: General techniques used for optimizing small language models, categorized by type of model optimization
and most central constraints they address.

2.2 Efficient Self-Attention Approximations

Deploying large language models can be challeng-
ing due to the substantial number of parameters in
the self-attention layers, as well as the computa-
tional cost associated with self-attention. In this
section, we discuss strategies towards decreasing
this computational cost which can ultimately be
useful in creating small language models.

Reformer (Kitaev et al., 2020) improves the
complexity of the self-attention from O(N2) to
O(N logN) by replacing the dot product attention
with one which uses locality-sensitivity hashing.
Roy et al. (2021) use a sparse routing module based
on an online k-means clustering, which reduces the
complexity of the attention computation.

To reduce the computational quadratic com-
plexity of the self-attention layer from O(N2)
to O(N), several works, including (Wang et al.,
2020a; Katharopoulos et al., 2020; Xiong et al.,
2021; Beltagy et al., 2020), propose linear atten-
tion mechanisms. In particular, (Katharopoulos
et al., 2020) express self-attention as a linear dot-
product of kernel feature maps, thus reducing the
quadratic complexity. The authors further show
that transformers with this linear attention mecha-
nism can be viewed as a recurrent neural network
which enables faster inference. Building on these
foundations, recent advancements have led to more
advanced architectures. Notable examples include
Mamba (Gu and Dao, 2023; Dao and Gu, 2024),
which introduces a selective state space model
with input-dependent transitions, and RWKV (Peng

et al., 2023a), which combines elements of trans-
formers and RNNs with a linear attention mecha-
nism. These models not only achieve linear time
and space complexity but also demonstrate com-
petitive performance across various tasks. This
ongoing trend towards efficient sequence modeling
architectures aims to maintain the expressiveness
of attention-based models while significantly re-
ducing computational complexity.

Hybrid models that combine the efficiency of
SSMs with the recall capabilities of attention
mechanisms have also gained attention. Mam-
baFormer (Park et al., 2024) interleaves Mamba-
based SSM layers with attention modules, im-
proving in-context learning capabilities. Similarly,
Jamba (Lieber et al., 2024) employ sequentially
stacked Mamba-Attention layers to enhance per-
formance on long-sequence tasks. Samba (Ren
et al., 2024) extends this idea by introducing a
block structure that alternates between Mamba,
MLP, and SWA layers, achieving constant through-
put as sequence lengths increase. Hymba (Dong
et al., 2024) further innovates with a hybrid-head ar-
chitecture combining attention for recall and SSMs
for efficient summarization, achieving state-of-the-
art efficiency and accuracy for small LMs. These
hybrid designs illustrate the effectiveness of com-
bining complementary mechanisms to address the
limitations of standalone architectures.
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2.3 Neural Architecture Search Techniques

This section discusses automated methods to dis-
cover the most efficient model architectures for
specific tasks and hardware constraints. Previous
research has primarily concentrated on Neural Ar-
chitecture Search (NAS) for vision tasks (Tan and
Le, 2019; Zoph and Le, 2016; Wu et al., 2019;
Guo et al., 2020) and BERT models (Xu et al.,
2021; Jawahar et al., 2023; Ganesan et al., 2021), as
these models have comparatively fewer parameters,
which reduces the cost of the search process for
efficient architectures. However, models with over
a billion parameters pose a significant challenge in
searching for smaller, more efficient models.

3 Training Techniques

This section explores training techniques specif-
ically optimized for Small Language Models
(SLMs), with a primary focus on how these meth-
ods enable efficient training within limited resource
environments. A key consideration is the inter-
play between model size and bit-precision, as a
model with a large parameter count at a very low
bit-precision may have a similar memory footprint
to a model with fewer parameters at a higher bit-
precision.

3.1 Low-Resource Pre-training

Low-Precision Training SLMs are designed to
operate under strict memory constraints. There-
fore, training with extremely low precision allows
these models to fit within limited resources. This
approach enables significant memory savings, al-
lowing for larger batch sizes or more complex
models within the same memory footprint. Au-
tomatic Mixed Precision (AMP) with FP16 (Mi-
cikevicius et al., 2018) has been widely adopted
for its efficiency, but its limited dynamic range can
lead to numerical instability. BFLOAT16 (Burgess
et al., 2019), with its broader dynamic range, of-
fers greater stability and is particularly effective for
smaller batch sizes. Further efficiency gains can be
achieved with FP8 formats, supported by hardware
like NVIDIA’s Hopper architecture. These formats
reduce memory usage and accelerate computation
but require advanced techniques, such as dynamic
scaling, stochastic rounding, and hybrid formats,
to maintain numerical stability. Innovations like
FP8-LM (Peng et al., 2023b) and methods for scal-
ing FP8 training to trillion-token LLMs (Fishman
et al., 2024) demonstrate the effectiveness of these

approaches. For even greater savings, integer-based
training with INT8 and INT4 formats offers com-
pelling benefits. Techniques like Jetfire (Xi et al.,
2024) and INT4 training (Xi et al., 2023) rely on
precise quantization to minimize accuracy loss.
Emerging methods such as BitNet (Wang et al.,
2023) and BitNet-1.58 (Ma et al., 2024), which
use 1-bit weights and low-bit activations, achieve
extreme memory reductions. It is important to note
that the choice of precision—ranging from FP16 to
INT4 or 1-bit should be guided by the trade-offs be-
tween hardware compatibility, training speed, and
model accuracy.
Parallelism Training: SLMs are typically pre-
trained across multiple machine nodes to leverage
distributed computing resources efficiently. Several
system-level optimization techniques have been de-
veloped to this end. Zero Redundancy Data Par-
allelism (ZeRO) (Rajbhandari et al., 2020) offers
three progressive stages of optimization, each parti-
tioning more training states across devices: ZeRO-1
partitions optimizer states, ZeRO-2 adds gradient
partitioning, and ZeRO-3 further partitions model
parameters. PyTorch’s Fully Sharded Data Parallel
(FSDP) (Zhao et al., 2023) implements similar con-
cepts. These parallelism techniques enable training
with larger batch sizes, significantly improving ef-
ficiency and scalability for SLMs.

3.2 Fine-tuning Techniques

Fine-tuning on smaller, task-specific datasets al-
lows models to leverage the knowledge gained dur-
ing pre-training, enabling them to excel in special-
ized tasks or domains. Fine-tuning techniques are
designed to address challenges like limited com-
puting resources, data quality, availability, and ro-
bustness, ensuring efficient adaptation to new tasks
without extensive retraining.

3.2.1 Parameter-Efficient Fine-Tuning
Parameter-Efficient Fine-Tuning (PEFT) updates
a small subset of parameters or adds lightweight
modules, keeping most of the pre-trained model’s
parameters fixed. This approach reduces computa-
tional costs during SLM fine-tuning, preserves the
model’s pre-trained knowledge, minimizes overfit-
ting, and improves flexibility.

LoRA uses low-rank decomposition (Hu et al.,
2021), Prompt Tuning (Lester et al., 2021) inserts
learnable prompts into inputs, and Llama-Adapter
(Zhang et al., 2023b; Gao et al., 2023) adds prompts
to LLaMA’s attention blocks. Dynamic Adapters
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(Kong et al., 2024; Feng et al., 2024; Gou et al.,
2023; Liu et al., 2023b; Luo et al., 2024) automat-
ically combine multiple adapters as a mixture-of-
experts model to enable multi-tasking and prevent
forgetting (Han et al., 2024; Yang et al., 2024).

To further optimize PEFT, some tools combine
these techniques with fused kernels for improved
performance and resource efficiency. For example,
Unsloth (Daniel Han and team, 2023) is a cutting-
edge tool that enables fine-tuning of large-scale
models up to 5x faster, while reducing memory us-
age by as much as 80%. By leveraging innovations
such as dynamic 4-bit quantization and gradient
checkpointing, Unsloth accelerates training with-
out sacrificing accuracy.

3.2.2 Data Augmentation
Data augmentation increases the complexity, di-
versity and quality of training data, leading to im-
proved generalization and performance on down-
stream tasks. AugGPT (Dai et al., 2023) rephrases
training samples using ChatGPT. Evol-Instruct
(Xu et al., 2023) uses multistep revisions to gen-
erate diverse, open-domain instructions with in-
creased complexity. Reflection-tuning (Li et al.,
2023a, 2024) enhances data quality and instruction-
response consistency for instruction tuning by re-
fining both instructions and responses using GPT-
4 based on predefined criteria. FANNO (Zhu
et al., 2024) augments instructions and generates
responses by incorporating external knowledge
sources through retrieval-augmented generation.
LLM2LLM (Lee et al., 2024b) generates more hard
samples based on model prediction on training data
during training.

Data augmentation is also effective for synthe-
sizing new data when training data is limited, such
as for low-resource languages (Whitehouse et al.,
2023), medical and clinical applications (Chinta-
gunta et al., 2021), and privacy-sensitive data (Song
et al., 2024), enabling models to generalize better
and perform more robustly in constrained settings.

4 Model Compression Techniques

Model compression techniques focus on reducing
the size and complexity of large pre-trained lan-
guage models while maintaining their performance.
As a result, these methods are a key approach to
deriving SLMs from LLMs. In this section, we pro-
pose a taxonomy for model compression that cate-
gorizes such techniques by whether they perform

pruning (Section 4.1), quantization (Section 4.2),
or knowledge distillation (Section 4.3).

4.1 Pruning Techniques

Weight pruning is a model optimization technique
that reduces the number of parameters to enhance
computational efficiency and lower memory usage,
all while maintaining performance levels. We dif-
ferentiate between two major approaches for prun-
ing: unstructured pruning and structured pruning.

Unstructured pruning removes less significant
individual weights, offering fine-grained control
and flexibility in reducing model size. For ex-
ample, to perform irregular pruning on large lan-
guage models, SparseGPT (Frantar and Alistarh,
2023) reformulates the pruning task as a sparse
regression problem, optimizing both the remain-
ing and pruned weights using a layer-wise ap-
proximate regression solver. SparseGPT can ef-
ficiently handle large-scale models like OPT-175B
and BLOOM-176B. Additionally, (Boža, 2024)
integrates the ADMM (Boyd et al., 2011) algo-
rithm for weight updates to further mitigate prun-
ing errors. Wanda (Sun et al., 2023) incorporates
both weights and activations into consideration dur-
ing pruning process, and eliminates the need of
weight updates. In addition, the n:m pruning strat-
egy (Zhou et al., 2021) brings unstructured pruning
to model acceleration by pruning exactly n weights
out of every m, balancing pruning flexibility and
computational efficiency for significant speedups.
NVIDIA’s TensorRT leverages such sparse patterns
to optimize memory access and reduce computa-
tional loads, accelerating inference on GPUs, par-
ticularly hardware like the A100. Additionally, the
n:m sparse pattern can also be applied in edge AI
applications on NVIDIA Jetson Nano to enhance
power efficiency and optimize model size. Finally,
unstructured pruning often results in sparse matri-
ces requiring specialized hardware or algorithms
to maximize computational benefits (Frantar and
Alistarh, 2023).

Structured pruning (Wang et al., 2020b; San-
tacroce et al., 2023; Ma et al., 2023; Tao et al.,
2023; Xia et al., 2024; Kurtić et al., 2024) aims to
compress LLMs while maintaining performance
by removing groups of parameters in a structured
manner, which enables more efficient hardware im-
plementation. A major direction in this approach
concerns the sparsity of neurons in the model. For
instance, Li et al. (2023b) observes prevalent spar-
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sity in feed-forward networks. Liu et al. (2023e)
proposes using small neural networks for dynamic
pruning based on input, termed “contextual spar-
sity”. Mirzadeh et al. (2024) change the activation
functions in pre-trained models to ReLU and fine-
tune to improve activation sparsity.

Recent work has also addressed the redundancy
in the Transformer architecture to achieve reduc-
tion of GPU memory usage and speed enhance-
ment (Michel et al., 2019; Voita et al., 2019; Ge
et al., 2024). For example, Sajjad et al. (2023);
Xia et al. (2022) investigates the layer redundancy
for effective structured pruning. We also highlight
input-dependent pruning methods, such as contex-
tual sparsity (Liu et al., 2023e) and FastGen (Ge
et al., 2024), which should be considered along
with the challenges of efficient implementation for
optimizing computation and memory.

4.2 Quantization

Quantization is widely adopted to compress LLMs
with vast parameter counts. The GPTQ (Frantar
et al., 2022) focuses on layer-wise weight-only
quantization, using inverse Hessian matrices to
minimize the reconstruction error. To fully lever-
age the benefits of fast integer matrix multiplica-
tion, more quantization methods (Liu et al., 2023a;
Dettmers et al., 2022b; Kim et al., 2023; Xiao et al.,
2023; Yao et al., 2022; Lin et al., 2024; Liu et al.,
2023d, 2024a, 2023c; Shao et al., 2023) that quan-
tize both weights and activations are increasingly
being adopted for LLMs. AWQ (Lin et al., 2024)
and ZeroQuant (Yao et al., 2022) take activation
into account to assess the importance of weights,
enabling more effective optimization for weight
quantization. In addition, for K/V Cache Quanti-
zation (Hooper et al., 2024; Liu et al., 2024c; Yue
et al., 2024), Key-Value cache is specifically quan-
tized for enabling efficient long-sequence length
inference.

Another challenge of activation quantization lies
in the outliers that fall outside the typical activa-
tion distribution. SmoothQuant (Xiao et al., 2023)
smoothes activation outliers by migrating quanti-
zation difficulty from activations to weights. Spin-
Quant (Liu et al., 2024a) introduces rotation ma-
trices to transform outliers into a new space. Re-
cently, quantization-aware training (QAT) methods,
such as LLM-QAT (Liu et al., 2023d) and Edge-
QAT (Shen et al., 2024b), have gained attention
due to the strong performance. Both methods adopt

distillation with float16 models to recover the quan-
tizationi error. We also note recent work (Shen
et al., 2024a,b; Zeng et al., 2024) that implements
the quantized LLMs on mobile devices and FPGAs
to demonstrate the effectiveness and efficiency of
the weight and activation quantization for LLMs.

4.3 Knowledge Distillation Techniques

In its classical form, knowledge distillation (Hinton
et al., 2015) involves training an efficient model,
known as the “student,” to replicate the behavior
of a larger, more complex model, referred to as
the “teacher.” In this section, we particularly fo-
cus on distillation strategies from one or multiple
white-box teacher language model to a target stu-
dent language model.

Babyllama (Timiryasov and Tastet, 2023b) is
among the first to develop a compact 58M param-
eter language model using a Llama model as the
teacher. A key finding of this work is that distil-
lation from a robust teacher can outperform tra-
ditional pre-training on the same dataset. In a
similar vein, (Gu et al., 2024) introduce mod-
ifications in the distillation loss, which enables
the student models to generate better quality re-
sponses with improved calibration and lower ex-
posure bias. Sequence-level distillation loss can
also be improved by using a generalized version
of f-divergences as shown in (Wen et al., 2023).
Liang et al. (2023) extend layer-wise distillation
strategies for language models by using task-aware
filters which distill only the task specific knowl-
edge from the teacher. Recent works (Wan et al.,
2024a,b) show that multiple language models can
be fused as a teacher towards distilling knowledge
into small language models by strategically merg-
ing their output probability distributions.

One of the issues in knowledge distillation for
language models is that the distillation strategies
are primarily effective when (1) the teacher and the
student language model share the same tokenizer
and (2) the teacher’s pre-training data is available.
Boizard et al. (2024) addresses this issue by intro-
ducing an universal logit distillation loss inspired
from the optimal transport literature. Often distil-
lation is also combined with pruning techniques
towards creating smaller language models. For ex-
ample, (Sreenivas et al., 2024; Muralidharan et al.,
2024) show that an iterative step of pruning a large
language model followed by retraining with distil-
lation losses, can enable strong smaller models.
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Setting Constraints Datasets Metrics

Efficient Inference Latency SuperGLUE (Sarlin et al., 2020), SQuAD (Ra-
jpurkar et al., 2016), TriviaQA (Joshi et al., 2017),
CoQA (Reddy et al., 2019), Natural Questions (NQ)
(Kwiatkowski et al., 2019)

Inference Time (Narayanan et al., 2023), Throughput
(Arora et al., 2024)

On-device/Mobile Memory TinyBERT (Jiao et al., 2020) and OpenOrca (Lian
et al., 2023)

Peak Memory Usage (Lee et al., 2024a), Memory
Footprint, Compression Ratio (Cao et al., 2024)

Privacy-Preserving Privacy PrivacyGLUE (Shankar et al., 2023), MIMIC (John-
son et al., 2020)

Privacy Budget (Yu et al., 2024), Noise Level
(Havrilla et al., 2024)

Energy-Efficient AI Energy Optimiza-
tion

- Energy Efficiency Ratio (Stojkovic et al., 2024),
Thermal Efficiency, Idle Power Consumption (Patel
et al., 2024)

Table 2: Overview of Settings, Constraints, and Metrics.

Recent advancements have explored methods be-
yond traditional label distillation by incorporating
additional supervision during the distillation pro-
cess to create smaller language models. Hsieh et al.
(2023) find that using “rationales” as an additional
source of supervision during distillation makes it
more sample-efficient. Moreover, the authors find
that the distilled model outperforms large-language
models on commonly used NLI, Commonsense QA
and arithmetic reasoning benchmarks. In a similar
vein, (Dai et al., 2024; Magister et al., 2023; Ho
et al., 2023; Fu et al., 2023) distill the reasoning
chain from a larger language model to a smaller
language model along with the label information.
Such distilled models have been shown to possess
improved arithmetic, multi-step math, symbolic
and commonsense reasoning abilities.

5 Evaluation

Table 2 presents different evaluation settings along
with their corresponding datasets and metrics for
SLMs. In this section, we focus on the evaluation
metrics for SLMs. These settings and metrics are
organized according to the constraints they address
for SLMs.

Latency Two key metrics to evaluate latency
are inference time (Narayanan et al., 2023) and
throughput (Arora et al., 2024). Inference time
measures how quickly a model can process input
and generate an output, which is crucial for user-
facing applications that require immediate feed-
back. Throughput, on the other hand, evaluates the
number of tokens or samples a model can process
in a given period, making it especially relevant for
large-scale tasks or time-sensitive applications.

Memory When deploying models in memory-
constrained environments, memory efficiency be-
comes a primary consideration. Metrics such as

peak memory usage (Lee et al., 2024a) capture the
highest amount of memory the model consumes
during inference. Similarly, memory footprint and
compression ratio (Cao et al., 2024) are used to
measure how compact a model is and the efficiency
of the compression techniques applied, enabling
models to operate within memory constraints with-
out sacrificing performance.

Privacy Privacy budget (Yu et al., 2024), a mea-
sure rooted in differential privacy, quantifies the
model’s ability to protect sensitive information dur-
ing both training and inference. Alongside this,
noise level (Havrilla et al., 2024) measures the
trade-off between privacy and accuracy by assess-
ing how much noise is added to ensure privacy
while maintaining the model’s performance.

Energy Optimization The energy efficiency ra-
tio (Stojkovic et al., 2024) evaluates the energy
used relative to the model’s overall performance,
providing insights into how energy-intensive an
SLM is in practice. Other metrics, such as ther-
mal efficiency and idle power consumption (Patel
et al., 2024), measure the energy consumed when
the model is either actively processing tasks or
idle, which is crucial for long-term deployment in
energy-constrained environments like embedded
systems or mobile devices.

6 Applications

In this section, we consider applications of SLMs,
that is, specific use-cases like translation and auto-
completion.

6.1 Real-Time Interaction

GPT-4o, released in May 2024, processes text, vi-
sion, and audio input end-to-end and is faster than
GPT-4 Turbo (OpenAI, 2024). The demonstration
involved responses in the style of human conver-
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4*Real-Time Interaction Chatbots Handle frequent queries and basic troubleshooting. Real-time response needed, lightweight ✓ ✓ ✓ ✓

Voice Interfaces Used in voice assistants and dictation tools. Low latency required for real-time ✓ ✓ ✓

Translation Basic translation between languages. Real-time translation with low-resources ✓ ✓ ✓ ✓

5*Content Generation Text Summarization Summarize articles and reports. Faster inference, minimal resource use ✓ ✓ ✓ ✓

5*& Processing Sentiment Analysis Assess customer sentiment across platforms. Efficient analysis in low-resource envir. ✓ ✓ ✓ ✓

Text Classification Filter emails, classify content. Low latency, on-the-fly processing ✓ ✓ ✓ ✓

NLP for Search Improves search engine functionality. Low latency for real-time search ✓ ✓ ✓

Autocompletion Suggest completions in IDEs or text editors. Fast prediction with low memory ✓ ✓ ✓ ✓

Table 3: Taxonomy of Applications of Small Language Models.

sation. LLaMA-Omni combine a speech encoder,
adaptor, LLM, and streaming decoder to enable
real-time interaction with speech input based on
LLaMA-3-8B-Instruct (Fang et al., 2024). Emo-
tionally Omni-present Voice Assistant, or EMOVA,
apply LLaMA-3.1-8B as an end-to-end speech
model that can generate poems and describe images
at the user’s request. Google Deepmind’s Project
Astra uses Gemini to process audio and video infor-
mation from a smartphone or glasses and respond
to respond to queries like mathematics problems
and memorize object sequences (Deepmind, 2024).

6.2 Content Generation and Processing

LLMR uses LLMs in mixed reality to generate
and modify 3D scenes. It combines language mod-
els used in several roles - a Scene Analyzer GPT
to summarize objects and give further details like
color, Skill Library GPT to determine what is re-
quired to fufill a user’s request, Builder GPT to
generate code for the request, and Inspector GPT
to evaluate its code (Torre et al., 2024). Dream-
CodeVR assists users in editing an application in
the Unity engine through code generation (Giunchi
et al., 2024; Juliani et al., 2020). This permits users
to edit VR applications without requiring extensive
programming knowledge.

6.3 Edge Inference and Privacy

On-device LLMs maintain usability even when
MobileLLM improve on various chat benchmarks
and performs comparably with LLaMA-2-7B in
API calling (Liu et al., 2024b). Apple Intelli-
gence applies an 3B parameter model to perform
on-device inference for a broad range of tasks,
such as text and notification summarization, im-
age and emoji generation, and code completion
for XCode (Gunter et al., 2024; Research, 2024).

On-device inference reduces latency as measured
by the time to first generated token (Hu et al.,
2024; Gerganov). HuatuoGPT is a domain-adapted
LLM for medical dialogue and BioMistral is an
LLM tailored for biomedical work (Zhang et al.,
2023a; Labrak et al., 2024). Applications related
to medicine may need to adhere to stringent pri-
vacy regulations and represent a promising area for
future work. TalkBack with GeminiNano assists
blind and low vision people by describing and cap-
tioning images and runs on Android devices (Team,
2024). On-device inference makes this technology
usable without an internet connection.

Mixture-of-Experts can reduce inference cost
by using a gating network to use only a subset of
layers during inference time (Shazeer et al., 2017).
Google’s GLaM uses mixture-of-experts (Du et al.,
2022) but is a 1.2T parameter model. EdgeMoE ex-
tend misture-of-experts to edge computing using an
Nvidia Jetson TX2 and Raspberry Pi 4B, with the
latter device being CPU-only (Sarkar et al., 2023).
Based on experimental findings that most weights
contribute little to the final computation, the au-
thors compress weights and predict the relevant
experts in advance.

7 Conclusion

This paper has provided an extensive survey of
Small Language Models (SLMs), covering a wide
range of topics including model architectures, train-
ing methodologies, and model compression tech-
niques that are crucial for optimizing SLMs. We
hope that this survey will serve as a valuable re-
source for both researchers and practitioners work-
ing on SLMs.
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