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Abstract
Evaluating Natural Language Generation
(NLG) is crucial for the practical adoption of
AI, but has been a longstanding research chal-
lenge. While human evaluation is considered
the de-facto standard, it is expensive and lacks
scalability. Practical applications have driven
the development of various automatic evalua-
tion metrics (AEM), designed to compare the
model output with human-written references,
generating a score which approximates human
judgment. Over time, AEMs have evolved from
simple lexical comparisons, to semantic simi-
larity models and, more recently, to LLM-based
evaluators. However, it seems that no single
metric has emerged as a definitive solution, re-
sulting in studies using different ones without
fully considering the implications. This paper
aims to show this by conducting a thorough
examination of the methodologies of existing
metrics, their documented strengths and lim-
itations, validation methods, and correlations
with human judgment. We identify several key
challenges: metrics often capture only specific
aspects of text quality, their effectiveness varies
by task and dataset, validation practices remain
unstructured, and correlations with human judg-
ment are inconsistent. Importantly, we find
that these challenges persist in the most recent
type of metric, LLM-as-a-Judge, as well as in
the evaluation of Retrieval Augmented Gener-
ation (RAG), an increasingly relevant task in
academia and industry. Our findings challenge
the quest for the ‘perfect metric’. We propose
selecting metrics based on task-specific needs
and leveraging complementary evaluations and
advocate that new metrics should focus on en-
hanced validation methodologies.

1 Introduction

Evaluation of Natural Language Generation (NLG)
models is essential to ensure their quality and use-
fulness in various real-world applications (Celiky-

ilmaz et al., 2020). As AI adoption expands, the
importance of robust evaluation methods increases
significantly (Novikova et al., 2017). However, as-
sessing NLG outputs remains a challenging task
(Gehrmann et al., 2023). The standard approach to
date is evaluating models’ outputs through human
judgment, but due to the high costs and limited scal-
ability, the development of Automated Evaluation
Metrics (AEM) has been pursued as an alternative
(Clark et al., 2021). Traditionally, the supervised
approach involves comparing model-generated text
with a human-written reference. It assigns a simi-
larity score based on the assumption that a higher
similarity indicates a better quality of the output.
Furthermore, because the score is considered mean-
ingful, it is expected to serve as a good proxy for
human judgment. This reliability is typically as-
sessed by measuring the correlation between metric
scores and human evaluations of the generated texts
(Belz and Reiter, 2006; Coughlin, 2003).

Evaluation metrics have been developed for
decades while, simultaneously, demands have in-
creased. Model architectures have become more
advanced and complex evaluation methods have
improved and become more sophisticated (Zhuang
et al., 2023). The first evaluation scores were based
on a comparison of the lexical surface forms of
the generated text and a reference. Later, the intro-
duction of embeddings enabled promising seman-
tic comparisons, and more recently large language
models (LLMs) have become the state-of-the-art in
AEMs (Chang et al., 2024).

With the wide range of available metrics, there
seems to be a little agreement in the field about
which ones are most effective and for what use
cases. This has led to cases where multiple met-
rics are applied in studies without sufficient reflec-
tion on their implications and meaning (Mathur
et al., 2020). An often overlooked fact is that most
metrics were originally designed for specific NLP
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Figure 1: Overview of evaluation metric categories, including lexical similarity, semantic similarity, and LLM-based
evaluation, highlighting their advantages and limitations.

tasks, such as machine translation (MT), summa-
rization, and question answering, raising concerns
about their applicability to each other (Liguori
et al., 2023). Furthermore, as we will demonstrate,
inconsistencies arise when comparing the behavior
of these metrics and their correlation with human
judgment (Laskar et al., 2024).

The purpose of this article is to conduct an in-
depth analysis of existing metrics. First, we analyze
their methodologies, and then their documented
strengths and limitations. Our focus is on how the
metrics have been validated and their correlation
with human judgment. In this work, we claim that
the presented correlation is usually not sufficiently
robust to justify the use of the metrics in a general
use case scenario.

The paper is structured as follows: Section 2
presents existing evaluation metrics, analyzes their
correlation with human judgment, and looks deeper
into Retrieval Augmented Generation (RAG) as
a real-world system evaluation example; Section
3 discusses potential threats to validity; and Sec-
tion 4 concludes the argument about the need for
more thorough analysis of what aspects each metric
evaluates and what synergies between metrics are
necessary to have a reliable general framework of
AEMs for model-generated text.

2 Metrics Analysis

2.1 Metrics Overview
Based on their underlying scoring methodologies,
evaluation metrics can be categorized into three

groups: lexical similarity, which measures the over-
lap of textual units; semantic similarity, which
quantifies the numerical distance between content
representations; and LLM-based evaluation, which
relies on direct prompting of LLM for judgment
(Srivastava and Memon, 2024). Figure 1 presents
an overview of the main computational character-
istics of each metric. An often overlooked aspect
of these metrics is the initial context in which they
were introduced, which typically involves the re-
porting of good correlations with human judgments.
In Table 1, we compare the different tasks, datasets,
level, and metrics that were used to this date. In
general, all works report good correlations, but we
see that they are not directly comparable, so it is
not obvious that one metric would perform better
under the conditions of another one. In this section,
we present an overview of key metrics within each
category: examining their main characteristics, ad-
vantages, and limitations; as well as challenges to
the initial claims of good correlation with human
judgment.

2.1.1 Lexical similarity metrics
These metrics focus on the surface-level form of
the generated and reference texts, and the exact
co-occurrence of sequences, such as n-grams. Se-
quences can be words, characters, strings, or tokens.
Lexical metrics are considered as the traditional ap-
proach to evaluation in NLG ("traditional metrics").
Some relevant examples of this type of metrics
are: BLEU (Papineni et al., 2002), ROUGE (Lin,
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Table 1: Overview of initial introduction of metrics.
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2004) and METEOR (Banerjee and Lavie, 2005)
(see Table 1).

Lexical similarity metrics are widely used be-
cause of their ease of implementation and compu-
tational efficiency. These metrics are especially
useful when the generated text must closely match
the reference or when the output for evaluation is
short. Nonetheless, lexical metrics have limitations
in contexts where the generated text diverges from
the reference but still conveys accurate information
(Liu et al., 2016). They may yield a low score de-
spite the identical meaning (paraphrased use case),
which questions their correlation with human as-
sessments (Coughlin, 2003). Furthermore, lexical
metrics are less effective for complex texts with
varied lexical and syntactic choices. They also
suffer from length bias, which reduces their relia-
bility for nuanced tasks such as quality in question
generation (Nema and Khapra, 2018) and dialogue
response generation (Liu et al., 2016).

In fact, lexical-based metrics have struggled to
demonstrate a strong correlation with human judg-
ment since their introduction (Coughlin, 2003).
Let us dive deeper into ROUGE. It faced early
criticisms regarding the stability and validity of
human judgments, including potential limitations
of reference texts from the dataset initially used
for validation (Nenkova and Passonneau, 2004).
The authors rebutted it later (Lin and Och, 2004),
but still left some unanswered questions. How-
ever, others such as Rankel et al. (2013) found
that ROUGE-1, the variant most used, performed
the weakest in a news summary data set, while R-
4 was the strongest, and that combining ROUGE
metrics improved performance, although with lim-
ited accuracy.Cohan and Goharian (2016) observed
that higher-order ROUGE metrics, particularly
ROUGE-3, were better correlated with human judg-
ments for scientific article summaries. Peyrard et al.
(2017) contradicted Rankel et al. (2013), finding
that ROUGE-1 correlated best with human judg-
ments, but on a relation extraction dataset. Peyrard
(2019) showed that disagreement among ROUGE
metrics increased for highly rated summaries, sug-
gesting that human assessment remains essential
for evaluating top-quality summaries. Another lex-
ical metric, BLEU, has faced similar challenges,
and numerous studies have sought to enhance its
performance by modifying the calculation method-
ology (Post, 2018).

In summary, lexical metrics provide a basic ap-
proach for evaluation, but fall short in capturing

deeper meanings, which semantic similarity met-
rics try to address more efficiently.

2.1.2 Semantic similarity metrics
These metrics capture semantic similarity between
generated and reference texts by representing them
as numerical vectors (embeddings), capturing nu-
anced relationships across different linguistic lev-
els. By applying distance measures to quantify the
differences between the numerically represented
texts, they leverage the characteristic that the closer
the vector representations are, the more similar
meaning of the texts (Harris, 1954; Mikolov et al.,
2013b; de Vos et al., 2021).

The numeric representation of word mean-
ing used in semantic metrics can be catego-
rized according to whether they take into ac-
count the context of a token appearance or not.
Context-independent word embeddings (for exam-
ple, Word2Vec (Mikolov et al., 2013a), GloVe (Pen-
nington et al., 2014)) provide a one-word repre-
sentation encoding for all its possible meanings.
Contextual embeddings, on the other hand, adapt
to specific contexts and can have multiple repre-
sentations of the same word. An example is BERT
(Devlin et al., 2019), which generates contextual
representations at a token level.

There are more complex numeric representations
that go beyond tokens or words. Examples are
Sentence-BERT (Reimers and Gurevych, 2019),
which generates representations at the sentence
level and fine-tunes BERT for semantically aligned
sentences, and InferSent (Conneau et al., 2017),
which uses a bidirectional LSTM trained on nat-
ural language inference datasets. These methods
produce sentence representations that capture se-
mantic structures beyond simple word embedding
averaging.

To capture linguistic variations and fragmenta-
tions, the research field introduced various seman-
tic similarity metrics based on the numeric repre-
sentations presented above and respective distance
measures. Some relevant examples are: Word
Mover’s Distance (WMD) (Kusner et al., 2015),
Sentence Mover’s Distance (Clark et al., 2019),
WISDM (Botev et al., 2017), BERTScore (Zhang
et al., 2020), BLEURT (Sellam et al., 2020) and
BEM (Bulian et al., 2022) (see Table 1). In general,
these metrics capture deeper semantic understand-
ing, demonstrate superior performance in handling
linguistic variations and linguistic fragmentations,
and correlate better with human evaluations than
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lexical metrics (Sellam et al., 2020).
However, they are not without limitations. For

example, texts that are structurally similar to the
reference but factually incorrect and often provide
a poor account of syntax could lead to misleading
scores (Chen et al., 2019). For example, sentences
with opposite meanings, such as with a negating
particle, may be represented as similar. Although
contextual embeddings like BERT capture some
syntactic nuances, these often lack sufficient sensi-
tivity to distinguish between syntactically similar
yet semantically opposite statements.

Another general limitation of these metrics is
their dependence on the embeddings used to cal-
culate distances. The performance of the metric
varies between different embeddings and can carry
biased semantic information from its training data
(Sun et al., 2022). They also incur a higher compu-
tational cost, are slower than lexical metrics, and
have limited generalization across unseen domains
or languages, restricting their applicability.

Vector-based representations struggle to encode
multiple meanings as well, having lower precision
as semantic complexity increases. As a result, se-
mantic similarity metrics perform well on simpler
texts but fall short on more complex applications,
and may not outperform lexical approaches in tasks
requiring nuanced understanding of context and
factual accuracy (Chen et al., 2019; Sellam et al.,
2020). Difficulties with long-form text due to com-
putational demands and loss of inter-sentence rela-
tionships have also been reported (Yeh et al., 2021).
These observations highlight the need for metrics
that can handle complex responses with deeper con-
textual understanding.

2.1.3 LLM-as-a-judge
The LLM-as-a-judge metrics use generative mod-
els to evaluate free-text comparisons by responding
to prompts and producing a score. Leveraging state-
of-the-art LLMs can be a promising approach be-
cause they can be instructed to consider specific as-
pects of text through prompting, making them suit-
able for assessing complex text qualities. This type
of metrics are developed for increasingly more pow-
erful NLG systems and challenging datasets. The
evaluation shifts from comparing many systems
on one task to comparing a few LLMs on many
datasets, with validations reported at the dataset
level. These metrics can be used in various ways,
including generating scores based on predefined
criteria (scoring rubric), simulating human prefer-

ences through pairwise comparisons, or even oper-
ating without a reference. In this work, we focus
on reference-based variations. Some examples in
this category are: BARTScore (Yuan et al., 2021),
GPT-Judge (Lin et al., 2022), G-EVAL (Liu et al.,
2023), GPT-Score (Fu et al., 2024), Prometheus
(Kim et al., 2024), and AlpacaEval-LC (Dubois
et al., 2024) (see Table 1).

Recent research has shown that LLM-based met-
rics, including the simple prompting of LLMs for
an evaluation, often outperform traditional eval-
uation methods, correlating more strongly with
human judgment (Chiang and Lee, 2023; Wang
et al., 2023; Zheng et al., 2024), despite being much
slower and more expensive (Li et al., 2024). Stud-
ies also suggest that additional measures are needed
to improve the automatic calibration and alignment
of LLM-based evaluators with human preferences
(Liu et al., 2024; An et al., 2024). This makes
these metrics sensitive to variations in prompt de-
sign and data configurations (Li et al., 2024; Wang
et al., 2023; Kamalloo et al., 2023), because differ-
ent prompts can yield different scores, even if the
aspect being assessed remains the same. (Chiang
and Lee, 2023) analyze the components of LLM
evaluation and find that asking LLMs to rational-
ize their ratings significantly improves correlation
with human ratings (Fabbri et al., 2021). This un-
derscores the importance of prompt design in LLM
evaluations, as it enables LLMs to provide more
informative ratings that align better with human
judgments.

As a further caution it is worth noting that these
metrics may favor responses based on surface-level
attributes, such as verbosity, over substantive qual-
ity, potentially leading to high scores for linguis-
tically refined but factually inaccurate responses
(Chiesurin et al., 2023). Finally, there are also
indications of inherent biases (Li et al., 2024), in-
cluding social biases inherited from the underly-
ing models, model familiarity bias (Wataoka et al.,
2024), and output length bias (Liu et al., 2024; An
et al., 2024). LLM-based evaluation methods have
also shown inconsistencies compared to expert hu-
man evaluations (Stureborg et al., 2024).

2.2 Correlation with human judgment
As shown in Table 1, most evaluation metrics have
been initially validated by assessing their correla-
tion with human judgments on a specific task. Over-
all, the metrics designed to address application spe-
cific evaluation criteria have enabled NLP practi-
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tioners to develop and fine-tune their systems with-
out human feedback. However, validation method-
ologies vary significantly across metrics: they are
tested on different tasks and datasets, use different
correlation measures, apply varying statistical sig-
nificance tests, and rely on human judgments of
differing quality and quantity. This inconsistency
makes direct comparisons challenging. Therefore,
it is crucial to assess whether newer metrics truly
outperform older ones. In the following, we present
a meta-evaluation of metrics over time, analyzing
their correlation with human judgments across di-
verse datasets, systems, and validation methodolo-
gies, beyond their initial assessments.

2.2.1 Missing or inconsistent correlations
Numerous studies have evaluated the correlation
between metrics and human judgments, unfortu-
nately often reporting either no correlation or in-
consistent results. Liu and Liu (2008) found a low
correlation between ROUGE and human evalua-
tions of abstractive summaries of meetings, even
when accounting for disfluencies and speaker infor-
mation. Graham and Baldwin (2014) argued that
claims of correlation with human assessments are
insufficient to validate a metric and recommended
statistical analyses, such as the Williams test, to
confirm significance—an approach later adopted
by BERTScore in its validation.

In more recent years, Deutsch et al. (2021) used
bootstrapping and permutation tests to calculate
confidence intervals for correlations between met-
rics and human judgments in summarization tasks,
observing wide confidence intervals, which high-
lights the high uncertainty in the reliability of
AEMs. Scalabrino et al. (2021) analyzed corre-
lations between human judgments and different
metric combinations for generated code but were
unable to find a satisfactory combination. Liguori
et al. (2023) assessed a set of lexical metrics, in-
cluding edit distance and exact match, to evaluate
harmful code production, finding that ROUGE-4
and BLEU-4, often used for that use case, failed
to estimate semantic correctness, whereas exact
match and edit distance exhibited the highest corre-
lation with human evaluations. More recently, Li
et al. (2024) compiled a taxonomy of LLM-based
NLG evaluators and compared their performance
with older metrics across various tasks, observing
that LLM-as-a-judge metrics correlated better with
human judgments, yet correlations remained low to
moderate and exhibited high variance across meth-

ods.

2.2.2 Influencing factors
Some studies have attempted to explain these incon-
sistencies by identifying specific influencing fac-
tors. One widely discussed factor is that correlation
scores vary depending on the reference used, mean-
ing that results can differ across datasets. Bhandari
et al. (2020a) found that metrics correlate better for
easier-to-summarize documents, with performance
deteriorating as summaries become more abstrac-
tive. Similarly, Bhandari et al. (2020b) analyzed
correlations between lexical and semantic metrics
and human assessments for several summarization
systems and tasks, showing that different metrics
correlate better depending on the dataset. Mora-
marco et al. (2022) compared metrics for medical
note generation, including edit distance, lexical,
and semantic metrics, and found that results varied
depending on the reference text. Zhang et al. (2024)
examined human ratings of GPT-3 summaries for
well-known news datasets across several dimen-
sions and found that correlations fluctuated sig-
nificantly depending on the dataset and reference
summaries. In particular, substituting reference
summaries with those written by freelance writ-
ers improved the correlation with ROUGE-L for
faithfulness, emphasizing the impact of reference
summary quality when evaluating reference-based
metrics.

2.2.3 Quality of evaluated system
Another influencing factor is the quality of the
system under evaluation. (Novikova et al., 2017)
found that lexical metrics exhibited a poor corre-
lation with human judgement for general NLG
tasks, particularly struggling to differentiate be-
tween medium- and high-quality outputs. How-
ever, AEMs were more effective in identifying low-
performing systems. Mathur et al. (2020) com-
pared the correlation between lexical and semantic
metrics, highlighting the sensitivity of Pearson’s
correlation to sample size. They found that metric
correlations weakened for top-performing systems
and similarly performing models, with BLEU’s
performance deteriorating when high-performing
systems were removed, exposing the fragility of
score aggregation.

2.2.4 Expertise of human annotators
One more factor affecting correlation is the exper-
tise of human annotators. Reiter and Belz (2009)
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compared lexical metrics for a weather forecast
NLG task and found inconsistent results between
expert and non-expert judgments, with most met-
rics favoring non-experts. Bavaresco et al. (2025)
compiled a collection of 20 NLP datasets with
human annotations and compared them with re-
sults from multiple open and closed LLMs. They
found that Spearman’s correlation was consistently
higher when comparing models against non-expert
judgments rather than expert assessments, with the
highest correlations observed in the verbosity di-
mension. Their analysis also showed that no sin-
gle model consistently outperformed others in all
evaluation categories and chain-of-thought (CoT)
prompting did not consistently improve agreement
with human assessments.

2.2.5 System vs segment level correlations
A key observation across studies is that the perfor-
mance of the metrics differs depending on the level
of analysis, system vs segment level correlations.
Novikova et al. (2017) confirmed that metrics per-
form better at the system level than at the sentence
level. Bhandari et al. (2020b) further demonstrated
that these metrics struggle to quantify system im-
provements and that document-level comparisons
can yield different conclusions from system-level
comparisons.

2.2.6 Evaluation aspect
Finally, some studies have found that metric corre-
lations vary depending on the specific evaluation
aspect being considered. Stent et al. (2005) con-
cluded that automatic metrics were better suited
for evaluating adequacy than fluency. In contrast,
Reiter and Belz (2009) found that most metrics
were more strongly correlated with fluency than
with accuracy. Similarly, Stent et al. (2005) found
no significant correlation between human judg-
ments of adequacy and fluency for generated para-
phrases with controlled syntactic variations. Fab-
bri et al. (2021) introduced SummEVAL, where
re-annotated summary datasets are used to com-
pare correlations between metrics and evaluation
aspects (coherence, consistency, fluency, and rel-
evance), finding substantial discrepancies across
them.

Taken together, these findings underscore the
inconsistency - and consequently the inconclusive-
ness - of metric correlations with human judgments.
Greater attention must be paid to validation method-
ologies to clearly determine what aspects AEMs

reliably capture and how they should be used, ulti-
mately improving their effectiveness.

2.3 Evaluation in real scenarios: RAG systems
The evaluation metrics discussed so far aim to quan-
tify the similarity between a model output and a
reference text. However, real-world NLG appli-
cations introduce additional performance criteria
which cannot be accounted for in terms of text
similarity. An example of such an application is
RAG, which complements NLG with information
retrieval mechanisms. The goal of RAG is to mini-
mize the tendency of generative LLMs to produce
factually incorrect information (i.e. “hallucinate”)
and to allow them to use data which have not been
part of their training set. In a typical RAG setup, a
user query is first used to find relevant documents,
and then a generative LLM is asked to respond to
the query given the documents. Importantly, the
expectation of a RAG system is that its output is
grounded in the provided context, e.g., it is based
on retrieved documents and not on the parametric
knowledge of the underlying LLM (Jacovi et al.,
2025).

The specifics and inherent complexity of RAG
require considering multiple aspects of its evalua-
tion (Chen et al., 2024). Some proposed criteria
include faithfulness (the degree to which the text
is grounded in the provided context), answer rel-
evance (whether the output actually addresses the
user query), completeness (whether all the rele-
vant information provided by the context is uti-
lized), noise robustness (whether the system can
ignore irrelevant information), and information in-
tegration (the ability to combine information from
multiple sources). The dominant approach to im-
plementing these criteria is the ‘LLM-as-a-judge’,
i.e. by prompting an external LLM. For example,
the Tonic evaluation framework (Tonic AI, 2023)
computes RAG faithfulness by extracting a list of
claims which can be inferred from the output text
and checking the proportion of them which can be
attributed to the provided context. In a similar vein,
the RAGAS framework (Es et al., 2024) estimates
answer relevance by using an LLM to generate a
list of probable user queries which the answer could
be responding to and calculate their similarity to
the real query. However, to our point, the initial
RAGAS metrics validation has used a statistically
insignificant number of human annotators (two) to
calculate correlation with human judgment, and we
expected future studies to challenge those results.
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Recent models like IntellBot (Arikkat et al.,
2024) and QuIM-RAG (Saha et al., 2024) do in-
corporate RAGAS for evaluation, but the over re-
liance on complicated LLM prompts and the lack
of compelling evidence in support of the validity
of these metrics undermines their credibility. It
illustrates the current landscape of metric usage
that other RAG system evaluations still rely heav-
ily on traditional metrics, in spite of its specific
evaluation needs. The original RAG paper (Guu
et al., 2020) used exact matching (EM) with BLEU
and ROUGE, while later studies (Hsu et al., 2021;
Giglou et al., 2024) advocate a hybrid approach
introducing semantic metrics like BERTScore and
BLEURT.

As presented, even modern real world applica-
tions such as RAG we see the same shortcomings:
lack of statistical significance, inconsistency with
human judgement and unfounded usage of metrics
without considering the specifics of the use case
and what the metrics are measuring.

3 Threats to validity

The many inconsistencies revealed by attempts to
reproduce the correlations between metric scores
and human annotations could also be amplified by
issues that threaten the validity of the correlations
themselves.

Firstly, the quality of human-written references
can significantly affect the reliability of metrics
(Gehrmann et al., 2023; Kamalloo et al., 2023). En-
suring reference texts are of high quality is crucial,
yet challenging. Furthermore, annotators’ agree-
ment can reflect inconsistencies even within the
same annotator across different evaluations (Aber-
crombie et al., 2023). Even when references are
assumed to represent a "gold standard", accurately
measuring similarity between generated texts and
references remains difficult.

Secondly, human judgment itself introduces va-
lidity threats. Recent studies indicate that human
evaluators occasionally prefer model-generated
texts to human-written ones (Gehrmann et al.,
2023; Sottana et al., 2023). For example, Goyal
et al. (2022) compare metric correlations with hu-
man judgments in the era of LLMs and find that
human evaluators prefer GPT3 summaries, while
reference-based metrics show an inverse correla-
tion, concluding that current automatic metrics are
inadequate for evaluating new generative models.
This aspect of human evaluation requires further

investigation.

4 Conclusion

This paper examines NLG AEMs, analyzing their
methodologies, strengths, limitations, initial valida-
tion approaches, and alignment with human judg-
ment. Despite ongoing research, no single metric
has been definitive and NLG systems are still val-
idated using varied metrics without fully consid-
ering the implications, which we highlight in the
case of RAG.

Each type of metric has specific strengths: lex-
ical metrics suit fact-based short texts; semantic
similarity metrics work well for paraphrases; and
LLM-based metrics are better for complex texts
when computational resources allow. They all have
limitations too: lexical metrics rely on surface sim-
ilarity, semantic similarity metrics may overlook
syntax, and LLM-based metrics are costly and sen-
sitive to prompt formulation.

Broader concerns exist regarding metric validity.
Due to differences in validation methods, direct
comparisons between metrics are often unreliable
and reported correlations with human judgment
are inconsistent. Furthermore, we find problems
with human annotations themselves, which call into
question the validity of the correlations.

Our key insight is that metrics, at best, highlight
specific dimensions of text quality, since they are
still widely used, but they do not provide absolute
performance measures. The pursuit of a “perfect
metric” is thus misguided; instead, we advocate for
a task-specific approach, to avoid oversimplifying
text quality assessment, and for further investiga-
tions on which aspects of text quality are in fact
evaluated by each metric. Future research should
also seek to refine metric selection, improve vali-
dation methodologies, and establish best practices
to enhance reliability and alignment with human
preference.
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