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Abstract

The global proliferation of Generative Arti-
ficial Intelligence (GenAI) has led to the in-
creasing presence of AI-generated text across
a wide spectrum of topics, ranging from every-
day content to critical and specialized domains.
Often, individuals are unaware that the text
they interact with was produced by AI systems
rather than human authors, leading to instances
where AI-generated content is unintentionally
combined with human-written material. In re-
sponse to this growing concern, we propose a
novel approach as part of the Multi-Domain AI-
Generated Text Detection (M-DAIGT) shared
task, which aims to accurately identify AI-
generated content across multiple domains, par-
ticularly in news reporting and academic writ-
ing. Given the rapid evolution of large lan-
guage models (LLMs), distinguishing between
human-authored and AI-generated text has be-
come increasingly challenging. To address this,
our method employs fine-tuning strategies us-
ing transformer-based language models for bi-
nary text classification. We focus on two spe-
cific domains news and scholarly writing and
demonstrate that our approach, based on the
DeBERTa transformer model, achieves supe-
rior performance in identifying AI-generated
text. Our team CNLP-NITS-PP achieved 5th

position in Subtask 1 and 3rd position in Sub-
task 2.

1 Introduction

The rapid advancement and widespread adoption of
Large Language Models (LLMs) have contributed
to a significant increase in the generation of artifi-
cial content through Generative AI (GenAI). This
technology is now integrated into various facets
of everyday life. However, its pervasive use has
raised important concerns, particularly regarding
the authenticity of student work and the dissemina-
tion of misleading or fabricated information (Wang
et al., 2023). As LLMs become more sophisti-
cated, distinguishing between human-written and

AI-generated text has become increasingly chal-
lenging for end users. In response to these issues,
there is a pressing need for reliable detection meth-
ods. To address this, we introduce our work at
the Multi-Domain Detection of AI-Generated Text
(M-DAIGT) shared task, which aims to identify AI-
generated content across multiple domains, with a
focus on news articles and academic writing.

2 Related Work

This section discusses prior work about machine-
generated text detection methods, datasets, and
shared task.

2.1 Detection Methods

Approaches for detecting machine-generated texts
(MGTs) can generally be categorized into two
main types: training-free and training-based meth-
ods. Training-free techniques rely on the statisti-
cal properties of text to identify content produced
by AI systems (Solaiman et al., 2019; Gehrmann
et al., 2019). A range of features have been in-
vestigated in this context, including perplexity
scores (Vasilatos et al., 2023), perplexity curva-
ture (Mitchell et al., 2023), log-rank metrics (Su
et al., 2023), intrinsic dimensionality (Tulchinskii
et al., 2023), and N-gram frequency analysis (Yang
et al., 2023). One such method, Revise-Detect,
is based on the assumption that AI-generated text
undergoes fewer edits when processed by LLMs
compared to human-written text (Zhu et al., 2023).
Another method, Binoculars, introduced by (Hans
et al., 2024), utilizes two LLMs to compute the
ratio of perplexity to cross-perplexity, effectively
measuring how one model interprets the next-token
predictions of another.

In contrast, training-based detection approaches
typically involve fine-tuning pre-trained models
to perform binary classification of text as either
human- or machine-authored (Yu et al., 2023).
These models may also employ advanced strate-
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gies such as adversarial training (Hu et al., 2023)
or abstention-based decision making (Tian et al.,
2023). Additionally, (Verma et al., 2023) proposes
fine-tuning a linear classifier atop the learned fea-
ture representations extracted from language mod-
els.

2.2 Task

The Multi-Domain Detection of AI-Generated Text
(M-DAIGT) shared task (Lamsiyah et al., 2025)
focuses on identifying AI-generated content across
different domains, particularly news articles and
academic writing. With the rapid advancement
of LLMs, distinguishing human-written and AI-
generated text has become a critical challenge. This
task aims to contribute to research on information
integrity and academic honesty.

Subtask 1 News Article Detection: Binary clas-
sification of news articles as human-written or AI-
generated. Evaluation on both full articles and snip-
pets. Covers various genres: politics, technology,
sports, etc.

Subtask 2 Academic Writing Detection: Bi-
nary classification of academic texts as human-
written or AI-generated. Evaluation of student
coursework and research papers covers multiple
academic disciplines and writing styles.

2.3 Dataset Statistics

This task provides two datasets presenting one for
each subtask. Human-written content: Sourced
from verified news websites and academic papers
with proper permissions. AI-generated content:
Created using multiple LLMs (GPT-3.5, GPT-4,
Claude, etc.) with different prompting strategies
and generation settings.

Split Human AI-generated
Train 5,000 5,000
Dev 1,000 1,000
Test 1500 1500

Table 1: Dataset split by Human and AI-generated labels
for both the subtasks.

Both tasks, subtask 1 and subtask 2, there is
a balanced distribution of human-written and AI-
generated text.

3 Evaluation Metrics

In this study, we employed standard evaluation met-
rics to assess model performance, including Accu-

racy, Precision, Recall, F1-Score, and Matthews
Correlation Coefficient (MCC). Additionally, we
considered the fundamental classification compo-
nents True Positives (TP), False Positives (FP),
True Negatives (TN), and False Negatives (FN)
to provide a comprehensive analysis of the models
predictive capabilities.

4 System Description

The system architecture for fine-tuning DeBERTa
(Decoding-enhanced BERT with Disentangled At-
tention) with Linguistic Features for the Multi-
Domain Detection of AI-Generated Text (M-
DAIGT) task (Lamsiyah et al., 2025) consists of
several key components that work together to pro-
cess input text and classify it as human-written or
AI-generated.

4.1 System Architecture
We propose a hybrid architecture that integrates
both deep contextual language representations
and handcrafted linguistic features to detect AI-
generated text. The backbone of our model is
the Decoding-enhanced BERT with Disentangled
Attention DeBERTa-base transformer (He et al.,
2020), which has shown strong performance on
various natural language understanding tasks. To
incorporate external linguistic cues, we extracted
nine handcrafted features from the text, including
metrics such as Unique Word Count, Stop Word
Count, Type-Token Ratio, Hapax Legomenon Rate,
and Burstiness.

The architecture consists of three main compo-
nents:

• Transformer Backbone: We use the
pre-trained microsoft/deberta-base
model to encode the input text. Specifically,
we extract the hidden state corresponding to
the [CLS] token from the final layer to repre-
sent the sentence-level semantics.

• Feature Encoder: A linear layer is applied to
the handcrafted features to project them into
a 64-dimensional space, followed by a ReLU
activation.

• Fusion and Classification: The contextual
embedding corresponding to the [CLS] token
from DeBERTa-base (a 768-dimensional vec-
tor) is concatenated with the handcrafted fea-
ture representation. The feature vector, orig-
inally 9-dimensional, is first passed through
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Dataset Model ↓ Metrics → Accuracy Precision Recall F1-Score MCC

Subtask-1

FastDetectGPT (Falcon) 60.42 61.35 60.42 55.12 33.27
FastDetectGPT (GPT-Neo) 58.10 59.00 58.10 52.85 31.75
Binoculars 61.33 62.70 61.33 54.90 32.94
DeBERTa 89.75 89.78 89.75 89.75 79.53
ModernBERT 62.80 77.93 62.80 56.97 37.81
RoBERTa 86.00 87.60 86.00 85.85 73.58
DistilBERT 85.91 86.21 85.90 84.72 72.61

Subtask-2

FastDetectGPT (Falcon) 81.75 83.20 81.75 80.85 76.30
FastDetectGPT (GPT-Neo) 75.90 77.60 75.90 74.30 70.85
Binoculars 84.01 84.99 84.01 83.50 78.95
DeBERTa 100.00 100.00 100.00 100.00 100.00
ModernBERT 100.00 100.00 100.00 100.00 100.00
RoBERTa 100.00 100.00 100.00 100.00 100.00
DistilBERT 100.00 100.00 100.00 100.00 100.00

Table 2: Performance metrics of various models along with the zero-shot approaches on Subtask-1 and Subtask-2.

a fully connected layer that maps it to a 64-
dimensional vector using a ReLU activation.
This results in a combined vector of size
768+64=832. A dropout layer with a rate of
0.3 is applied to the concatenated vector to
reduce overfitting. Finally, the output is fed
into a fully connected classification layer that
maps the 832-dimensional input to 2 output
logits corresponding to the binary classifica-
tion task (human-written vs. AI-generated).

This design enables the model to benefit from
both the deep contextual understanding of language
offered by transformers and the interpretable, sta-
tistically motivated handcrafted features.

4.2 Training Method
Models are trained on Amazon Web Services (AWS)
Cloud server, Amazon Elastic Compute Cloud
(EC2) instance. In the EC2 instance, we initiated
an instance for Accelerated Computing. The speci-
fications are g6e.xlarge instance, which provides
3rd generation AMD EPYC processors (AMD
EPYC 7R13), with a NVIDIA L40S Tensor Core
GPU with 48 GB GPU memory, and 4x vCPU
with 32 GiB memory and a network bandwidth
of 20GBps, and our OS type is Ubuntu Server
24.04 LTS (HVM), EBS General Purpose (SSD)
Volume Type.

Models are trained on a CUDA-enabled GPU,
and for all the models the hyperparameter settings
are as follows: the batch-size is 32, the maximum
sequence length is 512, AdamW optimizer with
a learning rate of 1e-5 and weight decay of 0.01,
Cross-entropy loss, ReduceLROnPlateau re-
duces the learning rate by a factor of 0.1 if valida-
tion loss plateaus for 1 epoch, up to 3 epochs with

early stopping, with a loss as the main metric.

5 Results

For subtask 1 and Task-2, as shown in Table 2, the
performance of various transformer-based models,
evaluated using standard metrics: Accuracy, Preci-
sion, Recall, F1-Score, and Matthews Correlation
Coefficient (MCC). For experimental purposes, we
have used open-source zero-shot AI detectors like
FastDetectGPT (Bao et al., 2023) and Binoculras
(Hans et al., 2024) and four HuggingFace base
models: DeBERTa (He et al., 2020), ModernBERT
(Warner et al., 2024), RoBERTa (Liu, 2019), and
DistilBERT (Sanh et al., 2019).

For Subtask-1, which involved distinguishing
between AI-generated and human-written text, De-
BERTa achieved the highest performance among
all models, with a test accuracy of 89.75%, pre-
cision of 89.78%, recall of 89.75%, F1-score of
89.75%, and an MCC of 79.53% and the cor-
responding confusion matrix for the DeBERTa
model can be seen in the Fig 1. This demonstrates
DeBERTa’s strong ability to generalize in binary
classification tasks with nuanced language distinc-
tions. RoBERTa and DistilBERT followed closely,
achieving F1-scores of 85.85% and 84.72%, re-
spectively, and MCC scores above 70%, indicating
stable and reliable predictions.

In contrast, all models achieved perfect scores
across all metrics in Subtask-2, indicating that this
task was comparatively easier or more separable.
The models reached 100% on accuracy, precision,
recall, F1-score, and MCC. This suggests that the
task structure, data distribution, or underlying lin-
guistic features in Subtask-2 allowed the models to
learn and generalize with very high confidence.
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For both subtask datasets, after checking the
classification with zero-shot methods, their per-
formance is not above the mark, as we can see in
Table 2. Here, the variations of FastDetectGPT
are the scores models, and those scorer models are
Falcon and GPT-Neo, and Binoculars is based on
the perplexity values of the sentence.

These results highlight the robustness of De-
BERTa in handling nuanced AI vs. human text
classification and also underscore the importance
of selecting appropriate architectures and feature
representations based on task difficulty and data
characteristics.

Figure 1: Confusion matrix of DeBERTa model with
proposed approach on Subtask 1.

5.1 Error Analysis
The DeBERTa-base model demonstrated robust
performance, achieving an accuracy of 89.75%,
precision of 89.78%, recall of 89.75%, F1-score
of 89.75%, and a MCC of 79.53 in the subtask-1.
Despite these strong results, we identify the follow-
ing key error patterns and limitations:

• Contextual Ambiguities:

– Errors persist in cases involving com-
plex syntax like nested negations, long-
range dependencies or figurative lan-
guage like sarcasm, where DeBERTa’s
disentangled attention may not fully re-
solve ambiguity.

• Tokenization Challenges:

– Subword tokenization struggles with
rare terms or noisy inputs (e.g., social
media typos), leading to suboptimal rep-
resentations for domain-specific jargon.

• MCC Interpretation:

– The MCC score of 79.53 reflects strong
classification, but its divergence from F1
suggests residual bias in edge cases, pos-
sibly due to class skew.

Mitigation Strategies: To address the limitations
like the misclassification, ambiguity, etc, we rec-
ommend a few techniques that we expect to do
as future work, that are: 1) Data Augmentation,
2) Fine-tuning on error cases to reduce systematic
misclassifications.
This analysis highlights DeBERTa’s strengths
while pinpointing avenues for improvement, partic-
ularly in handling nuanced linguistic constructs.

6 Conclusion

In this paper, we presented our approach for the
Multi-Domain Detection of AI-Generated Text (M-
DAIGT) 2025 shared task, which focuses on iden-
tifying AI-generated content across diverse do-
mains, including news articles and academic writ-
ing. We proposed a comparative evaluation of mul-
tiple transformer-based language models like De-
BERTa, RoBERTa, DistilBERT, and ModernBERT
on two subtasks aimed at detecting synthetic text.
Our experiments demonstrated that DeBERTa and
DistilBERT consistently achieved strong perfor-
mance, with DeBERTa yielding the highest overall
metrics by our team CNLP-NITS-PP with a value
of 89.75% recall standing in the Top-5 among the
participants on Subtask-1, and all models attaining
perfect scores and standing on Top-3 on Subtask-2
and also outperforming all the zero-shot training
free methods with a significant differences of eval-
uation metrics.
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