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Abstract
Effectively organizing the vast and ever-
growing body of research in scientific literature
is crucial to advancing the field and supporting
scholarly discovery. In this paper, we study
the task of fine-grained hierarchical multi-label
classification of scholarly articles, using a struc-
tured taxonomy. Specifically, we investigate
whether incorporating hierarchical information
in a classification method can improve perfor-
mance compared to conventional flat classifi-
cation approaches. To this end, we suggest
and evaluate different strategies for the clas-
sification, on three different axes: selection
of positive and negative samples; soft-to-hard
label mapping; hierarchical post-processing
policies that utilize taxonomy-related require-
ments to update the final labeling. Experiments
demonstrate that flat baselines constitute pow-
erful baselines, but the infusion of hierarchical
knowledge leads to better recall-focused per-
formance based on use-case requirements.

1 Introduction

The exponential growth of scientific publications
has created an urgent need for efficient indexing
and organization of academic content. With vast
and continuously expanding digital libraries, au-
tomatic categorization of scientific articles has be-
come essential to facilitate effective search, dis-
covery, and, ultimately, the acceleration of scien-
tific research (Kim and Gil, 2019). This need is
particularly acute in specialized domains, where
researchers must navigate an increasingly dense
body of literature.

In this work, we focus on the task of fine-grained,
hierarchical multi-label classification of scholarly
articles, experimenting on the field of Computa-
tional Linguistics. In Figure 1, we overview the
hierarchical multi-label classification task. Given
a document d ∈ D where D is the set of all pos-
sible documents, and a set of labels L = l1, l2, ...

ClassifierLabels Hierarchy D

Figure 1: An overview of the hierarchical, multi-label
classification task.

that have a hierarchical parent-child relation P :
L×L→ {0, 1}, where P (x, y) = 1, x ∈ L, y ∈ L
indicates that x is a parent of y, the task is to
find a function C : D → S(L) where S(·) is the
power-set operator, such that given a set of cor-
rect (but possibly a priori unknown) annotations
G : D → S(L), C(x) = G(x),∀x ∈ D.

Our classification experimental setup uses a pre-
defined taxonomy comprising a multitude of topics
and subtopics (181 in total) (Ahmad et al., 2024a),
offering a detailed and structured representation of
research areas (see also Section 4). This setting
poses unique challenges, elaborated on in Section
3, due to idiosyncrasies related to the assignment
of a varying number of labels from each level of
the hierarchy to a single document.

Historically, the scientific community has ap-
proached hierarchical classification using two
broad strategies: flat classification (Barbedo and
Lopes, 2006; Sun et al., 2003), where the hierarchi-
cal structure is ignored and each label is treated in-
dependently, or hierarchical classification (Zangari
et al., 2024), where models exploit the parent-child
relationships among labels to guide predictions. Al-
though flat approaches simplify the problem and of-
ten yield strong baselines, they discard potentially
valuable structural information. In contrast, hier-
archical approaches preserve these relationships,
offering a more semantically coherent labeling, but
they are often sensitive to errors made at higher lev-
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els of the hierarchy, as such mistakes can propagate
downward and lead to incorrect final predictions.

This paper presents a systematic study compar-
ing flat and hierarchical (cascade-based) classifica-
tion approaches in the context of scholarly docu-
ment classification. Thus, we investigate whether
exploiting hierarchical information leads to perfor-
mance gains over flat baselines. Specifically, our
contributions focus on three main axes:

Hierarchical Sampling We evaluate methods
that enforce the hierarchical structure of the taxon-
omy by employing node-specific classifiers with
hierarchy-aware negative sampling to respect the
hierarchy during training.

Soft-to-Hard Label Mapping We explore
heuristics to determine the optimal number of la-
bels per document, based on taxonomy structure
and empirical distribution. These heuristics include
traditional threshold-based methods, fixed-number
(top-k) strategies, and more recent LLM-based ap-
proaches that utilize generative models to infer the
most contextually appropriate set of labels.

Hierarchy-enforcing Post-processing Policy
We examine different approaches that ensure hier-
archical consistency by altering predicted labels
according to hierarchical constraints (assigning par-
ent labels of predicted child nodes or removing
child labels if their parents are not predicted).

To support our findings, we conduct statisti-
cal analyses that assess the significance of perfor-
mance differences across multiple metrics. Our
experiments reveal insights into the trade-offs be-
tween flat and hierarchical approaches and offer
practical guidelines for choosing an appropriate
strategy depending on the task constraints.

2 Related Work

The task of hierarchical multi-label text classifica-
tion has seen significant progress through various
approaches, each tackling challenges related to
large-scale classification, label dependencies, and
hierarchical structures.

In the work of Ahmad et al. (2024b), the authors
introduce a hierarchical multi-label classification
task in the field of computational linguistics. In
this task, the authors offer a granular categoriza-
tion approach based on the taxonomy provided in
Ahmad et al. (2024a). The latter also offers a cor-
pus of scholarly articles annotated with topics and
subtopics drawn from a structured hierarchy of key
NLP areas.

Several approaches have been proposed to
handle multi-label text classification. Rajen-
dram Bashyam and Krestel (2024) address hier-
archical multi-label classification as extreme multi-
label (XMC) flat classification problem, using an
X-transformer designed for XMC (Zhang et al.,
2021) and TF-IDF-based weak labeling, imposing
hierarchy only post-prediction. Liu et al. (2017)
introduce XML-CNN, a deep learning model de-
signed for XMC. It enhances document represen-
tation using dynamic max pooling, binary cross-
entropy loss, and a bottleneck layer to reduce
model size. Another work (Hristov et al., 2021)
also tackles clinical text classification as an ex-
treme multi-label classification problem, using
clustering and cluster-label mapping. S-GCN
(Zeng et al., 2024) models multi-label text clas-
sification using a global graph based on words,
texts, and labels co-occurrence, combining seman-
tic encoding with graph convolution.

In hierarchical classification, Huang et al. (2019)
propose a model that classifies documents at multi-
ple levels by integrating text and hierarchy using
a Hierarchical Attention-based Recurrent Layer.
Similarly, Xu et al. (2021) employ a graph convo-
lutional network (GCN) to learn associations be-
tween words, categories, and their relationships, in-
corporating correlations between levels. Tanigaki
et al. (2024) introduce an integrated neural network
with cascading self-attention mechanisms, where
multi-head attention reconstructs text features at
each level while a secondary network enforces
inter-level dependencies. TELEClass (Zhang et al.,
2025) tackles hierarchical text classification with
minimal supervision by enriching the label taxon-
omy with the use of LLMs. Kosmpoulos et al.
(2014) extend cascade classification for predicting
the correct leaf of hierarchical structures by esti-
mating the probability of each root-to-leaf path.

Although these works have made significant
strides, they share common limitations. Flat classi-
fication methods often ignore the hierarchical rela-
tionships between labels, while cascade methods
are prone to early misclassification. Additionally,
many approaches assume a fixed number of labels
per level, which does not capture the variability
of label counts that can occur at different levels
of the hierarchy. Our work aims to shed light on
how to address these issues by exploring the effec-
tiveness of hierarchical versus flat approaches in
overcoming these challenges.
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Figure 2: Diagram of the hierarchical multi-label classification process. The figure illustrates the stages of document
representation, node-specific classifiers ci training, soft-to-hard label mapping, hierarchy-enforcing post-processing,
and generation of final output.

3 Methodology

In this section, we describe different methods to ap-
proach hierarchical multi-label text classification.
However, unlike typical hierarchical classification
(Sun and Lim, 2001), this task (a) allows the assign-
ment of multiple labels per document; (b) labels
can appear at any level of the hierarchy; (c) incom-
plete paths are allowed, i.e. there is no requirement
for labeled documents to have leaf-only labels.

To address these challenges and effectively cap-
ture the nuanced structure of scientific discourse
while respecting hierarchical label dependencies,
our hierarchical approach combines pretrained
document embeddings, node-specific classifiers
trained using hierarchical sampling, label decod-
ing strategies (soft-to-hard label mapping) and
hierarchy-enforcing policies (see Figure 2) and is
compared against its flat counterpart.

3.1 Document Representation

To obtain semantically rich document embeddings,
we utilize SPECTER2-base (Singh et al., 2023), a
pretrained transformer model designed for scien-
tific documents. For each document, we concate-
nate the title, abstract, and selected metadata fields
(author, year, venue, publisher and booktitle) as in-
put to enhance representation. The input is prepro-
cessed using the SPECTER2 tokenizer, with trun-
cation and padding applied to ensure fixed-length.
The resulting representation is derived from the
model output layer, which captures a high-level
summary of the document semantics.

3.2 Cascade Classification with Hierarchical
Sampling and Flat Counterpart

Rather than training one multi-output flat classi-
fier which ignores any hierarchical relationships

between labels, we split the problem into multiple
binary classification tasks, following a cascading
approach inspired by Kosmpoulos et al. (2014),
adapted for multi-label classification and multi-
level label prediction, i.e. including internal nodes
within a hierarchical label tree. For each category
node ci in the hierarchy, we train a dedicated logis-
tic regression (LR) classifier to predict whether a
document belongs to that category. All classifiers
are trained independently. We choose LR due to its
efficiency and ease of probabilistic interpretation.

A central challenge is to ensure that classifiers
can distinguish semantically similar categories
rather than simply separating positive examples
from all negatives. To address this, we apply a
hierarchy-aware sampling approach per classifier:
Positive samples Documents explicitly labeled
with that node are selected as positives.
Negative samples Improve training effectiveness
and respect the hierarchical structure as:
(a) Sibling nodes: documents labeled with sibling
categories, that is, categories that share the same
parent as the target node.
(b) Parent-exclusive samples: documents labeled
with the parent category but not with the current
node or any of its siblings.
(c) In cases where a node has no siblings, siblings
of the parent node are used to maintain informa-
tive negative sampling, that is, documents associ-
ated with the siblings of its parent node.

The idea behind this design is to encourage the
classifiers to focus on subtle inter-category distinc-
tions, thereby enhancing their ability to capture
fine-grained differences between closely related
topics. By assigning to each classifier the task of
distinguishing among a smaller set of categories,
the approach also reduces computational resources
required and overall classification complexity.
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Algorithm 1: Training Hierarchical Multi-
Label Classifiers
Input: Set of documents D = {d1, ..., dN},

Pretrained model M (SPECTER2),
Hierarchical taxonomy H , Logistic
Regression LR classifier

Output: Trained classifiers
C = {c1, ..., cn} for each node n
in H

for each node n in H do
S
(n)
pos ← {d | d ∈ n}

S
(n)
sib ← {d | d ∈ siblings(n) , d /∈ n}

S
(n)
par ← {d | d ∈ parent(n) , d /∈ n}

S
(n)
neg ← S

(n)
sib ∪ S

(n)
par

if S(n)
neg = ∅ then
S
(n)
neg ← {d | d ∈
siblings(parent(n)) , d /∈ n}

for d in S
(n)
pos ∪ S

(n)
neg do

Xd ←M(d)

yd ← 1 if d ∈ S
(n)
pos, 0 if d ∈ S

(n)
neg

end
cn = LR(X, y)

end

For the flat counterpart, we follow the same over-
all training strategy but omit the hierarchy-aware
negative sampling, instead using the standard ap-
proach in which all samples not belonging to the
target label serve as negatives for each classifier.

3.3 Soft-to-Hard Label Mapping
Each node classifier outputs a soft score in the
range [0, 1], indicating the model confidence that a
document belongs to the corresponding category.
To convert these scores into final hard label predic-
tions, we propose three decoding strategies:

• Threshold strategy: A fixed confidence
threshold θ ∈ [0, 1] is applied. Labels with
scores above θ are selected.

• Label number strategy: A predefined num-
ber k of top-scoring labels is assigned per
document.

• LLM strategy: A large language model
ranks labels, optionally using predictions
from the above strategies as priors.

We further discuss the selection of appropriate pa-
rameters in Section 4.

3.4 Hierarchy-enforcing Post-processing
Policy

All strategies can include an additional hierarchy-
enforcing step (hereafter referred to as parent pol-
icy) to guarantee valid hierarchical paths and ad-
here to the logical structure of topical taxonomies:

No-parents policy No post-processing is applied
and predicted labels are left intact.

With-parents policy For a predicted label at any
level, its ancestors are recursively included in
the final label set (if not already present) to
satisfy hierarchy constraints.

Strict policy A stricter approach keeps predicted
labels only if all their parent labels are also
predicted. This ensures more infusion of hi-
erarchical structure but potentially introduces
early misclassification errors.

Moderate policy A more moderate approach
keeps labels if at least one of their parent la-
bels are predicted, trying to balance flexibility
and structural consistency.

4 Experiments

We evaluate our hierarchical multi-label classifica-
tion approach on a corpus of approximately 42,000
scholarly articles from the ACL Anthology (Ah-
mad et al., 2024a; Rajendram Bashyam and Krestel,
2024) including title, abstract and various meta-
data such as authors, time of publication, publisher,
book, venue. More specifically, our classifiers
are trained on a joint set of 1,050 fully labeled
documents from the collection and 41,107 weakly
labeled documents, while 255 documents are re-
served for additional testing. The classification
task involves assigning each document to one or
more relevant topics from a tree-structured tax-
onomy of 181 categories, organized across three
levels. The train-test split of the dataset follows
previous related work (Ahmad et al., 2024a; Rajen-
dram Bashyam and Krestel, 2024) to offer compa-
rable results.

We conduct experiments using 10-fold cross-
validation (Sechidis et al., 2011) over the training
data subset, with iterative stratification to ensure
robust and representative evaluation under label
imbalance and sparsity. This method extends tra-
ditional stratified sampling to multi-label data by
ensuring that the distribution of labels is preserved
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(a) Micro-F1 Scores (b) Macro-F1 Scores (c) Weighted-F1 Scores

Figure 3: F1 scores of hierarchical approach with threshold strategy for varying θ values between 0.5 and 0.95
applying no-parent policy analyzed using Tukey’s HSD test for (a) micro-, (b) macro-, (c) weighted-F1

across folds, improving the fairness and consis-
tency of training and evaluation splits. Model per-
formance is also evaluated on a fixed test set of
255 scholarly documents, to demonstrate gener-
alizability. For each node in the taxonomy, we
train a binary classifier using LR (with the default
parameters and a maximum of 1,000 iterations).
Our training logic incorporates hierarchy-aware
negatives, as detailed in Algorithm 1.

This experimental setup aims to answer the fol-
lowing research questions:

RQ1: Which proposed methods or parameter
settings outperform the baselines and alternatives?

RQ2: How robust is each method with respect
to its hyper-parameters?

RQ3: Can we pre-determine suitable hyper-
parameters or develop heuristics to guide their se-
lection?

RQ4: How can one encode hierarchical infor-
mation in the learning process? Can this encoding
improve the classification performance?

RQ5: How does the choice of hierarchical sam-
pling impact model performance?

RQ6: What is the impact of different document
representations on classification performance?

4.1 Baselines and Comparison
To benchmark the hierarchical approach, we com-
pare against the following baselines:

• A SciNCL (Ostendorff et al., 2022) model
fine-tuned on the flattened labels of the 1,050
labeled documents, which ignores the hierar-
chy, as provided by (Ahmad et al., 2024b).

• A dummy classifier, which selects labels ran-
domly but preserving label frequency patterns.
This serves as a weak lower-bound baseline.

• A flat approach employing a one-vs-all strat-
egy, where a separate classifier is trained for

each label using the same training dataset as
the hierarchical model as described in Section
3.2.

These comparisons help establish the hierarchy-
aware design performance relative to the other ap-
proaches (RQ1 - best method), thus evaluating how
encoding hierarchical information affects classifi-
cation performance (RQ4 - hierarchy infusion).

4.2 Label Selection Strategies
We explore the effect and performance of the three
approaches described in Section 3.3 to convert clas-
sifier outputs into hard label predictions:

• Threshold strategy: Initially, we set the thresh-
old θ = 0.6 based on preliminary tests shown
in Figure 3 without applying any parent policy
and select all predicted labels with probabil-
ities above θ. We later confirm this value as
optimal through exhaustive search.

• Label number strategy: We analyze the label
count distribution in the training set and set
the number of labels k per document to 5,
corresponding to both the mean and median
of the distribution. This selection is further
validated through an exhaustive search.

• LLM strategy: We use LLaMA 3.1 to validate
label predictions based on content.

All strategies are tested across the different par-
ent policies (RQ4 - hierarchy infusion). We vary
our hyper-parameters, measuring impact on per-
formance to assess sensitivity and validate RQ2
(hyper-parameters robustness).

Additionally, we conduct an oracle experiment
on the validation: we assume knowledge of the true
label count per sample and select the top-k predic-
tions accordingly. This informs the feasibility of
learning a meta-classifier to estimate label count
per document (RQ3 - hyper-parameters heuristics).
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Method Micro Macro Weighted
Prec Rec F1 Prec Rec F1 Prec Rec F1

Dummy 0.074 0.293 0.118 0.037 0.147 0.048 0.162 0.293 0.186
Flat SciNCL 0.356 0.328 0.341 0.016 0.046 0.024 – – –
Flat LR 0.803 0.601 0.687 0.625 0.392 0.467 0.790 0.601 0.673

Label (k = 11 & no-parents) 0.370 0.604 0.459 0.386 0.456 0.349 0.648 0.604 0.584
Label (k = 7 & with-parents) 0.302 0.552 0.391 0.352 0.383 0.297 0.509 0.552 0.479
Label (k = 20 & strict) 0.668 0.679 0.673 0.521 0.413 0.446 0.665 0.679 0.664
Label (k = 20 & moderate) 0.441 0.296 0.354 0.339 0.311 0.291 0.261 0.296 0.263
Threshold (θ = 0.6 & no-parents) 0.368 0.628 0.464 0.375 0.473 0.350 0.647 0.628 0.595
Threshold (θ = 0.8 & with-parents) 0.309 0.549 0.396 0.346 0.387 0.298 0.520 0.549 0.485
Threshold (θ = 0.5 & strict) 0.784 0.588 0.672 0.560 0.348 0.420 0.767 0.588 0.653
Threshold (θ = 0.5 & moderate) 0.582 0.249 0.349 0.400 0.261 0.279 0.315 0.249 0.261
LLM (Label k = 20 & with-parents) 0.606 0.520 0.560 0.468 0.381 0.393 0.646 0.520 0.552
Oracle Top-k (no-parents) 0.502 0.502 0.502 0.485 0.381 0.363 0.765 0.502 0.570
No strategy (no-parents) 0.327 0.686 0.443 0.343 0.518 0.345 0.602 0.686 0.598

Table 1: Evaluation of baseline and hierarchical methods, using micro, macro, and weighted precision, recall, and
F1 score across 10-fold cross-validation. Best results per column are in bold, while second-best are underlined.

4.3 Ablation Studies

We perform analyses to identify factors influenc-
ing model performance. We examine the impact of
negative sampling within our hierarchical frame-
work and assess how the inclusion of metadata
in document representation affects classification
accuracy. These studies address RQ5 (negative
sampling) and RQ6 (document representation) and
provide insights to refine our approach and enhance
model effectiveness (see Sections 5.3, 5.4).

4.4 Statistical Analysis and Evaluation

We assess model performance using the fol-
lowing metrics (Yang, 1999): (a) micro pre-
cision/recall/F1, which measure global perfor-
mance, favoring frequent classes; (b) macro pre-
cision/recall/F1, which give equal weight to all
classes, highlighting rare-category performance;
(c) weighted precision/recall/F1, which weight the
contribution of each label by its support.

For each configuration, results are aggregated
over the cross-validation folds. To determine the
statistical significance of differences between meth-
ods and parameter choices (RQ1 - best method), we
perform Tukey’s HSD test and report letter group-
ings to identify significantly different clusters.

Together, these experiments allow us to system-
atically address our research questions by compar-
ing classifiers and selection strategies (RQ1 - best
method), evaluating sensitivity to key parameters
(RQ2 - hyper-parameters robustness), exploring
document-specific heuristics for label prediction
(RQ3 - hyper-parameters heuristics), and assessing
the role of hierarchical information (RQ4 - hierar-

Method micro-F1 macro-F1 weighted-F1

Label(NS) 0.673 0.446 0.664
Threshold(NS) 0.672 0.420 0.653

Label(RS) 0.590 0.422 0.560
Threshold(RS) 0.673 0.420 0.652

Table 2: Comparison of best-performing label selection
strategies (strict k = 20, θ = 0.5) with hierarchy-aware
negative sampling (NS) against hierarchy-aware nega-
tive sampling enhanced with random sampling (RS).

chy infusion), hierarchical sampling (RQ5 - nega-
tive sampling) and metadata enriched input (RQ6 -
document presentation) in improving performance.

5 Results

We present the performance of our hierarchical
classification models using different label selec-
tion strategies and parent policies and compare
them against flat and dummy baselines. Results
are reported as average scores across 10-fold cross-
validation in all tables, except Table 4, using micro,
macro, and weighted precision, recall, and F1. All
tables report statistically significant differences,
validated using Tukey’s HSD test (with α = 0.05).

5.1 Overall Performance

Table 1 shows that the hierarchical method outper-
forms the flat SciNCL and dummy classifier across
all metrics, but does not surpass the flat LR one-
vs-all method in terms of precision and F1 scores.
This provides an answer to RQ1 (best method),
indicating that incorporating node-level classifiers
does not always yield a performance advantage.
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5.2 Strategies & Hyper-parameters

To explore RQ2 (hyper-parameters robustness), we
varied hyper-parameters and observed that perfor-
mance varied accordingly. Specifically, we per-
formed an exhaustive search over different label
counts (1-25) and threshold values (0.5-0.95) to
identify the optimal values per strategy and policy.

The analysis on the label count showed that per-
formance improved with an increasing number of
labels, up to an optimal point beyond which gains
began to diminish. This finding contradicts the
initial belief that optimal performance would align
with the mean or median of the label count distri-
bution. Furthermore, variations in threshold values
affected performance, with lower thresholds gen-
erally resulting in improved results. This outcome
is expected, as higher confidence thresholds re-
duce the number of predicted labels, consequently
leading to similar overall performance between the
two strategies. This suggests that the method is
sensitive to these hyper-parameters, with optimal
performance achieved under specific conditions.

Based on this hyper-parameter tuning, we re-
port the results for the best parameter values and
policies in Table 1. The label number strategy
with k = 20 and strict parents performed best
overall. The threshold strategy with θ = 0.5 and
strict parents had slightly lower recall but higher
precision, which can be advantageous in applica-
tions where minimizing false positives is critical.
The LLM-based label selection strategy showed
modest improvements for models with suboptimal
hyper-parameter settings, but it significantly lagged
behind the top-performing strategies. The setting
without any strategy and parent policy improved
recall but suffered from over-selection, leading to
moderate F1. Across different strategies, enforc-
ing parent policies most of the time boosted micro,
macro and weighted F1 scores by at least 6% (up
to 28%), 1% (up to 12%) and 6% (up to 9%), re-
spectively, compared to their counterparts with no-
parent policy, confirming the importance of struc-
tural consistency (RQ4 - hierarchy infusion).

To address RQ3 (hyper-parameters heuristics),
we implemented an oracle strategy during valida-
tion that uses the true number of labels per doc-
ument to select the top-k predictions. This ap-
proach achieved 36.31% macro-F1 which is over
8% lower than the best-performing hierarchical
method. These results suggest that a meta-classifier
for estimating label cardinality alone is not suffi-

Method micro-F1 macro-F1 weighted-F1

Flat simple 0.670 0.456 0.656
Flat enriched 0.687 0.467 0.673

Label simple 0.425 0.311 0.499
Label enriched 0.464 0.334 0.538

Table 3: F1 scores of flat and hierarchical (with k = 7
labels and no-parents policy) approaches using only
title and abstract inputs, compared to metadata-enriched
inputs, obtained through 10-fold cross-validation.

cient, and that label ranking combined with hi-
erarchical structure infusion through parent poli-
cies plays a more critical role in achieving high
performance. A heuristic based on the standard
threshold of 0.5, performs competitively with our
best hierarchical approach, supporting the idea that
simple statistics can inform effective parameter
choices when combined with hierarchical informa-
tion. However, directly setting a predefined num-
ber of labels, which yields the best results within
our hierarchical framework, can work best in com-
bination with the parent policy that dynamically
reduces the number of predicted values (i.e., by
removing orphan child label predictions). As a
result, the final label count per document varies,
even though the initial number was fixed.

5.3 Hierarchical Sampling Study
Motivated by the relatively high recall that comes
at the expense of precision, along with the gener-
ally increased number of positive predictions (both
true and false), we conducted an additional study
on the negative sampling strategy. In our hierarchi-
cal sampling approach, the lower levels of the hi-
erarchy include fewer negative samples, which re-
sults in a distribution shift between the constructed
training data and the original dataset.

To evaluate whether this imbalance affects
model performance, we doubled the number of
negative samples per classifier by randomly adding
half of the samples from the full negative space.
This adjustment was intended to test whether the
initial assumption that the hierarchical structure
would help the model better differentiate between
similar documents holds true, or whether it instead
introduces confusion, suggesting that the model
might benefit more from increased exposure to di-
verse negative examples. The results of this study
shown in Table 2, indicate that the best-performing
strategies do not benefit from enhanced negative
sampling, suggesting that the hierarchical frame-
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Method micro-F1 CLD macro-F1 CLD weighted-F1 CLD

Flat 0.669 A 0.374 A 0.676 A
Label (k = 20 with strict policy) 0.637 C 0.366 A 0.658 B
Threshold (θ = 0.5 with strict policy) 0.657 B 0.349 B 0.661 B

Table 4: Comparison of the top-3 models on the test set in terms of micro, macro, and weighted F1 scores. Tukey’s
HSD significance test results: models sharing the same group letter are not significantly different at α = 0.05. The
CLD column (Compact Letter Display) shows the group letters assigned to each model.

work provides sufficient discriminative context.

5.4 Document Representation Study

To investigate the impact of input document rep-
resentation on classification performance, we con-
ducted a focused study comparing two alternative
representations. Specifically, we aimed to assess
whether including metadata fields enhances perfor-
mance or whether a simpler representation suffices.
To ensure a fair comparison, we kept all other com-
ponents such as algorithm, label strategy, parent
policy, and hyper-parameter values, constant, and
varied only the document input.

The main representation used throughout this pa-
per combines the title, abstract, and key metadata
fields: author, year, venue, publisher, and booktitle.
For comparison, we created a simplified version
consisting of only the title and abstract concate-
nated. The results, presented in Table 3, clearly
show that the metadata-enriched representation out-
performs the simpler alternative on both flat and
hierarchical approaches, confirming the value of
incorporating contextual metadata in improving
classification performance.

5.5 Statistical Significance

We applied Tukey’s HSD post-hoc test to all con-
figurations. Results in Table 4 are based on the
255 documents held out as the test set from the
used corpus (Ahmad et al., 2024a). They indicate
that the flat model forms a statistically superior
group compared to the top-performing hierarchical
models in terms of micro and weighted F1 scores.
However, for macro F1, flat model belongs to the
same significance group as the hierarchical with
label count k = 20 and strict-parents policy.

6 Conclusion

In this work, we investigated the task of fine-
grained hierarchical multi-label classification of
scholarly articles, using a predefined taxonomy.
We conducted a systematic comparison between

flat classification methods and hierarchy-aware ap-
proaches, including cascade models with hierarchy-
aware negative sampling and parent-enforcing post-
processing. To this end, we utilized an existing cor-
pus from NLP scholarly articles (ACL collection).

Our results demonstrate that the hierarchical ap-
proach outperforms the flat baseline in terms of
recall but falls behind in precision and overall F1
score. While explicitly modeling the hierarchy
adds complexity, enforcing hierarchy through the
proposed parent policies generally improves perfor-
mance compared to ignoring hierarchical structure.

Statistical analyses confirm that the observed dif-
ferences are significant across most metrics, show-
ing that hierarchy-aware strategies can help reduce
false negatives. However, on the final test set, the
hierarchical and flat approaches do not differ sig-
nificantly in macro F1, suggesting that the hierar-
chical approach remains competitive when aiming
for balanced performance.

Our study also demonstrated that the selection of
a policy for the infusion of hierarchical information
into classification significantly affects the result.
Although the results we achieved with the most
promising infusion policy were not sufficiently bet-
ter from the flat approach, we argue that it is impor-
tant to examine other approaches for this infusion.

Thus, as a future direction, more effective ways
to represent and integrate hierarchical information
should be explored. Motivated by the observed
boost from metadata-enriched representations, in-
corporating knowledge-informed features may en-
hance the ability of the model to leverage hierarchy
without relying solely on rigid label dependencies.
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