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Abstract

The search for formal causal relations in natural
language faces inherent limitations due to the
lack of mathematically and logically informed
datasets. Thus, the exploration of causal re-
lations in natural language leads to the analy-
sis of formal-logic-adjacent language patterns.
Thanks to the recent advancements of gener-
ative LLMs, this research niche is expanding
within the field of natural language processing
and evaluation. In this work, we conduct an
evaluation of 9 models produced by different
AI developing companies in order to answer
the question “Are LLMs capable of discerning
between different types of causal relations?”.
The SciExpl dataset is chosen as a natural lan-
guage corpus, and we develop three different
prompt types aligned with zero-shot, few-shot,
and chain-of-thought standards to evaluate the
performance of the LLMs. Claude 3.7 Sonnet
and Gemini 2.5 Flash Preview emerge as the
best models for the task, with the respective
highest F1 scores of 0.842 (few-shot prompt-
ing) and 0.846 (chain-of-thought prompting).

1 Introduction

Causality is a subject deeply related to human
perception and nature, and for such reason it is
inevitably tied to human bias and variable logi-
cal framework (Matute et al., 2015; Henne et al.,
2021). The difficulty of the defining task of causal-
ity extractions comes from the difficulty in formal-
ising causality itself. Such an endeavour persists
in the scientific community within various fields,
from social sciences to computer science, from
psychology to mathematics. Important frames of
reference have been given in works such as Pearl
(2009) and Icard et al. (2017), which elaborate on
the nature of causal relations and their underlying
framework. Numerous works have investigated
the mechanisms underlying logical frameworks of
causality in various communicative contexts, with

examples such as Henne et al. (2021) and Matute
et al. (2015), and from text in natural language
(Yang et al., 2022). Some contributions derive from
the pioneering work of Lewis (1986) and further
the examination of critical aspects of causality and
cause-and-effect relationships specifically tied to
natural language explanations; other contributions
have focused on the interaction between causality
and explainability, such as Jacovi et al. (2021) and
Halpern and Pearl (2005). In recent years, the in-
teractions between natural language and machine
learning models have irreversibly changed with the
advent of LLMs and generative models, such as
the GPT, Llama, and Mistral lines of generative
architectures. The paradigm has shifted to accom-
modate their existence, and research has begun to
investigate the properties of LLMs and test their
abilities (Ziyu et al., 2023), including their use for
causal extraction within shorter and longer texts
(Wang et al., 2024; Chatwal et al., 2025).

Our main research question is thus formulated:
When dealing with short, real-life examples, are
LLMs capable of discerning between different types
of causal bond within different topic domains?

The paper moves forward from this research
question by outlining relevant literature and eval-
uating properties of large language models, as re-
ported in Section 2. Then, we present the choice
of models produced by different AI leading com-
panies in Section 3, along with the chosen SciExpl
dataset of explanatory single-sentences (Magnifico
and Barbu, 2025) in order to conduct the analysis.
This is followed by a detailed analysis of the pa-
rameters selected as a standard for model calls in
Section 4, with the details regarding prompt de-
velopment and instructions being presented in the
same section. Sections 5 and 6 close the paper with
the results of the evaluation, an analysis of said
results, and a summary of the work that has been
done, including the limitations and weaknesses.
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The code for the entire evaluation pipeline has
been rewritten in ipynb notebook form, and it is
made available to the community through a dedi-
cated repository 1 along with model outputs (both
raw and cleaned).

2 Related Work

As research in causal inference has attempted to for-
malise the relationship between events and causes
in the real world, the naturally occurring bias and
lack of unified interpretations make it an especially
difficult task (Pearl, 2009; Matute et al., 2015;
Henne et al., 2021). Multiple formal models and
datasets that make use of the markers of logical rela-
tions between elements in natural language already
exist; some datasets present knowledge pairs with
out-of-context information used to test common-
sense reasoning (Rein et al., 2024), others make use
of underlying causal graphs derived from natural
language (Romanou et al., 2023). Others yet focus
on in-domain analysis of question-answering and
context-driven causation extraction, with one of
the most recent examples being Moreno Sandoval
et al. (2025). As this paper presents work derived
from the causal analysis of natural language data
by generative models, the frame of reference for
the nature of causal relations is closer in concept to
the relativity of causality (Icard et al., 2017). The
proximity to Icard’s work is in relation to the vari-
ability in causal strength and subjectivity, rather
than the precise formality of such relations. This
is further expressed in the analysis of the SciExpl
dataset (Magnifico and Barbu, 2025) in the follow-
ing section.

While the search for causal extraction method-
ologies is nothing new within the area of natural
language processing (Khoo et al., 2000; Garcia,
1997), the advent of large language models has un-
doubtedly shaken the field. The LLM approach to
causal inference and extraction in recent years has
led to diverse results: while some works suggest
that LLMs have only a mimicry of causal inference
devoid of actual capabilities (Zečević et al., 2023),
others suggest the possibility of causal inference
(Kıcıman et al., 2023) and the distinction between
causation and correlation. It should be noted, how-
ever, that while such a distinction is possible and
LLMs can benefit from it, LLMs struggle with
distinctions between general causal patterns and

1https://github.com/gima9552/LLM-Causality-
Classification

non-causal sentences (Jin et al., 2024). A generally
agreed claim is that LLMs struggle with complex
scenarios involving real-world events (Ashwani
et al., 2024; Romanou et al., 2023), as finetuning
happens with datasets aligned to specific causal
directions in mind. Therefore, it is safe to claim
that the use of specific causal datasets can lead to
enhanced performance, especially in syntactically-
similar tasks (Ashwani et al., 2024). Considering
previous evaluation settings for LLMs and causal
reasoning, such as Ziyu et al. (2023), this approach
leverages the analysis of diverse causal sentences
to focus on the capabilities of large architectures
to distinguish between causal links of variable
strength. Rather than a binary-link identification,
the task changes to a classification of a spectrum of
clearly identifiable different causal bonds, which
can prove challenging for semantic and syntactic
similarity. Compared to recent approaches that
aim to extract cause-effect relations in a question-
answering format (Chatwal et al., 2025), or that
focus on document-level causal extraction (Wang
et al., 2024), the aim of this work is pointed to-
wards shorter inputs of more variable nature, with
the same thorough analysis.

3 Materials

3.1 Data

The main drive for this work was to evaluate the
efficiency in causal classification not only between
causal and non-causal statements, but within the
spectrum of causal bonds of different strength
(Icard et al., 2017). As the intention was to evaluate
the performance of generative models within the
scope of natural language understanding with no
forced question-answering format, the choice of
dataset fell onto the SciExpl collection made avail-
able in Magnifico and Barbu (2025). The available
dataset consists of 272 sentences in English, within
topic domains within the area of biochemistry, an-
notated as different “explanation categories” by
120 annotators in total. Each sentence is classified
with two labels according to Magnifico and Barbu
(2025)’s different categorisation types, one for the
explanation type (6 labels) and one for the causal
link expressed in the sentence (3 labels). The latter
is used for the purpose of this work, as the authors
show that the inter-annotator agreement is more
robust for that categorisation type (Krippendorf’s
alpha value of 0.667) and the category balance is
split at 40% - 40% - 20% between the labels. The
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following are the definitions for the labels used in
the dataset, and an example sentence written ad hoc
is provided.

• Strong causal links are expressed in sentences
that present an explicit cause-effect relation,
possibly detailing multiple intermediate steps
in the causal process. The original explicit
cause, as well as all the presented steps in the
causal chain, ultimately lead to the presented
effect. “You are jittery because you drank too
much coffee”.

• Weak causal links are used to establish rela-
tionships between variables in the form of in-
direct or implicit causal relations, which may
arise from mechanisms such as bias, intrinsic
properties of entities, or hypothesised causal
influence. While statistical correlations may
sometimes point toward such bonds, they do
not in themselves imply causality and should
not be equated with causal relations. “Oil
paints are difficult to use, and many amateur
artists prefer acrylics”.

• Contrastive structures manifest in sentences
that present multiple causal links, which could
be both/either of the two aforementioned
types. As multiple pairs of variables are pre-
sented as self-standing cause-effect relations,
the different causal interactions are compared
to one another to highlight how the differences
in origin cause lead to differences in conse-
quential endpoints. Although the contrast it-
self is not a causal bond, its hierarchical com-
position as a net of distinct causal structures
vouches for a separate category.“Eating chips
makes you thirsty, while eating celery gives
opposite results”.

3.2 Large Language Models
The models chosen for the evaluation step were
selected keeping in mind both their performance
and their origin. Only one model for each ma-
jor competitor in the field of generative AI was
allowed, restricting the choice to their most pop-
ular large architecture according to user ratings
2. This choice was motivated by the intention to
mimic the average user’s choice between the multi-
ple options. The chosen LLMs are the following,
presented in alphabetical order along with further

2https://openrouter.ai/rankings,
https://lmarena.ai/leaderboard/text

information regarding their overall performance
and peculiarities. Of important notice is that all of
the performance reported is dated to May 2025, and
the presence of newer iterations of the following
architectures (as well as different datasets) might
make the following information outdated.

Claude 3.7 Sonnet was one of the latest mod-
els in the Claude line produced by Anthropic, with
less of a focus on mathematical reasoning and more
“shifted toward the everyday occurrences” as men-
tioned in Anthropic (2025). The latest benchmark
on GPQA scored 84.8% effectiveness.

Command R7B was one of the smaller mod-
els parameter-wise, being at the time the largest
ever produced by Cohere. In the latest benchmark
available, it was reported to be outperforming both
Ministral 8B and Llama 3.1 8B on the GPQA set.
(Cohere, 2024).

DeepSeek V3 0324 was the latest release by
DeepSeek, performing very effectively on math-
ematical reasoning datasets. The benchmark was
reported to be around 68.4% on GPQA-Diamond
(DeepSeek-AI et al., 2024).

Gemini 2.5 Flash Preview 04-17 was the cur-
rent preview iteration of Google’s best-performing
model, reported to have an integrated “thinking
system” (Google, 2025). The latest benchmark
performance on GPQA was reported at 82.8% .

GPT-4o-mini was one of the more affordable
iterations of the GPT model by OpenAI for the
general public, and one of their best-performing
small models. It had recorded performances around
40% on the GPQA benchmark, but 80% on the
MMLU benchmark for linguistic tasks (OpenAI,
2024).

Llama 3.3 70B Instruct was one of the large-
range models developed by Meta, and it had
recorded benchmark performances of 50.5% on
GPQA-Diamond and 80% on MMLU (Meta,
2024).

Mistral Nemo was a small, lightweight language
model built by Mistral AI in collaboration with
NVIDIA, with a 68% benchmark on the MMLU
dataset (AI, 2024).

Nova Lite 1.0 was one of the models from the
Nova series by Amazon, with benchmark results
comparable to GPT-4o and Claude 3.5 Haiku on
both GPQA-Diamon and MMLU datasets (AWS,
2024).

Qwen3 235B A22B was the latest release from
Qwen, with benchmark results comparable to
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the ones by DeepSeek and Claude on multiple
benchmarks (Team, 2025).

In order to ensure a common processing
baseline for all the large language models, and
as much ease of reproduction of the evaluation
as possible, we chose to deploy all the instances
of model calls through the OpenRouter API
(OpenRouter, 2023). The specifics regarding
the parameters chosen for calling the models are
presented in the following section.

4 Evaluation Setup

4.1 General Settings

Multiple parameter values had to be taken into ac-
count for each model call, resulting in the following
decisions for the experimental setup. The temper-
ature was set to 0 for each model call, to avoid
incongruences between different runs and allow for
the highest chance of reproducibility of results. The
optional settings max tokens and response format
were set to, respectively, 256 (when expecting
longer types of output) and “type”:“text” to
ensure that a) multimodal architectures would out-
put information in the correct format and b) limit
the possible amount of tokens to avoid unexpected
generation-loop issues. Every other setting, apart
from the temperature, was left unchanged from the
default values of the OpenRouterAPI calling func-
tions. This choice was made in order to stream-
line the process between data input and output
as much as possible, and limit human-biased al-
terations looking for the “optimal configuration”
for each individual model, thus influencing each
model’s base performance. However, a fully deter-
ministic output with a chosen seed was deemed as
too restrictive and non-descriptive of both standard
user behaviour and humanlike output; in order to
counterbalance the variability in output quality, the
reported results were aggregated from the best re-
sults from each architecture out of three separate
runs.

The standard parameters top p, top k,
frequency penalty, presence penalty, repeti-
tion penalty, min p and top a fell back to the
following values, in order: 1, 0, 0, 0, 0, 1, 0, 0.

4.2 Prompting Techniques

The base intuition was to provide the models
with templates following a generally demonstrated
curve in performance for LLM evaluations (Ziyu

et al., 2023): from zero-shot equivalent to few-shot
equivalent (Liu et al., 2024; Lee et al., 2023), fol-
lowed by chain-of-thought reasoning (Cheng et al.,
2024; Chatwal et al., 2025). Therefore, a set of
three different templates was developed with the
aforementioned properties in order to properly as-
sess model performance when expecting different
kinds of output and input complexity. In order to
provide as objective an evaluation as possible, the
prompts were designed to be neutral, short and
direct. While this might have led to suboptimal
results, using different prompts tailored to cater
to the strengths of each individual model would
have ultimately prevented an objective evaluation.
A description of each prompt is available below,
and each template is provided within the ipynb
notebook in the GitHub repository 3.

• Zero-shot Equivalent. The template included
the following information, in order: the model
role (“You are an expert in identifying causal
links. Perform classification for an input sen-
tence according to the following categories”);
a list with the definition of each category (with
the format “**Category**:Definition”); the
input sentence to be evaluated; and the in-
struction to only output the name of the ap-
propriate category for the evaluated sentence
(“Your response must ONLY be the name of
the category the sentence belongs to. No other
text or explanation”).

• Few-shot Equivalent. The template included
the same information contained in the previ-
ous one, with the addition of an input and out-
put example for each category of evaluation
positioned after the definition list.

• Chain-of-thought Reasoning. Similarly to
the Few-shot Equivalent, the template in-
cluded the information contained in the Zero-
shot Equivalent. The input and output sen-
tences for each category were also included,
with a slight change: instead of the output
being only the category label, a sequence of
reasoning steps that explained the choice of
the category was provided. The final instruc-
tion of “only output the category label” was
discarded, as it would have been counterpro-
ductive.

3https://github.com/gima9552/LLM-Causality-
Classification
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The example sentences were handpicked by the au-
thor and chosen for their ease of understanding and
average length. All example sentences remained
the same for both the few-shot and the chain-of-
thought prompts.

5 Results and Analysis

In the previous section, the experimental setup was
established and presented alongside the LLMs and
the prompts used for each analysis setup. Here, we
discuss the result obtained through a comparison
between the labels produced by the LLMs and the
human-annotated ground truth labels given in the
dataset. In the case of chain-of-thought prompting,
the answers were manually cleaned by the author,
and only the final explicitly assigned label was used
for the evaluation of model accuracy. Empty out-
puts, broken sentences, and additional hallucinated
inputs (examples of which are provided in Table
2) were labelled as “no explanations”, whereas hy-
potheticals that presented an explicit label were
categorised accordingly. The results are reported
by increasing prompt complexity, from zero-shot
equivalent to few-shot equivalent and concluding
with chain-of-thought equivalent. In Table 1, the
F1 scores for the performance of all models are
reported, divided by template.

model zero few c-o-t
claude-3.7-sonnet 0.688 0.842 0.816
command-r-08-2024 0.504 0.654 0.658
deepseek-chat-v3-0324 0.588 0.684 0.710
gemini-2.5-flash-preview 0.654 0.827 0.846
gpt-4o-mini 0.596 0.676 0.721
llama-3.3-70b-instruct 0.636 0.724 0.746
mistral-nemo 0.551 0.735 0.353
nova-lite-v1 0.614 0.651 0.713
qwen3-235b-a22b 0.368 0.331 0.070

Table 1: Results of model evaluation expressed via
micro-F1 score. The models are presented in alpha-
betical order, and the two highest scores per template
are in bold.

Despite the difference in size, production date,
knowledge cutoff and performance on other tasks,
almost all LLMs performed above the 0.50 thresh-
old when prompted with the zero-shot equiva-
lent template. The only notable exception was
Qwen3, which encountered issues with the token-
generation limit and produced enough empty out-
puts to underperform compared to the average per-

formance value. As the results provided in Table 1
show, Claude and Gemini were the best-performing
models within this category, closely followed by
Llama 3.3 70B.

With the inclusion of example sentences in the
prompts, the performance of nearly all LLMs im-
proved by a minimum of 0.037 (Nova Lite), with
the largest margin of improvement shown by Mis-
tral Nemo (0.184). However, compared to the
previously clean outputs, this prompt template led
to the occasional generation of input sentences
along with the required output. A striking exam-
ple was Nova Lite hallucinating 8 extra input sen-
tences, which were recognised as additions upon
reading the model output, and failing to score them
appropriately. Both Command and Deepseek pro-
duced empty output lines, which were labelled as
“no explanation”, and Qwen3 presented the same
generation-limit issues previously reported. We
decided not to alter the token limitation, as the
overarching rule of the template of “only providing
the category label” as an output was still standing.
On the other side of the output spectrum, both GPT-
4o and Claude generated outputs that most closely
followed the given directions.

As the prompt-induced rule of “only providing
the category label” was removed with the chain-
of-thought equivalent template, all the outputs
required manual postprocessing before an auto-
mated evaluation to determine the F1 score. Where
Claude, Command, Gemini, GPT, and Nova pro-
vided a single-sentence output as presented in the
template, DeepSeek, Mistral, and Llama 3.3 pro-
duced long token sequences that did not adhere
to the suggested pattern. Furthermore, a common
occurrence for both Deepseek and Nova was to
stray from the “single label” instruction by propos-
ing alternatives and hypotheses (e.g. “However, if
the sentence focused on [...] the label should be
[...]”). Regarding specific types of hallucinations,
the last entry in Table 2 is peculiar, as Deepseek
provided two different answers with two different
ratings without any instruction to do so. Ultimately,
it seemed that the chain-of-thought prompt caused
the highest rate of issues and hallucinations by the
models, including:

• the information presented in the chain-of-
thought output not corresponding to the
model-assigned label;

• multi-labelling, with assigned labels being
contradictory at times;
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Figure 1: Chart presenting the F1 score for all models in alphabetical order. Each column represents a different
prompt, left to right: zero-shot, few-shot, chain-of-thought.

Figure 2: Confusion matrices reporting precision/recall for the two best-performing models, Claude and Gemini,
divided by prompt type. The labels str, wk, cn, none correspond to strong, weak, contrastive, no explanation.

• empty outputs, likely due to token-generation
loops;

• half-sentence outputs / well-formed sentences
but no labels.

An example list of errors derived by the chain-of-
thought prompts is available in Table 2, presenting
the model output on the right side and the type of
error defined in the middle.

However, as presented in Table 1 and shown
in Figure 1, the performance of the majority of
the models did not deteriorate despite the presence

of prompt-related issues, showing in fact a posi-
tive trend. The exceptions to this were the Claude
architecture with a 0.028 minor loss, and both Mis-
tral (0.382 drop) and Qwen3 (0.261 drop) were
plagued by empty outputs and broken sentences,
possibly due to token-generation issues due to the
longer prompt and the lack of text-explicit limi-
tation. Overall, the results appeared in line with
general knowledge and previous surveys of LLM
evaluations, the use of chain-of-thought prompting
generally favoured more complete and understand-
able outputs, with the drawback of context-loss and
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model error type example
qwen3-235b-a22b broken sen-

tence
The sentence explains a cause-effect relation where the spines of cacti (cause)
directly

nova-lite-v1 extra tokens **Output**: The sentence explains that broad spectrum antibiotics are used due
to the unavailability or delay in obtaining culture data that identifies the infecting
bacteria. This indicates a relationship between the unavailability of specific infor-
mation and the decision to use broad spectrum antibiotics. The category is: Weak
Causation **Explanation**: The sentence provides a reason for using broad spec-
trum antibiotics, but it does not detail a direct cause-effect relationship or multiple
steps in the causal process. Instead, it emphasizes the role of the unavailability of
specific information, which is an indirect cause.
**Explanation**: The sentence provides a reason for using broad spectrum antibi-
otics, but it does not detail a direct cause-effect relationship or multiple steps in
the causal process. Instead, it emphasizes the role of the unavailability of specific
information, which is an indirect cause.

mistral-nemo misclassification,
extra tokens

The sentence presents a contrast between two different environments: temperate for-
est and desert. It explains the outcomes for the fox population in each environment
(thriving in the first, going extinct in the second) due to the availability of resources,
which is a causal relation. However, the sentence does not go into the details of the
causal process like the previous strong causation example. Therefore, the category
is: **Weak Causation**.
In detail:
- The sentence presents a contrast between two environments: temperate forest and
desert.
- The outcome for the fox population in each environment is explained: thriving in
the temperate forest and extinction in the desert.
- The reason for these outcomes is the availability of resources in each environment,
presenting a causal relation.
- The sentence does not delve into multiple steps in the causal process, unlike the
strong causation example, making it weak causation.

llama-3.3-70b-
instruct

extra tokens,
hypothetical

The sentence explains a cause-effect relation between the climate and the migration
patterns of birds. The birds in the northern hemisphere migrate due to the lack of
food and suitable breeding grounds during winter, whereas the birds in tropical
regions do not migrate because the consistent climate provides stable resources. The
category is: **Strong Causation**.
However, it can also be argued that the sentence presents a comparison between two
different situations (birds in the northern hemisphere vs birds in tropical regions),
which could classify it as **Contrastive**. But since the primary focus is on
explaining the cause-effect relation between climate and migration patterns, the
more suitable category would be **Strong Causation**.

deepseek-chat-v3-
0324

misclassification,
extra tokens

**Output**: The sentence explains a cause-effect relation between sunlight and
plant growth, detailing how ample sunlight enhances photosynthesis and promotes
growth, while insufficient light limits energy production and growth. It also contrasts
two scenarios (sunny field vs. shaded forest) to highlight the opposing outcomes.
The primary focus is on the causal mechanism, with a secondary contrastive element.
The category is: **Strong Causation**.
*(Rationale: The sentence primarily describes a direct causal process (sunlight
→ photosynthesis → growth), which fits “Strong Causation.” While it includes a
contrast (sunny vs. shaded), the contrast serves to reinforce the causal explanation
rather than being the main focus.)*

deepseek-chat-v3-
0324

misclassification,
extra tokens,
hypothetical,
input duplica-
tion

**Output:** The sentence explains a cause-effect relation between the degeneration
of neurons in the hippocampus and the impairment of memory and spatial navigation
in Alzheimer’s disease, while contrasting it with the functionality in healthy brains.
The category is: **Strong Causation** (due to the clear mechanistic explanation
of neurodegeneration leading to cognitive deficits, with a secondary contrastive
element). Alternatively, if the **contrastive** aspect is emphasized more strongly:
The sentence compares the effects of hippocampal degeneration in Alzheimer’s
disease (impaired memory) with the preserved function in healthy brains (clear
memory processing), presenting two opposing scenarios. The category is: **Con-
trastive**.
*(The classification depends on whether the primary focus is the causal mechanism
within Alzheimer’s or the comparison between disease and health. Here, the causal
chain is more detailed, so “Strong Causation” is likely the better fit.)*

Table 2: Examples of erroneous outputs from chain-of-thought prompting, with the types of error explicited in the
middle column.
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heightened focus of the generation of text based
on specific token-cues from the prompt with the
lengthening of the outputs.

By scrutinising the performance of the Gemini
2.5 and Claude 3.7 Sonnet models, the two best-
performing ones, it is possible to highlight the weak
points in causal categorisation previously assessed
in Jin et al. (2024). As seen in Figure 2, for both
models, there was consistent misclassification of
weak causation and contrastive labels as strong
causation, represented by wk, cn and str, respec-
tively. While this effect might lead to think that the
dataset is unbalanced, the split between the labels is
40/40/20% with the most represented categories be-
ing strong causation and weak causation; therefore,
the misclassification is probably indicating a lack
of effectiveness by the architectures in discering
the less syntactic-oriented types of causal links. It
is worth mentioning that the few-shot performance
of Claude 3.7 Sonnet (upper centre in Figure 2)
presents a generalisation of the issue on both sides
of the causal-strength spectrum, as there is almost
equal misclassification of strong and weak causal
bonds. Despite this weak point still being present
in the evaluated LLMs, it is clearly visible in the
provided confusion matrices that the accuracy in
the classification of different causal bonds with
varying strength is promisingly high.

6 Conclusions

This paper presented the evaluation of 9 different
Large Language Models, of diverse proprietary na-
ture, as classifiers of causal bonds between sen-
tences in a natural language dataset. Three prompt
templates were developed and used to gradually
increase context and provide the models with addi-
tional information and point verbal reasoning capa-
bilities in the appropriate direction. When tested
with zero-shot, few-shot, and chain-of-thought-
based prompts, the best models performed with an
F1 score of 0.688, 0.842 (Claude 3.7 Sonnet zero
and few-shot), and 0.846 (Gemini 2.5 Flash chain-
of-thought). The pipeline code has been rewritten
as a ipynb notebook and made available at a ded-
icated repository 4.

Our evaluation seems to reinforce the hypothesis
that LLMs can discern different types of sentence-
internal causal bonds, more reliably so if provided
with example-based prompts (few-shot) that pro-

4https://github.com/gima9552/LLM-Causality-
Classification

vide an explicit definition of such causal proper-
ties. This implementation suggests that there is no
real need for more complicated chain-of-thought
prompts when it comes to the analysis and expla-
nation of sentences from a classifying standpoint;
however, manual analysis of the chain-of-thought
outputs reveals that for the best-performing mod-
els, the generated “line of thought” is correct on
average despite the occasional hallucination. The
proposed idea in previous works that LLMs strug-
gle with precise distinction between correlation and
causation is reinforced by confusion-matrix analy-
sis, as the misclassification of the two is manifest
even in the best output cases. The dataset taken
into consideration, albeit simple on a semantic level
and of reduced size, is still based on the general
communication patterns that humans use; this im-
plies some generalizable proficiency by the LLMs
to operate effectively in everyday causal-analysis
situations.

Further research work is required to reinforce the
hypotheses confirmed by this paper, especially re-
lating to the ability of LLMs to truly identify under-
pinning causal links. Possible avenues of research
should be directed to the analysis of causal gener-
ation in a contextless environment, more so than
testing models on what could be a consequence
of mere token-context performance. The use of
effective state-of-the-art models, rather than the
popular ones due to price or ease of implementa-
tion, should also be reinforced in future research.
Furthermore, the use of model-tailored prompts in-
stead of general ones, with more stringent instruc-
tions, could help prevent hallucinations as much as
possible. Possibly, all models should be tested on
multiple natural-language causal datasets, with the
best case scenario allowing for different domains to
avoid topic specificity, and several runs of the same
model on standardised settings would be necessary.

As can be inferred from above, this work
presents some clear limitations: the choice of a
semantically simple dataset, the choice of models
based on user popularity, the use of single-sentence
classification examples, and the grounding of the
causal analysis in natural language relations. The
latter, especially, is an intrinsic hurdle when apply-
ing concepts of causality to information disjointed
from the statistically-informed causal graphs and
relations. Furthermore, the implementation of more
in-depth chain-of-thought prompt choices and more
complex methods of analysis might have led to a
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different set of results, alongside the presentation
of fully context-free samples.
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