
Proceedings of the Student Research Workshop associated with RANLP-2025,
pages 44–53, Varna, Bulgaria, Sep 8-10, 2025.

https://doi.org/10.26615/issn.2603-2821.2025_006

44

NoCs: A Non-Compound-Stable Splitter for German Compounds

Carmen Schacht
Ruhr-University Bochum, Germany

Faculty of Philology
Department of Linguistics
carmen.schacht@rub.de

Abstract

Compounding—the creation of highly com-
plex lexical items through the combination
of existing lexemes—can be considered one
of the most efficient communication phe-
nomenons, though the automatic processing
of compound structures—especially of multi-
constituent compounds—poses significant chal-
lenges for natural language processing. Exist-
ing tools like compound-split (Tuggener, 2016)
perform well on compound head detection but
are limited in handling long compounds and dis-
tinguishing compounds from non-compounds.
This paper introduces NoCs (non-compound-
stable splitter), a novel Python-based tool
that extends the functionality of compound-
split by incorporating recursive splitting, non-
compound detection, and integration with state-
of-the-art linguistic resources. NoCs employs a
custom stack-and-buffer mechanism to traverse
and decompose compounds robustly, even in
cases involving multiple constituents. A large-
scale evaluation using adapted GermaNet data
shows that NoCs substantially outperforms
compound-split in both non-compound iden-
tification and the recursive splitting of three-
to five-constituent compounds, demonstrating
its utility as a reliable resource for compound
analysis in German.

1 Introduction

Compounding constitutes a core word formation
process found in many languages of the world and
is considered a highly efficient strategy for speak-
ers to convey complex information by only employ-
ing little amount of linguistic signal. It is a pro-
cess of combining pre-existing lexemes into new
ones, thus creating informationally more compact
structures as compared to their syntactically more
embedded phrasal counterparts (Biber and Gray,
2010). For example, the compound lexeme combi-
nation process encodes the same information as the

process of the combination of lexemes, but in a con-
densed linguistic unit, resulting in reduced signal
transmission time and thus more efficient commu-
nication. This paper follows the definition of a
compound of Jenkins et al. (2023) as ”single ortho-
graphic words which are composed of two or more
constituents”. Lexicalized compounds such as Tis-
chbein (Engl. ‘Table-leg’) will be included while
opaque compounds like Himbeere (Engl. ‘Rasp-
berry’) are not, where one of the constituents is
considered an opaque morpheme (i.e. ”Modifiers
whose meaning is not transparent any more without
considering the etymology of the word” according
to Henrich and Hinrichs (2011); in this case, Him-
is opaque). In addition, words that can not be split
further into independent constituents are consid-
ered non-compounds.

German, the language of the empirical focus of
this paper, is a particularly well suited candidate
for the investigation of compounding processes, as
it offers an high amount of observable compound-
ing. As one of the most frequently encountered
word formation processes in German, compound-
ing has to be considered not only as an efficient
mechanism to transmit complex information but
also as a highly generative process for ad hoc vo-
cabulary. German compounds exhibit a theoreti-
cally almost unrestricted length and composition,
vividly demonstrated by the well known compound
in Example 1.

(1) Rindfleischetikettierungsüberwachungs-
aufgabenübertragungsgesetz
(Engl. ‘Beef Labeling Monitoring Task
Transfer Act’)

To investigate compounds computation-
ally—especially long compounds like the one
above—they often have to be split into their
respective parts to examine the processes influ-
encing their production and processing. Those



45

parts are called modifier and head, where the
modifier modifies the head. Both can themselves
be compounds embedded in the first level of a
compound. German compounds are structured
head-last, i.e. the right element of a split being
modified by the left element. According to
Henrich and Hinrichs (2011), who published
an extensive WordNet-style semantic network
including semantically annotated compounds
called GermaNet, the meaning of the entire
compound highly depends on the meaning of its
parts. Günther et al. (2020), who investigate the
semantic transparency of compounds based on the
relatedness of their constituents also show, that it is
crucial to not only consider compounds as a whole
unit, but to also analyze their respective parts and
underlying structure as compound interpretation
is more than the sum of the compound’s parts.
The difficulty in splitting a compound into those
parts lies in the possibility of various possible
splits especially in multi-constituent compounds
according to Hätty et al. (2019), who evaluate
several tools for the automatization of this task.
This is due to a variable internal structure called
branching structure in compounds with at least
three constituents. Following the examples of
Kösling and Plag (2009), a three-constituent
compound can either be left-branching like in
Example 2, where the first split is made between
the second and third constituent, or right-branching
like in Example 3, where the compound is first
split between the first and second constituent.

(2) seat belt law
Interpretation: A law concerning seat belts.
Branching structure: [[NN]N]

(3) team locker room
Interpretation: A locker room for the team.
Branching structure: [N[NN]]

This impacts the internal structure of head and
modifier, as in Example 2 the modifier itself is a
compound and in Example 3 the head is a com-
pound, each being able to be split into a head and
modifier themselves. Annotating and curating com-
pounds manually is thus a costly endeavor, both in
terms of time and personnel, thereby motivating
the development of automatic annotation method-
ologies. Multiple tools and resources have been
developed and evaluated to date, addressing vari-
ous aspects of automatic processing of compounds.
The tool presented in this paper contributes to this

line of research by offering a novel approach to
automatic compound analysis by building on the
compound-split tool by Tuggener (2016). It in-
troduces a functionality to detect non-compounds
as well as improving the handling of compounds
longer than three constituents. Both tools—NoCs
and compound-split—are then tested against each
other on compounds of various lengths as well as
on non-compounds. To promote open-access re-
sources, NoCs will be made available at Gitlab
under a CC BY 4.0 license.1

2 Related work

The production and processing of compounds have
been of particular interest for psycho- and compu-
tational linguistics, as their processing is highly de-
pendent on the audience group and their respective
prior knowledge (Halliday, 1988/2004; Kendeou
and van den Broek, 2007) as well as on linguis-
tic (Meßmer et al., 2021) and communicative con-
text (Gamboa et al., 2024, 2025). Psycholinguis-
tic approaches to compounding behavior include
the investigation of seriality of their processing
(Andrews et al., 2004), differences between nov-
elty and lexicalization in compounds (Hyönä et al.,
2020), structural properties like the branching di-
rection in multi-constituent compounds (Kösling
and Plag, 2009) as well as the semantic relations
between the separate constituents of compounds
(Benjamin and Schmidtke, 2023). Ormerod et al.
(2024) argue that Large Language Models (LLM)
are able to distinguish between compounds sharing
the same relation and compounds with different
relations, incorporating both psycho- and computa-
tional linguistic approaches.

Especially when written or transcribed language
is under investigation and has to be processed,
curated and analyzed, pre-processing compound-
ing and its underlying processes become a central
task for natural language processing (NLP) and
are therefore highly relevant to computational lin-
guistics, as the computational processing of com-
pound structures is not at all trivial. Several tasks
of NLP highly depend on successfully process-
ing compound structures such as the identification
of the compound head for coreference resolution
(Tuggener, 2016) or the analysis of the different
dimensions of information status (Riester and Bau-
mann, 2017).

1Gitlab: https://gitlab.ruhr-uni-bochum.de/
schaccmr/nocs.git.

https://gitlab.ruhr-uni-bochum.de/schaccmr/nocs.git
https://gitlab.ruhr-uni-bochum.de/schaccmr/nocs.git


46

Various tools and resources tackling those tasks
exist to date, each addressing specific aspects rele-
vant to the individual task and in part building upon
one another: see for example Hätty and Schulte im
Walde (2018) for termhood prediction, Henrich
and Hinrichs (2011) for the compound extension of
GermaNet including constituent properties such as
affixoid or opaque morpheme, Krotova et al. (2020)
for the classification of compound idiomaticity,
Tuggener (2016) for the identification of compound
heads in the context of coreference resolution, Svo-
boda and Sevcikova (2024) for parent retrieval or
Weller and Heid (2012) for compositional align-
ment of (compounded) terms in translation tasks.
Simultaneously, those tools and resources do, how-
ever, exhibit various shortcomings, such as han-
dling only compounds comprised of a maximum
of three constituents or not being able to differen-
tiate between compounds and non-compounds in
the first place. The current paper will be address-
ing those aspects by presenting NoCs for German
compounds based on the compound-split library;
the Python implementation of the probabilistic n-
gram based compound head detection algorithm
presented in Tuggener (2016). The algorithm pre-
dicts the most probable split point within a word
and returns the scores for various possible positions
of a split in this word. It thus follows a machine
learning approach trained on approximately one
million German nouns from Wikipedia. It is a
freely available NLP tool for the processing of Ger-
man compounds, offering extensive documentation
and achieving 95% accuracy for the detection of
compound heads on the test data from GermaNet
(Henrich and Hinrichs, 2011). It was selected for
extension in this project due to its licensing terms,
usability, and support for both nominal and adjecti-
val compounds as it is a well-documented, license-
free and straight-forward to use Python-library.
Due to employing a machine learning approach
it performs robustly without being computation-
ally costly and data hungry like LLMs. It offers
functions called char split, which is splitting the
head from its modifier and maximal split, splitting
the entire compound maximally not regarding the
branching structure of a compound.

Although the tool performs robustly in com-
pound head detection—its primary purpose—and
achieves high accuracy values, its maximal split
function can only process compounds with no more
than three constituents, while the char split func-

Figure 1: Architecture of the stack and buffer system
implemented by NoCs.

tion lacks the ability to differentiate between com-
pounds and non-compounds, resulting in erroneous
segmentation like in Example 4.

(4) Anma-Ssung instead of Anmassung
(Engl. ‘presumption’)
Erroneous split of the non-compound
Anmassung by the char split function.

These constraints render it unsuitable for recur-
sive decomposition of longer compounds into their
respective heads and modifiers using only those
two functions, as this would not reliably stop the
splitting process at compound constituents, that can
not be split any further.

3 Architecture of NoCs

To overcome these issues of the Compound-split
tool, the newly developed NoCs tool introduced in
this paper is addressing these issues building on
and extending compound-split by leveraging the
(correct and incorrect) feedback the base functions
give to implement a custom stack and buffer system
for recursive compound traversal and appropriate
segmentation. NoCs is also implemented in Python
(Van Rossum and Drake, 2009), an open-source
programming language, to promote open-access
resources and accessible research.

In addition to compound-split it also incorpo-
rates the state-of-the-art NLP stanza library (Qi
et al., 2020) for part-of-speech and morphological
feature look-ups during compound processing. It
also utilizes a minimally adapted version of the
Free German Dictionary (Schreiber, 2021) which
is—like compound-split— based on Wikipedia
crawls for dictionary look-ups and manually cre-
ated lists of German prefixes and suffixes.



47

The tool’s architecture is schematically pre-
sented in Figure 1. Details on the stack and buffer
implementation are provided in Section 3.1 and
3.2, followed by a description of the test dataset in
Section 4 and an evaluation of the results of both
tools in Section 5.

3.1 Stack and buffer system
While the char split function only detects the head
of a compound and the maximal split function
can not properly handle compounds with more
than three constituents, reliable recursive decom-
position of multi-constituent compounds and non-
compound identification are challenging when rely-
ing solely on the base functionalities of compound-
split. Specifically, char split exhibits unstable be-
havior on non-compounds, frequently producing
erroneous outputs such as Anm-Assung from An-
massung (‘presumption’). The position of the er-
roneous splits appears to be arbitrary, rendering it
impossible to detect an erroneous split based on
the split position alone. However, the length of
the output lists returned when further splitting er-
roneous constituents displays predictable patterns
that NoCs leverages for non-compound detection
and recursive splitting.

Example 5 shows the output of char split for the
correct split of the compound Testbeispiel (Engl.
‘test example’). The function returns a ranked list
of candidate split positions with associated scores.

(5) [(0.9571421456504741, ‘Test’, ‘Beispiel’),
(-0.7465882530347583, ‘Testbei’, ‘Spiel’),
(-0.9921253246209264, ‘Tes’, ‘Tbeispiel’),
(-1.5950942705473183, ‘Testbeis’, ‘Piel’),
(-2.2783109404990403, ‘Testb’, ‘Eispiel’),
(-2.2790028763183123, ‘Testbe’, ‘Ispiel’),
(-2.660451197053407, ‘Testbeisp’, ‘Iel’)]
(Engl.: ‘test example.’)

The length and structure of these lists, however,
is arbitrary and cannot reliably serve as indicators
of compoundhood as the tool returns lists of vari-
able lengths. Spurious splits for non-compounds
may also result in singleton (see 6) or arbitrarily
long lists (see Example 7 and 8).

(6) [(-1.2889316935842348, ‘Flü’, ‘Gel’)]
(Engl.: ‘wing’)

(7) [(-1.3002238718039354, ‘Bea’, ‘Mter’),
(-1.5774219936893772, ‘Beam’, ‘Ter’)]
(Engl. ‘administrative officer’)

(8) [(-1.137630662020906, ‘Anma’, ‘Ssung’),
(-1.3213892018267495, ‘Anmaß’, ‘Ung’),
(-1.4081508515815087, ‘Anm’, ‘Aßung’)]
(Engl. ‘presumption’)

None of these splits are correct, but the tool
still assigns a variable number of scores. In some
cases however, the tool does seem to detect a non-
compound and returns a score of 0 together with
the unsplit token like in Example 9.

(9) [(0, ‘Käfig’, ‘Käfig’)]]
(Engl. ‘cage’)

NoCs evaluates these outputs recursively to iden-
tify failed segmentation, leveraging the output pat-
terns of the base function and classify the input as
a non-compound head.

It implements a stack-buffer architecture
wherein partially segmented constituents are recur-
sively pushed and popped from the stack and buffer
through the processing module and onto the output.
The individual elements are thus repeatedly exam-
ined for compoundhood and passed on through the
stack-and-buffer system after successful segmen-
tation and labeling. This architecture integrates
the base function char split of compound-split and
evaluates the individual outputs through a series of
tests for correct or erroneous splits.

The functionality of the basic stack-buffer ar-
chitecture is demonstrated in the pseudo-code of
Listing 1.

Each compound is pushed to the stack first, then
recursively split using the char split function and
checked for compoundhood. The right elements
of each split get pushed further to the buffer. The
buffer-loop represents the inner processing contain-
ing the precessing module, which applies several
tests to verify the compoundhood of an element.
If the rightmost element is found it gets pushed to
output and the next element on the buffer is pro-
cessed until all elements are found and processed
accordingly. Since initial char split decisions and
outputs are sensitive to compound length, NoCs
avoids hardcoded assumptions and dynamically as-
signs left splits back to the stack while buffering
right splits for continued processing in the process-
ing module. This recursive traversal mechanism
facilitates full decomposition, with backtracking
when required (see Figure 1). To verify compound-
hood, NoCs applies several criteria in this process-
ing module to circumvent false segmentations by
the base function.



48

NoCs 2 CS 2 CS lemma 2 MS 2 MS lemma 2 NoCs 3 MS 3 MS lemma 3
2550 2351 3310 2049 2873 1530 473 907
0.51 0.47 0.66 0.41 0.58 0.31 0.1 0.18

Table 1: Absolute count and percentages of correct splits from the two and three constituent datasets. CS encodes
the char split function, MS the maximal split function.

NoCs 4 MS 4 NoCs 5 MS 5 NoCs noun CS noun NoCs adj CS adj
206 9 5 0 4099 935 537 187
0.21 0.01 0.21 0.0 0.82 0.19 0.88 0.31

Table 2: Absolute count and percentages of correct splits from the four and five constituent and non-compound
datasets.

Listing 1: Stack-Buffer Architecture
1 procedure SplitCompounds(list)
2 for compound in list do:
3 push compound to stack
4 while stack not empty do:
5 split rightmost element in stack

using char -split
6 if split is correct:
7 push right element of split to

buffer
8 push left element back to stack
9

10 # bufferLoop:
11 while buffer not empty do:
12 split rightmost element in buffer

using char -split
13 if split is correct:
14 push left element back to buffer
15

16 # processingModule:
17 while not done do:
18 process rightmost element of

split in buffer
19 if done:
20 push processed element to output
21

22 prepare output format
23 output
24 end procedure

3.2 Verification of the split
As valid splits may be associated with negative
score values (see Example 10), polarity alone is
insufficient as a determinative diagnostic feature.

(10) [(-0.6059544658493871,
‘Warmwasseraufbereitungsanlagen’, ‘Rohr’)]
(Engl.: ‘Pipe in the facility for the
purification of warm water.’)

As previously mentioned however, in the event
of an erroneous split of a non-compound NoCs
can leverage the patterns of incorrect return-values
as it returns either an arbitrarily long output list
with the invalid split decision or a list of only one

score. In the first case, the next split of the (already
invalid) split non-compound’s right element will
always return a list of one. For Example if the split
of Beamter in example 7 returns two scores, the
next split of its (incorrect) head -Mter would only
return one score (see Example 11), indicating that
no further splitting is possible.

(11) [(0, ‘Mter’, ‘Mter’)]]

NoCs identifies those single-score outputs or
consecutive singleton results as indicative of failed
splits and labels the original term as a head, as it
can thus assume there are no more correct splits to
follow. Additional verification is then conducted
by the processing module. It applies prefix/suffix
disambiguation to avoid prefix/suffix conflicts with
identical sequence slices of words like -Gel (Engl.:
‘gel’) or suffixes like -haft, which has the identical
surface form as the noun Haft (Engl.: ‘detention’)
by using dictionary and suffix/prefix-list look-ups
and morphological features as well as POS tagging
parsed via stanza. For example, it avoids incor-
rect parses such as Flü-Gel (Engl.‘wing’) or Anma-
Ssung (Engl. ‘presumption’) by cross-referencing
gender and affixes. In the case of Flü-Gel, which
is erroneously split into Flü- and -Gel, the head
could theoretically function as the noun Gel (Engl.:
‘gel’). To verify this, the tool first looks up the mor-
phological features like grammatical gender of the
input token, which is masculine for Flü-Gel. As the
split would only be correct if the grammatical gen-
der of the input token was neutral corresponding
to the grammatical gender of its head Gel (Engl.:
‘gel’) it then decides that this can not be a correct
split and returns the initial token as head. In the
case of Anma-Ssung it detects the erroneous split
by a look-up from the suffix list for the suffix -Ung
in combination with a look-up from the dictionary



49

NoCs 2 CS 2 CS lemma 2 MS 2 MS lemma 2 NoCs 3 MS 3 MS lemma 3
2751 2801 3579 2402 3092 1871 756 1113
0.55 0.56 0.72 0.48 0.62 0.37 0.15 0.22

Table 3: Absolute count and percentages of correct splits from the two and three constituent datasets in the lower-
case test.

NoCs 4 MS 4 NoCs 5 MS 5 NoCs noun CS noun NoCs adj CS adj
268 17 8 0 4099 935 537 187
0.28 0.018 0.33 0.0 0.82 0.19 0.88 0.31

Table 4: Absolute count and percentages of correct splits from the four and five constituent and non-compound
datasets in the lower-case test.

list for its constituents to verify that this split is
incorrect.

After deciding not to split any further it also runs
a dictionary check on the current token, to check if
the current non-compound is a valid word, before
labeling it and pushing it to output. For example if
it gets (-1.3002238718039354, ‘Bea’, ‘Mter’) and
the next split of -Mter returns a score of 0 like in Ex-
ample 11, it applies a dictionary look-up to verify
the existence of the initial token Beamter. Thus, it
collects all constituents and returns a Python dictio-
nary structure like in Example 12, where it collects
all constituents in the first index of the tuple, labels
them with either ’head’ or ’modifier’ and also saves
the respective modifier in the third index.

(12) {‘Testbeispiel’: [(‘Test’, ‘modifier’, ‘-’),
(‘Beispiel’, ‘head’, ‘Test’)]}
(Engl.: ‘Test example.’)

In a last step before returning the output, NoCs
performs lemmatization and removes linking mor-
phemes such as ‘-s-’, resulting in linguistically
plausible compound constituents.

4 Test-data and analysis

The current release of the GermaNet compound
collection (Seminar für Sprachwissenschaft, Uni-
versity of Tübingen, 2024) was selected as a basis
for the creation of test data. As NoCs primarily tar-
gets the detection of non-compounds and recursive
split of multi-constituent compounds rather than
compound head detection, the data set from Ger-
maNet had to be slightly adapted to the task before
applying to the two tools. The original dataset is
comprised of three columns containing the com-
pounds of lengths of two to six constituents and the
respective modifiers and heads, see Example 13.

(13) Abendbrot Abend Brot
Abendbrottisch Abendbrot Tisch
(Engl.: ‘Dinner’ and ‘Dinner table’)

As this task needed not only the compound head
in the case of multi-constituent compounds but the
maximally split version, the respective modifiers
were automatically searched and collected from
the dataset until all heads were found, forming the
individual constituents of the original compound.
Thus all compounds were collected and categorized
by number of constituents. From all the individual
compound heads two datasets of nominal and adjec-
tive non-compounds were extracted by running au-
tomatic stanza parses on the non-compounds to de-
termine nouns and adjectives. Where two possible
constituents were listed, the nominal constituent
was chosen, as they match the output of the tools
more closely. Compounds containing numbers and
hyphens were excluded.

From the two and three constituent compound
datasets as well as the nominal non-compounds a
random sample of five thousand was drawn. The
four constituent compound dataset contains 965
compounds, the five constituent compound dataset
contains 24 compounds and the adjective non-
compound dataset contains 610 non-compounds
(see Table 5). As there was only one single six
constituent compound and it contained hyphens it
was excluded from the evaluation.

Both tools processed all of the datasets. For
compound-split the maximal split function was
used on the two to five constituent datasets. The
char split function was only tested on the two con-
stituent dataset and the two non-compound datasets,
as it only splits the head. The outputs of the maxi-
mal split function on the two and three constituent
datasets were lemmatized using stanza parsing at
the constituent level, in addition to being retained



50

Dataset Type Description Sample Size
2-constituents Random sample 5,000
3-constituents Random sample 5,000
4-constituents Full dataset 965
5-constituents Full dataset 24
Nom. noc Random sample 5,000
Adj. noc Full dataset 610

Table 5: Dataset sample sizes by compound type.

in their original form, to evaluate whether lemmati-
zation enhances alignment with the GermaNet gold
standard, given that NoCs outputs are also lemma-
tized. To keep computation time minimal this was
only conducted on the two and three constituent
test-sets, as those offer the full five thousand sam-
ples as opposed to the four and five constituent test-
sets and were therefore judged more representative
for potential effects of the condition. In addition to
these tests a second iteration of all the outputs was
tested, where all constituents (test data and output)
were set to lower case before comparing them, to
account for possible spelling divergence when the
token would technically be correct (see Table 6 for
more details).

To calculate correct splits the outputs for each in-
dividual test-set were first compared in length and
then tested for string-matches. If all constituents
matched exactly the output was considered correct.
The percentage of correct splits was then calcu-
lated. As all lists were tested separately, this was
not considered a real classification task and thus
the conventional evaluation metrics of precision
and recall were not deemed appropriate for this
evaluation.

Calculations and handling of data were carried
out with the random and Pandas library (pandas de-
velopment team, 2020).

5 Results

The comparative evaluation of both tools focused
primarily on the handling of non-compounds and
the accuracy in splitting multi-constituent com-
pounds. With respect to compound segmentation,
NoCs consistently outperforms the base compound-
split functions across all unlemmatized datasets
and under standard evaluation conditions, as shown
in Tables 1 and 2, even though char split surpasses
maximal split function in the two constituent

dataset. A particularly prominent divergence in
performance can be observed in the three to five
constituent datasets, as the base function hardly
captures any splits correctly (see NoCs-values in
boldface). However, in the two-constituent dataset,
the lemmatized condition significantly boosts per-
formance, clearly surpassing NoCs. This indicates
that lemmatization plays a substantial role in im-
proving segmentation accuracy in the output of
compound-split for simpler compounds.

As illustrated in Tables 2 and 4, the new NoCs
demonstrates a clear advantage over compound-
split in the domain of non-compound handling, as
compound-split is only able to detect 19 percent of
nominal non-compounds and 31 percent of adjec-
tive non-compounds. In this regard performance
does not profit from the lower-case test, as NoCs
still handles 82 percent of nominal and 88 percent
of adjective non-compounds. Performance does,
however, substantially benefit from the lower-case
testing in the case of the two and three constituent
datasets across all conditions as presented in ta-
ble 3, accumulating to 72 percent correctly identi-
fied compounds in the lemmatized two constituent
lower case condition.

6 Conclusion

Compounding representing an informationally
compact and highly efficient linguistic phe-
nomenon for encoding communicated information
is particularly interesting within various linguis-
tic fields and frameworks, including computational
linguistics. In order to process those complex struc-
tures automatically highly specialized tools are
necessary, especially in languages like German,
where compounding is a highly productive process
to (spontaneously) expand the language’s vocab-
ulary. Given the virtually unlimited number of
potential constituents in German compounds, de-
veloping tools capable of reliably decomposing
multi-constituent compounds into their component
parts is of significant value for downstream appli-
cations. As the compound-split tool only offers a
robust compound head detection and a consider-
able less robust maximal split approach, expanding
the functionality by non-compound detection and a
more stable multi-constituent compound split was
the aim of the newly introduced NoCs tool.

As presented in section 5, the tool particularly
excels in the domain of non-compound detection.
While NoCs outperforms the base splitter on the



51

Dataset Type NoCs CharSplit MaxSplit CS lemma MS lemma regular lower
2-constituents x x x x x x x
3-constituents x - x - x x x
4-constituents x - x - - x x
5-constituents x - x - - x x
Nom. noc x x - - - x x
Adj. noc x x - - - x x

Table 6: Testconditions across tools and datasets.

multi-constituent datasets, these improvements re-
main moderate, with approximately one-third of
correctly split compounds in the three to five con-
stituent datasets. A first preliminary and non-
conclusive evaluation of the output data suggests
that two key challenges persist: (1) as NoCs builds
upon compound-split, it inherits certain limitations
in the splitting of longer compounds, particularly
due to the constraints of the original head detec-
tion mechanism, which performs more robustly in
conditions with shorter compounds; and (2) longer
compounds inherently increase the risk of incorrect
splits, and the strict evaluation criterion of test-
ing only perfect string matches on all constituents
likely results in the reported performance as a con-
servative estimate and would probably benefit from
a more fine-grained analysis including partial cor-
rectness.

Furthermore, both the lemmatization of output
constituents and the bulk of the decision-making
processes in NoCs rely heavily on stanza parses,
increasing the risk to propagate early parsing er-
rors through the entire system. Incorporating a
more reliable lemmatizer might improve perfor-
mance further. To improve overall performance
on the actual compound splits, the tool might also
greatly benefit from a more flexible handling of
potential constituents within the split decision pro-
cess. Though NoCs still leaves plenty of room for
improvement on the split of multi-constituent com-
pounds it provides a promising and practical solu-
tion for non-compound detection and contributes
valuable functionality to the repertoire of NLP tools
available for compound processing.

Limitations

Even though this new extension of the compound-
split splitter addresses some of the shortcomings
of the base splitter and expands the repertoire
of it by several functionalities, it still exhibits
various limitations and leaves room for improve-

ments. First, it still is not able to confidently
disambiguate two theoretically correct but possi-
bly context-inappropriate splits due to its context-
independent design. Integrating a language model
with contextual understanding might contribute to
solving this problem. Second, as NoCs relies on a
dictionary for the decision on valid words, it also
struggles with abbreviations contained in the dictio-
nary, which might collide with non-abbreviations
as sequence slices of words, causing the tool to
falsely split. In this regard NoCs might benefit
from a separate dictionary of abbreviations in the
future.

Additionally, the aforementioned long com-
pounds of five or more constituents still challenge
the tool as well as the dependency on a lemma-
tizer, as this dependency introduces an increased
likelihood of cascading errors through the process.
A test employing edit distance metrics could al-
low insights on how many incorrect splits could
be captured by a more precise lemmatizer. This
online parsing during the processing of compounds
also increases the runtime of the tool, rendering it
more suitable for applications on smaller datasets.
Furthermore, as not all compounds in the original
GermaNet dataset were maximally split, this possi-
bly caused some splits to be considered incorrect.
A manually curated test set might alleviate this
problem. In regard of the test data it also needs to
be considered, that the GermaNet data is not ’new’
in the context of the base tool, as it was used to test
compound head detection accuracy for compound-
split. To authentically simulate out-of-vocabulary
testing a new test set would be desirable. To test on
unseen ad hoc compounds, synthetic data could be
generated and used for testing of new compounds
of variable length in the future. For now, those lim-
itations suggest a combination of both tools across
the different conditions for the time being as an im-
proved iteration for the task compared to the base
functions of the compound-split splitter on its own.



52

Acknowledgments

I am grateful to the anonymous reviewers for
their helpful comments and Stefanie Dipper and
Ronja Laarmann-Quante from Ruhr-University
Bochum for their valuable feedback. This research
is funded by Deutsche Forschungsgemeinschaft
(DFG, German Research Foundation) – Project-ID
232722074 – SFB 1102.

References
Sally Andrews, Brett Miller, and Keith Rayner and.

2004. Eye movements and morphological segmenta-
tion of compound words: There is a mouse in mouse-
trap. European Journal of Cognitive Psychology,
16(1-2):285–311.

Shaina Benjamin and Daniel Schmidtke. 2023. Con-
ceptual combination during novel and existing com-
pound word reading in context: A self-paced reading
study. Mem. Cognit., 51(5):1170–1197.

Douglas Biber and Bethany Gray. 2010. Challeng-
ing stereotypes about academic writing: Complexity,
elaboration, explicitness. Journal of English for Aca-
demic Purposes, 9(1):2–20.

John Gamboa, Kristina Braun, Juhani Järvikivi, and
Shanley E. M. Allen. 2025. The distributional proper-
ties of long nominal compounds in scientific articles:
an investigation based on the uniform information
density hypothesis. Corpus Linguistics and Linguis-
tic Theory, 21(1):137–171.

John C. B. Gamboa, Leigh B. Fernandez, and Shanley
E. M. Allen. 2024. Investigating the uniform informa-
tion density hypothesis with complex nominal com-
pounds. Applied Psycholinguistics, 45(2):322–367.

Fritz Günther, Marco Marelli, and Jens Bölte. 2020. Se-
mantic transparency effects in german compounds:
A large dataset and multiple-task investigation. Be-
havior Research Methods, 52(3):1208–1224.

M. A. K. Halliday. 1988/2004. On the language of
physical science. In Jonathan J. Webster, editor, The
Collected Works of M. A. K. Halliday (Vol. 5), pages
140–158. Continuum, London and New York.

Anna Hätty and Sabine Schulte im Walde. 2018. Fine-
grained termhood prediction for German compound
terms using neural networks. In Proceedings of
the Joint Workshop on Linguistic Annotation, Mul-
tiword Expressions and Constructions (LAW-MWE-
CxG-2018), pages 62–73, Santa Fe, New Mexico,
USA. Association for Computational Linguistics.

Verena Henrich and Erhard Hinrichs. 2011. Determin-
ing immediate constituents of compounds in Ger-
maNet. In Proceedings of the International Confer-
ence Recent Advances in Natural Language Process-
ing 2011, pages 420–426, Hissar, Bulgaria. Associa-
tion for Computational Linguistics.

Jukka Hyönä, Alexander Pollatsek, Minna Koski, and
Henri Olkoniemi. 2020. An eye-tracking study of
reading long and short novel and lexicalized com-
pound words. Journal of Eye Movement Research,
13(4).

Anna Hätty, Ulrich Heid, Anna Moskvina, Julia Bet-
tinger, Michael Dorna, and Sabine Schulte im Walde.
2019. Akkubohrhammer vs. akkubohrhammer: Ex-
periments towards the evaluation of compound split-
ting tools for general language and specific domains.
In Proceedings of the 15th Conference on Natural
Language Processing (KONVENS 2019): Long Pa-
pers, pages 59–67, Erlangen, Germany. German Soci-
ety for Computational Linguistics & Language Tech-
nology.

Chris Jenkins, Filip Miletic, and Sabine Schulte im
Walde. 2023. To split or not to split: Composing
compounds in contextual vector spaces. In Proceed-
ings of the 2023 Conference on Empirical Methods in
Natural Language Processing, pages 16131–16136,
Singapore. Association for Computational Linguis-
tics.

Panayiota Kendeou and Paul van den Broek. 2007. The
effects of prior knowledge and text structure on com-
prehension processes during reading of scientific
texts. Memory & Cognition, 35(7):1567–1577.

Irina Krotova, Sergey Aksenov, and Ekaterina Artemova.
2020. A joint approach to compound splitting and
idiomatic compound detection. In Proceedings of the
Twelfth Language Resources and Evaluation Confer-
ence, pages 4410–4417, Marseille, France. European
Language Resources Association.

Kristina Kösling and Ingo Plag. 2009. Does branching
direction determine prominence assignment? an em-
pirical investigation of triconstituent compounds in
english. Corpus Linguistics and Linguistic Theory,
5(2):201–239.

Julia A. Meßmer, Regine Bader, and Axel Mecklinger.
2021. The more you know: Schema-congruency
supports associative encoding of novel compound
words. evidence from event-related potentials. Brain
and Cognition, 155:105813.

Mark Ormerod, Jesús Martı́nez del Rincón, and Barry
Devereux. 2024. How is a “kitchen chair” like a
“farm horse”? exploring the representation of noun-
noun compound semantics in transformer-based lan-
guage models. Computational Linguistics, 50(1):49–
81.

The pandas development team. 2020. pandas-
dev/pandas: Pandas.

Peng Qi, Yuhao Zhang, Yuhui Zhang, Jason Bolton, and
Christopher D. Manning. 2020. Stanza: A Python
natural language processing toolkit for many human
languages. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics:
System Demonstrations.

https://doi.org/10.1080/09541440340000123
https://doi.org/10.1080/09541440340000123
https://doi.org/10.1080/09541440340000123
https://doi.org/10.1016/j.jeap.2010.01.001
https://doi.org/10.1016/j.jeap.2010.01.001
https://doi.org/10.1016/j.jeap.2010.01.001
https://doi.org/doi:10.1515/cllt-2023-0028
https://doi.org/doi:10.1515/cllt-2023-0028
https://doi.org/doi:10.1515/cllt-2023-0028
https://doi.org/doi:10.1515/cllt-2023-0028
https://doi.org/10.1017/S0142716424000092
https://doi.org/10.1017/S0142716424000092
https://doi.org/10.1017/S0142716424000092
https://aclanthology.org/W18-4909/
https://aclanthology.org/W18-4909/
https://aclanthology.org/W18-4909/
https://aclanthology.org/R11-1058/
https://aclanthology.org/R11-1058/
https://aclanthology.org/R11-1058/
https://doi.org/10.18653/v1/2023.emnlp-main.1002
https://doi.org/10.18653/v1/2023.emnlp-main.1002
https://aclanthology.org/2020.lrec-1.543/
https://aclanthology.org/2020.lrec-1.543/
https://doi.org/doi:10.1515/CLLT.2009.009
https://doi.org/doi:10.1515/CLLT.2009.009
https://doi.org/doi:10.1515/CLLT.2009.009
https://doi.org/doi:10.1515/CLLT.2009.009
https://doi.org/10.1016/j.bandc.2021.105813
https://doi.org/10.1016/j.bandc.2021.105813
https://doi.org/10.1016/j.bandc.2021.105813
https://doi.org/10.1162/coli_a_00495
https://doi.org/10.1162/coli_a_00495
https://doi.org/10.1162/coli_a_00495
https://doi.org/10.1162/coli_a_00495
https://doi.org/10.5281/zenodo.3509134
https://doi.org/10.5281/zenodo.3509134
https://nlp.stanford.edu/pubs/qi2020stanza.pdf
https://nlp.stanford.edu/pubs/qi2020stanza.pdf
https://nlp.stanford.edu/pubs/qi2020stanza.pdf


53

Arndt Riester and Stefan Baumann. 2017. The RefLex
Scheme — Annotation Guidelines, volume 14 of Sin-
SpeC — Working Papers of the SFB 732 “Incremental
Specification in Context”. OPUS, Stuttgart.

Schreiber. 2021. Free German Dictionary. https:
//sourceforge.net/projects/germandict/files/.
Accessed 04-07-2025.

Seminar für Sprachwissenschaft, Univer-
sity of Tübingen. 2024. GermaNet
v19.0. https://uni-tuebingen.de/en/
faculties/faculty-of-humanities/departments/
modern-languages/department-of-linguistics/
chairs/general-and-computational-linguistics/
ressources/lexica/germanet/description/
compounds/#c1081929. Accessed 04-07-2025.

Emil Svoboda and Magda Sevcikova. 2024. PaReNT
(parent retrieval neural tool): A deep dive into word
formation across languages. In Proceedings of the
2024 Joint International Conference on Computa-
tional Linguistics, Language Resources and Evalu-
ation (LREC-COLING 2024), pages 12611–12621,
Torino, Italia. ELRA and ICCL.

Don Tuggener. 2016. Incremental Coreference Resolu-
tion for German. Phd thesis, University of Zürich,
Zürich, Switzerland.

Guido Van Rossum and Fred L. Drake. 2009. Python 3
Reference Manual. CreateSpace, Scotts Valley, CA.

Marion Weller and Ulrich Heid. 2012. Analyzing and
aligning German compound nouns. In Proceed-
ings of the Eighth International Conference on Lan-
guage Resources and Evaluation (LREC‘12), pages
2395–2400, Istanbul, Turkey. European Language
Resources Association (ELRA).

https://sourceforge.net/projects/germandict/files/
https://sourceforge.net/projects/germandict/files/
https://uni-tuebingen.de/en/faculties/faculty-of-humanities/departments/modern-languages/department-of-linguistics/chairs/general-and-computational-linguistics/ressources/lexica/germanet/description/compounds/#c1081929
https://uni-tuebingen.de/en/faculties/faculty-of-humanities/departments/modern-languages/department-of-linguistics/chairs/general-and-computational-linguistics/ressources/lexica/germanet/description/compounds/#c1081929
https://uni-tuebingen.de/en/faculties/faculty-of-humanities/departments/modern-languages/department-of-linguistics/chairs/general-and-computational-linguistics/ressources/lexica/germanet/description/compounds/#c1081929
https://uni-tuebingen.de/en/faculties/faculty-of-humanities/departments/modern-languages/department-of-linguistics/chairs/general-and-computational-linguistics/ressources/lexica/germanet/description/compounds/#c1081929
https://uni-tuebingen.de/en/faculties/faculty-of-humanities/departments/modern-languages/department-of-linguistics/chairs/general-and-computational-linguistics/ressources/lexica/germanet/description/compounds/#c1081929
https://uni-tuebingen.de/en/faculties/faculty-of-humanities/departments/modern-languages/department-of-linguistics/chairs/general-and-computational-linguistics/ressources/lexica/germanet/description/compounds/#c1081929
https://aclanthology.org/2024.lrec-main.1104/
https://aclanthology.org/2024.lrec-main.1104/
https://aclanthology.org/2024.lrec-main.1104/
https://aclanthology.org/L12-1484/
https://aclanthology.org/L12-1484/

