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Abstract

Large language models (LLMs) rely heavily on
high-quality training data, yet human-generated
corpora face increasing scarcity due to legal
and practical constraints. Synthetic data gen-
erated by LLMs is emerging as a scalable al-
ternative; however, concerns remain about its
linguistic quality and diversity. While previ-
ous research has identified potential degrada-
tion in English synthetic corpora, the effects in
Spanish, a language with distinct grammatical
characteristics, remain underexplored. This re-
search proposal aims to conduct a systematic
linguistic evaluation of synthetic Spanish cor-
pora generated by state-of-the-art LLMs, com-
paring them with human-written texts. The
study will analyse three key dimensions: lex-
ical, syntactic, and semantic diversity, using
established corpus linguistics metrics. Through
this comparative framework, the proposal in-
tends to identify potential linguistic simplifi-
cations and degradation patterns in synthetic
Spanish data. Ultimately, the proposed out-
come is expected to contribute valuable insights
to support the creation of robust and reliable
Natural Language Processing (NLP) models
for Spanish.

1 Introduction

The development of Large Language Models
(LLMs) has led to a paradigm shift in the field of
Natural Language Processing (NLP), dramatically
transforming the capabilities of current systems
to understand and generate text (Touvron et al.,
2023; van Noord et al., 2024). These models have
achieved outstanding performance across a wide
range of tasks, including machine translation, text
generation, question answering, and semantic infer-
ence. However, their performance and robustness
are critically dependent on the availability of high-
quality, large-scale training data (Gandhi et al.,
2024), yet obtaining such data has become a signif-
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icant challenge (Villalobos et al., 2024; Chen et al.,
2024).

The current training framework is heavily based
on massive web-crawled corpora combined with
curated datasets derived from books, scientific arti-
cles, and social media interactions (Penedo et al.,
2023). Although this approach has been crucial in
the evolution of LLMs, it faces significant struc-
tural limitations. On the one hand, scalability is
constrained, as the amount of high-quality web
data is finite and increasingly subject to legal, pri-
vacy, and copyright restrictions (Kurakin et al.,
2024; Amin et al., 2025). On the other hand,
much of the available crawled data suffers from
quality issues, including noise, spam, misinforma-
tion, redundancy, toxic content, and increasingly
low-quality machine-generated text (Trinh and Le,
2019; Kreutzer et al., 2022).

In response to growing data limitations, syn-
thetic data generated by LLMs has emerged as a
scalable and increasingly viable alternative (Long
et al., 2024). Recent research demonstrates that cur-
rent models can produce syntactically correct, se-
mantically coherent, and stylistically diverse texts
that are, in some cases, nearly indistinguishable
from human-written content (Hartvigsen et al.,
2022; Gao et al., 2023; Liu et al., 2024).

However, this approach introduces significant
risks. A key concern is 'model collapse’, which
occurs when models are repeatedly trained on data
generated by other models rather than on human-
produced language (Gerstgrasser et al., 2024). This
leads to a gradual degradation of linguistic quality
(Shumailov et al., 2024), including loss of syntac-
tic and semantic diversity, oversimplification of
structures, increased redundancy, and a higher inci-
dence of hallucinations, which are factually incor-
rect or incoherent outputs (Long et al., 2024). Over
time, this severely undermines the model’s ability
to replicate the richness and complexity of natural
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language (Bender et al., 2021; Penedo et al., 2023).

Despite recent studies exploring the benefits and
risks of synthetic data (Liu et al., 2024; Gilardi
et al., 2023), there is still a lack of methodologi-
cal frameworks that rigorously assess the linguistic
quality of synthetic data compared to real human
data. This gap raises important concerns about
whether synthetic data can truly support effec-
tive model training without introducing problems.
Therefore, there is an urgent need for more rigorous
and linguistic evaluation methods to assess whether
synthetic corpora adequately reflect the qualities of
human-produced text and can ensure the long-term
reliability of NLP systems.

The present proposal seeks to address this gap
by designing and implementing a systematic lin-
guistic evaluation of synthetic Spanish data gener-
ated by state-of-the-art LLMs, focusing on three
dimensions: lexical, syntactic and semantic diver-
sity. While existing research has predominantly
focused on English, the linguistic effects of syn-
thetic data generation in other languages remain
largely underexplored.

In this context, the proposed study takes a new
perspective by examining whether the patterns of
linguistic degradation observed in English syn-
thetic data also manifest in Spanish, a language
with fundamentally different grammatical proper-
ties. To this end, the study will develop a compar-
ative framework, grounded in quantitative corpus-
linguistic metrics, to systematically evaluate and
contrast synthetic Spanish corpora with authen-
tic human-written corpora of comparable size and
genre. It is worth noting that this framework re-
mains to be operationalised.

This comparative analysis aims to reveal whether
risks such as linguistic simplification and loss of
structural and semantic richness are universal phe-
nomena or language-specific issues. This method-
ological approach aims to uncover whether said
degradation previously observed in English also
occurs in Spanish.

2 Background and Related Work

The increasing reliance on synthetic data used to
overcome the limited availability of high-quality
human-produced corpora has attracted growing at-
tention in recent years. A substantial body of re-
search has emerged examining the potential and
limitations of synthetic datasets in the training of
large language models (LLMs), particularly related
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to their linguistic properties and their implications
for NLP systems. Hence, the present section re-
views relevant literature on the risks associated
with synthetic data, with particular emphasis on the
loss of linguistic diversity in machine-generated
texts. Situating this study within the broader con-
text of these works provides the theoretical and
empirical foundation for the proposed linguistic
evaluation of synthetic Spanish corpora.

2.1 Risks in Synthetic Data

To commence, although synthetic data has been
proposed as a scalable solution to the aforemen-
tioned problem of scarcity, ongoing research has
identified several risks that can seriously affect the
quality of models trained on this type of data (Mar-
wala et al., 2023; Hao et al., 2024). These risks
are diverse and impact not only the properties of
the corpus itself but also the ability of models to
perform well.

One of the most relevant issues is data bias,
which occurs when synthetic data does not accu-
rately reproduce the real characteristics of authen-
tic data (Hao et al., 2024). This can lead models
to learn inaccurate or unrealistic representations,
reducing their reliability.

Closely related to this is the phenomenon of over-
smoothing, where synthetic data tends to remove
natural variation and rare patterns. As a result, the
corpus becomes too homogeneous and simplified,
lacking the complexity needed to train robust mod-
els (Hao et al., 2024). Such a loss of complexity
contributes to the degradation of linguistic diversity
in synthetic content.

Another common risk is incomplete or inaccu-
rate information, as synthetic data does not always
capture the full diversity of linguistic phenomena
present in real texts. This is partly due to the limi-
tations of generative models, which often suppress
noise or contain algorithmic flaws (Marwala et al.,
2023; Hao et al., 2024).

These risks are not just technical problems, but
fundamental challenges that threaten the sustain-
ability and reliability of natural language process-
ing systems. As synthetic data becomes more
widespread, understanding how it affects quality
is key to designing strategies that can mitigate its
negative impact.

2.2 Language Diversity Loss in Synthetic Data

Several recent studies have shown a growing in-
terest in analysing how the use of LLMs affects



linguistic diversity, both in machine-generated text
and in text produced by humans assisted by these
models (Guo et al., 2024a). A common concern in
this line of research is that, although LLMs have
demonstrated remarkable capabilities in generat-
ing fluent and grammatically correct text, their use
may lead to processes of linguistic homogenisation
that reduce the richness and diversity of language.
In particular, synthetic corpora often lack spelling
mistakes and tend to underrepresent non-standard
dialects, which further limits their applicability in
real-world contexts.

Liang et al. (2024) identified a significant shift in
lexical frequencies in academic writing, with an in-
crease in the use of LLM-preferred words starting
around five months after the release of ChatGPT
in 2022. Similarly, Luo et al. (2024) demonstrated
that machine translations exhibit lower morphosyn-
tactic diversity and greater convergence compared
to human translations. The authors attributed this
outcome, in part, to the use of beam search, which
biases outputs toward more frequent and less di-
verse patterns.

Finally, Padmakumar and He (2024) found that
writing assisted by InstructGPT also reduces tex-
tual diversity compared to writing with GPT-3 or
without model assistance. This effect is primarily
driven by the model’s output rather than by user
behaviour. The authors warned that while rein-
forcement learning with human feedback (RLHF)
improves the model’s ability to follow instructions,
it may also constrain personal expression. This
highlights the need for user-centred evaluations
and the development of more customisable models
that preserve linguistic diversity.

In conclusion, systematic and language-specific
evaluations of synthetic corpora are still scarce for
languages such as Spanish. This study addresses
said necessity through a comparative analysis of hu-
man and synthetic Spanish corpora across lexical,
syntactic, and semantic levels.

3 Main Hypothesis and Objectives

The present research proposal is based on the hy-
pothesis that synthetic data generated by large
language models (LLMs) in Spanish may exhibit
lower linguistic richness and diversity compared
to human-produced data. If synthetic data is con-
tinuously used for model training, it could lead to
a degradation of the linguistic quality of LLMs.
Specifically, artificially generated texts are ex-
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pected to show a more limited and repetitive vo-
cabulary, simpler and less varied syntactic struc-
tures, and lower semantic coherence, resulting in
discourse that is less connected, redundant, or even
inconsistent (Guo et al., 2024b). Such linguistic
deficiencies could negatively impact the ability of
models trained with synthetic data to understand
and produce natural language in real-world con-
texts, thereby compromising their performance on
complex linguistic tasks.

From this perspective, the main objective of this
research proposal is to perform a detailed linguistic
evaluation of the synthetic Spanish corpora gener-
ated by LLMs. The evaluation will focus on three
key dimensions: lexical, syntactic, and semantic.
The purpose is to assess how the synthetic data re-
flects the natural variability and structural richness
of the Spanish language. This will be done through
a comparison between synthetic texts and human
Spanish corpora of similar size and genre.

To achieve this general goal, the study proposes
the following specific objectives:

* O1: To assess lexical diversity by applying
established corpus linguistics metrics such as
type-token ratio (TTR), lexical density, and
vocabulary growth measures. These metrics
will help determine whether synthetic texts
maintain a wide and varied vocabulary com-
parable to that found in natural Spanish.

02: To examine syntactic complexity by
analysing the presence and frequency of com-
plex sentence constructions, including sub-
ordinate clauses, coordination, and sentence
embedding. This will help determine whether
synthetic data reproduces the grammatical so-
phistication of human language use.

03: To evaluate semantic diversity by mea-
suring how much the synthetic texts cover dif-
ferent meanings and topics. This will be done
using sentence embeddings to calculate se-
mantic dispersion and topic modelling to as-
sess the range and balance of themes. These
metrics will assess if synthetic data reflects the
richness and variability of natural Spanish.

04: To conduct a human evaluation aimed
at identifying specific patterns of linguistic
degradation in synthetic data through system-
atic comparison with natural corpora. Under-
standing these patterns will help guide the



creation of higher-quality synthetic datasets
that better support the training of reliable and
robust Spanish language models.

05:To compare the impact of synthetic data
on Spanish with previously reported effects
in English, thereby distinguishing universal
patterns of linguistic simplification from phe-
nomena specific to Spanish.

Through these objectives, the study seeks to pro-
vide a clearer picture of the current limitations of
synthetic data in Spanish and contribute to the con-
struction of higher-quality data.

4 Proposed Methodology

This study proposes a methodology for the eval-
uation of the linguistic quality of synthetic data
generated by LLMs in Spanish, structured in dif-
ferent stages. The approach is grounded in the
framework developed by Guo et al. (2024b) in “The
Curious Decline of Linguistic Diversity: Training
Language Models on Synthetic Text”, who demon-
strated that synthetic data, while effective for im-
proving task performance, systematically exhibit a
decline across three key dimensions: lexical, syn-
tactic and semantic diversity when compared to
human-written texts. Their findings underscore the
importance of incorporating fine-grained linguistic
analysis into the evaluation of synthetic corpora,
especially when these corpora are intended for use
in training language models.

4.1 Data Gathering and Generation

The first stage of this proposal involves the careful
selection and preparation of datasets. To carry out
the study, two primary datasets will be established:
(1) a natural corpus consisting of texts authored by
humans, and (2) a synthetic corpus generated artifi-
cially by LLMs. The natural corpus will be an ex-
isting and compiled dataset, ensuring that the texts
are available in open formats and preprocessed to
guarantee comparability.

For the synthetic corpus, publicly available syn-
thetic datasets will be collected, and additional
texts will be generated using pretrained models
like GPT-4, LLaMA 2, or Mistral, among others.
Efforts will be made to produce a volume of text
comparable to that of the natural corpus to ensure
statistical validity. Generation prompts will be care-
fully crafted to yield texts with styles and thematic
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content closely matching the human-written cor-
pus.

Finally, both corpora will undergo linguistic nor-
malisation procedures to ensure that all subsequent
comparisons are performed on consistent, noise-
free data.

4.2 Linguistic Analysis of Corpora

In the second stage of the methodology, a thorough
analysis will be carried out to assess the linguistic
diversity present in the previously collected human
and synthetic corpora. Following Tevet and Berant
(2021), diversity can be understood in two main
ways: content diversity, answering “What to say?”,
and form diversity, answering “How to say it?”. In
the words of Guo et al. (2024a), “lexical diversity
and syntactic diversity are considered sub-aspects
of form diversity, while semantic diversity reflects
content diversity”.

Although other sub-aspects of linguistic diver-
sity exist, such as style or register, these tend to
be more ambiguous, harder to measure, and often
overlap with the three main dimensions. For these
reasons, this study will focus specifically on the
three clearly defined and quantifiable dimensions
mentioned above (Guo et al., 2024b), which offer
a solid foundation for comparative analysis.

To fulfil the goal of evaluating and comparing
synthetic and human corpora, the analysis is organ-
ised around the following dimensions:

4.2.1 Lexical Diversity

Lexical diversity generally refers to the proportion
of unique word types within a standardised text
sample, such as the total number of tokens (Zheng,
2025). Laufer and Nation (1995) defined measures
of lexical richness as attempts to “quantify the de-
gree to which a writer is using a varied and large vo-
cabulary.” Consequently, lexical diversity is widely
recognised as one of the most direct indicators of
lexical richness (Vermeer, 2004).

Lexical diversity metrics quantify the range of
vocabulary used in a text, which can reflect both
the richness of a language model and its ability to
generate varied language (Zheng, 2025). Following
the hypothesis presented by Guo et al. (2024a),
models trained on synthetic data tend to exhibit a
more limited lexical repertoire, often resulting in
repetitive and predictable language generation.

In the context of Spanish, the evaluation of lexi-
cal diversity presents additional challenges due to
the rich inflectional morphology of the language.



In addition, variability caused by verb conjugations,
along with gender and number agreements, can ar-
tificially inflate surface-level type counts. As a re-
sult, accurately assessing lexical variation becomes
more complex.

To assess these challenges in Spanish, this study
will adopt a set of lexical diversity metrics from
corpus linguistics to ensure a comprehensive evalu-
ation:

* Type-Token Ratio (TTR) (Johnson, 1944):
The ratio between the number of lexical types
(unique words) and the total number of tokens
in a text. Due to its well-known sensitivity to
text length, this metric is applied to texts trun-
cated to a fixed length, following the approach
proposed by Guo et al. (2024a).

Distinct-n (Li et al., 2016): Computes the
proportion of unique n-grams over the total
number of n-grams. This study uses n
1 (equivalent to TTR), n = 2, and n = 3,
as this indicator is particularly informative to
evaluate diversity in longer lexical sequences.

Self-BLEU (Zhu et al., 2018): A metric orig-
inally developed for generative models that
measures the similarity between generated
sentences within the same data set. Lower
Self-BLEU indicates higher diversity.

These metrics collectively provide a robust view
of lexical diversity, accounting for both the superfi-
cial variety of word forms and the deeper variability
of lexical patterns.

4.2.2 Syntactic Diversity

Syntactic diversity refers to the variety and com-
plexity of sentence structures present in a text or
corpus. It shows how flexibly different grammat-
ical parts are used, such as phrases, clauses, and
sentence types (Guo et al., 2024b).

According to Bastiaanse and Edwards (1998),
higher syntactic diversity makes the text more ex-
pressive and adds subtle meaning, affecting its style
and tone. Texts with high syntactic diversity have
many different sentence forms, while texts with low
diversity tend to use repetitive or simple sentences.
Additionally, exposure to different syntactic struc-
tures is essential for language models to develop
a deeper and more complex understanding of lan-
guage (Aggarwal et al., 2022).

Despite its importance, syntactic diversity has
been a relatively underexplored aspect in linguistic
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analyses (Guo et al., 2024b). This phenomenon is
especially significant in Spanish, a language char-
acterised by flexible word order, frequent subject
ellipsis, and abundant use of subordinate clauses.

To evaluate this diversity, the present study will
employ traditional syntactic complexity metrics
commonly used in linguistic research. These met-
rics are as follows:

* Syntactic Complexity Index (SCI) (Lu,
2009): which integrates characteristics such as
the average depth of dependency trees, the pro-
portion of subordinate clauses and the mean
sentence length.

Subordination Ratio (Hunt, 1965): defined
as the proportion of subordinate clauses rela-
tive to the total number of clauses, is a widely
used metric in the research of syntactic com-
plexity in Spanish.

Together, these metrics capture both the struc-
tural diversity and the richness in the syntactic con-
figurations generated by the models.

4.2.3 Semantic Diversity

Semantic diversity refers to the range and variabil-
ity of meanings, concepts, and topics expressed
within a text or across a collection of texts. To cap-
ture this dimension, the present study will adopt a
dual approach that combines embedding-based and
network-based methods, which together provide a
robust assessment of semantic variation.

On the one hand, semantic dispersion (Div_sem)
is calculated by representing each sentence as a
dense vector that captures its meaning within a mul-
tilingual semantic space, using SBERT (Reimers
and Gurevych, 2019). Then, the average cosine
distance between all pairs of sentence vectors is
measured to estimate how far the document spreads
across semantic space. A higher dispersion value
reflects greater variety in the concepts covered.

On the other hand, topic diversity is measured us-
ing BERTopic (Grootendorst, 2022), which groups
together semantically similar sentence vectors to
identify underlying topics in the text. Diversity is
then quantified by (a) counting the number of dis-
tinct topics found and (b) calculating topic entropy,
which reflects how rich and evenly distributed the
thematic content is across the document.

Lastly, this combined approach enables a de-
tailed comparison of semantic diversity between
human-authored and synthetic texts.



5 Expected results

Based on the proposed methodology, preliminary
assumptions suggest that synthetic corpora in Span-
ish may display lower linguistic diversity compared
to human-authored texts. For instance, synthetic
texts are expected to exhibit reduced lexical rich-
ness, with comparatively lower type-token ratios
(TTR), smaller distinct-n values, and higher Self-
BLEU scores, indicating a tendency toward repeti-
tive and homogeneous vocabulary. At the syntac-
tic level, a decrease in syntactic complexity is an-
ticipated, reflected in shallower dependency trees,
shorter average sentence lengths, and lower subor-
dination ratios, suggesting a preference for simpler
and more uniform sentence structures. Finally, in
the semantic dimension, synthetic corpora might
cover a narrower range of topics and exhibit lower
semantic dispersion, which would signal limited
conceptual variability.

In conclusion, it is hypothesised that these re-
sults may align with previous findings in English.
Moreover, given Spanish’s greater morphological
complexity and comparatively lower online rep-
resentation, the negative impact of synthetic data
is expected to be more pronounced. Nevertheless,
these expectations remain tentative and will only be
confirmed once the proposed evaluation framework
is applied.
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