
Proceedings of the Student Research Workshop associated with RANLP-2025,
pages 70–77, Varna, Bulgaria, Sep 8-10, 2025.

https://doi.org/10.26615/issn.2603-2821.2025_009

70

Visualization of LLM Annotated Documents

Teodor Valchev, Nikolay Paev
Artificial Intelligence and Language Technology

Institute of Information and Communication Technologies
Bulgarian Academy of Sciences

Bulgaria
teodorvulchev@gmail.com
nikolay.paev@iict.bas.bg

Abstract

Manual annotations play a crucial role in the
Natural Language Processing domain. The pa-
per presents an automatic annotation and visu-
alization system for documents in the field of
Social Studies and Humanities. The current an-
notation is on two levels, Named Entities and
Events. The system combines automatically
generated annotations from language models
with a powerful text editor that is extended to
accommodate manual annotation. The goal is
to support the extraction of information from
historical documents by scientists in the field
of social studies and humanities. At the time of
writing, the system is still in development.

1 Introduction

In this paper, we present the User interface (UI)
to semantically annotated documents related to a
knowledge graph representing the related knowl-
edge of our CLaDA-BG1 project. The aim of
the developed system is to support the annota-
tion of documents with the goal of expanding the
Bulgarian-centric Knowledge graph and support-
ing researchers in the area of Social Sciences and
Humanities (SS&H) in doing their investigations.
The current architecture of the CLaDA-BG system
is presented in Figure. 1. The main components of
the architecture comprise (1) a Knowledge Graph
and (2) Document Database that contain a large set
of documents annotated with knowledge from the
knowledge graph. The Knowledge Graph provides
a contextualization of different datasets related to
Bulgarian language, culture, and history. We call
it BGKG (BulGarian-centric Knowledge Graph)

1CLaDA-BG is a Bulgarian national research infrastruc-
ture for resources and technologies for linguistic, cultural
and historical heritage, integrated within CLARIN EU and
DARIAH EU.

because it represents main facts about people, set-
tlements, locations, events, documents, organiza-
tions, etc. connected to Bulgaria. The Document
Database contains a huge number of documents
including archive documents, newspaper articles,
letters, papers, description of artifacts, etc. Doc-
uments are annotated with concepts or instances
from the knowledge graph. The annotation of doc-
uments supports search via queries expressed as
textual elements, concepts, and facts defined in
the terms of BGKG. The queried documents are
post processed in different ways. The two main
ones are: (1) ranking with respect to the query
terms, and (2) extraction of new knowledge from
extracted documents. This architecture assumes
various types of users including at least the follow-
ing ones: researchers, BGKG curators and Docu-
ments annotators. Researchers access the systems
in order to find the necessary documents supporting
their research. They produce new research repre-
sented as documents similar to the ones within the
Document database. The BGKG curators manage
the knowledge within it by checking its correct-
ness, mapping different representations of the same
knowledge, and adding new information. Annota-
tors perform annotation of the documents manually
or semi-manually, usually as a post editing after
automatic annotation.

In our view this architecture is a way to pro-
vide access to NLP technologies to end users (re-
searchers, teachers, etc.) who are not familiar (and
not willing to become familiar) with these tech-
nologies. Thus, they will prefer to work as they are
used to in their research. Our observations are that
researchers in the area of SS&H usually are work-
ing with WYSIWYG2 editors such as MS Word,
Google Docs. Therefore, we consider as the main
component of the UI a structural editor in which

2WYSIWYG stands for What You See Is What You Get

71

Figure 1: The Architecture of the CLaDA-BG Project.

the user can create new documents describing their
new research, taking notes, etc.

Thus, the same editor is used to examine selected
documents in the database, taking notes, annota-
tions, and corrections. The editor has to support
creation of well formatted documents representing
scientific papers. Additionally, it has to be easily
extendable to represent complex annotations across
the content of the documents. As representation
of the documents, we consider XML version of
HTML (XHTML) — requiring the HTML docu-
ment to be well-formed XML document. Having
such well-formed XHTML documents makes it
easy to add a minimal number of non-standard ele-
ments and attributes.

In this paper, we present the structure of the
annotation of the documents, the automatic anno-
tation, the architecture of the editor and its func-
tionalities - visualization, (partial) re-annotation,
linking the document to the knowledge graph and
to annotated documents.

The structure of the paper is as follows: in the
next Section 2 some works are discussed in rela-
tion to our work. In Section 3 the overall system
architecture is presented with the document repre-
sentation, database servers, the local LLM (Large
Language Models) server, and the UI. Section 4
presents the workflow of the system, and Section 5
concludes the paper.

2 Related Works

Manual annotation of documents is a crucial step
in all natural language processing tasks. The paper
is concerned with the UI to support the work of
the main types of users of our system. We con-
sider as related works mainly systems for manual
annotation of documents.

For many years, we used the CLaRK System
(Simov et al., 2001) for corpus annotation, lexicon
development, and more. The system main inter-
face is an XML editor. In addition several tools
for processing XML documents are internally im-
plemented, such as Regular grammars over XML
documents, constrains for validations of different
annotation and/or insertions of valid XML frag-
ments. The tools of CLaRK System allow us to
solve most of the processing that we wanted to im-
plement. But the system has some shortcomings.
First, it is not connected to any external databases.
Thus, users need to take care of document man-
agement by themselves. Second, the tools require
knowledge of XML related technologies such as
XPath3 which is very powerful for processing XML
document, but they are a burden for many of the
potential users. In addition, the editor does not sup-
port any formatting instructions, making the system
difficult for unfamiliar users. Thus, our work here
draws on our experience with the CLaRK system.

3XML Path Language (XPath): https://www.w3.
org/TR/xpath/

https://www.w3.org/TR/xpath/
https://www.w3.org/TR/xpath/

72

We have similar experience with the following
systems: the GATE Teamware — (Bontcheva et al.,
2013), the INCEpTION platform — (Klie et al.,
2018), SpaCy: Industrial-Strength Natural Lan-
guage Processing4. All of them have functionality
for creation of rules for automatic text process-
ing including regular expression rules, program-
ming languages — Java, Python, for processing
the predefined document data models. They al-
low for calling external processing tools including
machine learning models, large language models
(LLMs), etc. Behind these functionalities, these
tools provide document visualization of the annota-
tions, some of which we incorporate in our work.
Such as coloring schema styles, tooltips, etc.

In our case, the main deviations from these tools
are that we need a WYSIWYG editor5 integrated
with the rest of the architecture of our system. This
is important because researchers value the struc-
tural presentation of documents, not just their con-
tent. This applies not only to their own documents,
but also to the documents they use in their research.

Neves and Ševa provide a comprehensive review
of manual annotation tools — (Neves and Ševa,
2019). They defined a set of evaluation criteria for
what makes an annotation tool useful. Their re-
sults show that none of the tools they reviewed met
their criteria fully (Functional, Data, and others).
As a selection criteria for tools to be extensively
reviewed in their study, they used: (1) availability,
(2) to be web accessible (downloadable or online),
(3) to be easy to install, (4) working for their field
of studies, and (5) to allow definition of annotation
schema. Of the 78 tools they considered, 63 were
not selected for a detailed evaluation because they
did not meet at least one of the five requirements.

3 System architecture

In this section, we present the document represen-
tation and the main components of our system - the
backend server, databases, automatic annotation
server, and UI.

3.1 User interface

The developed version of our software, as is cur-
rently, meets: web, easy to install, working in their
field of studies. In the future, we plan to allow
schema configuration and allow open availability.

4https://spacy.io/
5Such type of editors are most frequently used by re-

searchers in SS&H area. Thus, they reflect their experience.

3.2 Document representation

As was mentioned above, we need to define an
extended version XHTML. The main idea is to
use XHTML to support the format of the origi-
nal papers that are annotated and uploaded to the
system or the paper created by the user in their
own research activities. In order to perform ex-
periments with the extended version of the basis
XHTML format, we select an existing freely avail-
able web based HTML editor, which is not focused
on annotation: the TinyMCE rich text editor6 (GPL
licensed version7).

We have experimented with several schemes for
representation of annotation data. The result of
these experiments shows that using more than one
element which allows inclusion of several anno-
tation elements the editing of the annotations and
their interaction with the standard XHTML ele-
ments complicate the editing process. Thus, we
decided to minimize the number of new elements.
Experiments were performed using the TinyMCE
Annotations API, but the span approach made the
represention of overlapping annotation not user
friendly in the resulting XHTML. Spacy annota-
tion tool was reviewed and as a result only one new
type of elements < tok > token < /tok > is
added with a number of new custom attributes. The
extension of XHTML with this type of elements
is call cladaHTML. More detailed explanation is
available in Subsection 3.1.

The performed experiments using multiple tags
showed that issues may arise, caused by mixing
of the representations of the structured annotated
document and the stylization.

Documents are represented in the database as
tables of tokens, sentences, annotations, and known
facts.

Usage of just one element seems too small ad-
dition, but representation over tokens allows for
complex structures of annotations within Univer-
sal Dependencies CoNLL-U format8. Many other
projects are using variants of CoNLL format.

<i>Text </ i>

Listing 1: Crossing HTML elements which is erroneous
in general HTML, and not well formed in XHTML.

6https://www.tiny.cloud/
7https://github.com/tinymce/tinymce
8https://universaldependencies.org/

format.html

https://spacy.io/
https://www.tiny.cloud/
https://github.com/tinymce/tinymce
https://universaldependencies.org/format.html
https://universaldependencies.org/format.html

73

Figure 2: Annotation recommendation

<s e n t e n c e i d =”1”>
<a n o t c l a s s = ” c l a s s −1”>

<tok>The </ tok>
<a n o t c l a s s = ” c l a s s −2”>

<tok>sun </ tok>
<tok>i s </ tok ></ano t>

<tok>s h i n i n g </ tok>
</ ano t>

</ s e n t e n c e>

Listing 2: Annotated example sentence with multiple
elements

3.3 Back-end

In the back-end, there are a builder and a destructor
for the cladaHTML, which build the documents
from the tables in the relational database or con-
vert them to database SQL queries to update the
information in the tables. The relational database
model is used to represent the documents with an-
notations, tokenization, etc. The scheme of the
database is specified by the CLaDA-BG team and
allows for searching of facts in the documents and
in related documents, mentions, and more. The
relational database model is also used as an inter-
mediate representation of the documents annotated
by LLMs.

3.4 Knowledge and Documents database

The main database for storing documents has the
following tables with appropriate relations: Docu-
ments, Events, NEs (Named entities), Roles, Sen-
tences, Tokens, and URLs. They allow for search
queries like: All the documents where some Even-
t/NEs is mentioned, searching for documents with
close sentences, etc.

Using URLs, we can identify different occur-
rences (different names, pronouns, etc.) of the

same object in the same or between multiple docu-
ments. The records in the database are structured
in a way that allows for easy building of a fully
functional knowledge graph.

The UI is web-based and is built on top of
TinyMCE Text Editor, extended with JavaScript
code. A screenshot of the UI is provided in Figure
3. A custom footnote and endnote changes tracking
assistant is implemented. Coloring is achieved us-
ing Cascading Style Sheets (CSS) technology, but
due to limitations in most browsers, only one rule
per class from the same type can be visualized at
the same time. To bypass this restriction, dynamic
CSS coloring rules (single- and multiclass) are gen-
erated in the browser as the document is loaded in
the editor. Rules are generated only for available
combinations of classes, so we save ourselves from
generating all possible combinations of classes and
the linked exponential growth of all subsets.

The TinyMCE text editor internally is represent-
ing the document in HTML format (setting is avail-
able for XHTML), and allows the definition of cus-
tom tags. Only one custom tag < tok >< /tok >
with custom attributes is added, dividing the to-
kens. We call this language extension cladaHTML
as mentioned earlier. In that way, we are preserving
the behavior of all features of the editor and simul-
taneously adding new functionality. The reason for
using only a single new tag is that in XHTML al-
most all elements must have a parent element, and
tag misnesting9 is not allowed. Misnesting occurs
when XHTML tags are not properly nested, mean-
ing that the order in which tags are closed does not

9https://w3c.github.io/html-reference/
syntax.html

https://w3c.github.io/html-reference/syntax.html
https://w3c.github.io/html-reference/syntax.html

74

Figure 3: A screenshot of the UI showing an annotated document. The left column displays the annotation coloring
toggles. The center window is the interface of the extended TinyMCE editor. The right column shows information
from the knowledge base for the entities in the document.

match the order in which they were opened. List-
ing 1 is a small example of misnesting. In (Simov
et al., 2001) a similar issue is presented, but in
XML, typically called “not well-formed XML doc-
ument”. The issues that may arise when styling the
document or using another functionality, even built
in the editor, are linked to the tags representing
them. It may not be possible to style the desired
chunks of text, for example: parts of heading text,
paragraphs, and others, because there are multiple
tags representing annotations, sentences, and oth-
ers which overlap, leading to tag misnesting when
styling parts of sentence with a lot of overlapping
of annotations, when representing annotations with
custom tags. Consider the example in Listing 2. If
we need to style only the class-1 annotated part of
the text, it becomes impossible because annotated
class-2 is started in class-1. If styling is done with
XHTML tags (spans, divs, italic, and other tags)
due to limitations in tag nesting in XHTML the
entire sentences must be styled, so the XHTML re-
mains valid. Other custom mechanisms for styling,
rules, or CSS can be used, which also depend on
the chosen text editor.

In the implemented solution with a single new
tag, the annotations are represented as a multiclass
attribute, each token has a unique ID per docu-
ment. We did not find any major responsiveness
issues while working with longer documents. Other
functionalities like sentences, tooltip, etc. are im-
plemented using custom attributes to store desired
information and behavior. In that context, changing

annotation of text is actually a change in the class
attributes of the tokens. (Listing 3)

Annotation suggestions are displayed to the user,
which can be generated with database queries,
LLMs or by traversal of the knowledge graph. The
user can also review stored information for the
suggestion in order to make the best decision for
annotation and URL linking. Figure 2 shows an
example of the suggestions.

We need to point out a subtle but crucial detail:
TinyMCE uses a non-standard XHTML attributes
internally, which may not show in the “View source”
option, but causes confusion during development.
One example of that is the usage of “data-mce-href”
hidden attribute (instead of the direct usage of the
“href” attribute) which is used to keep track of the
original link, during editing, or transformations for
different reasons.

3.5 Automatic annotation

The automatic annotation pipeline is a core feature
of the system. When the user uploads a brand
new document to the database, the NLP pipe first
extracts the text, tokenizes it, and segments it into
sentences.

The system pipeline then applies the language
models that annotate the named entities and the
event structure in the text, providing the initial an-
notations of the documents. We use our own pre-
trained and later fine-tuned BERT (Devlin et al.,
2019) and T5 (Raffel et al., 2019) models for the
tasks. The models were pretrained on 20B and 35B

75

Bulgarian corpora respectively.

<t o k i d =”1” c l a s s =”PER” n e u r l =” Alexande r
S t a m b o l i y s k i ” t i t l e n e s =”PER”
s e n t e n c e =”1”>Alexande r</ tok>

<t o k i d =”2” c l a s s =”PER”
n e u r l =” A l e x a n d e r S t a m b o l i y s k i ” t i t l e n e s =”PER”
s e n t e n c e =”1”> S t a m b o l i y s k i</ tok>

<t o k i d =”3” c l a s s =” d e a t h b i r t h o c c u p a t i o n ”
t i t l e n e s =” d e a t h b i r t h o c c u p a t i o n ”
s e n t e n c e =”2”> (</ tok>

<t o k i d =”4” c l a s s =”TIME d e a t h b i r t h o c c u p a t i o n ”
t i t l e n e s =”TIME d e a t h b i r t h o c c u p a t i o n ”
s e n t e n c e =”2”>1</ tok>

<t o k i d =”5” c l a s s =”TIME d e a t h b i r t h o c c u p a t i o n ”
t i t l e n e s =”TIME d e a t h b i r t h o c c u p a t i o n ”
s e n t e n c e =”2”>March</ tok>

<t o k i d =”6” c l a s s =”TIME d e a t h b i r t h o c c u p a t i o n ”
t i t l e n e s =”TIME d e a t h b i r t h o c c u p a t i o n ”
s e n t e n c e =”2”>1879</ tok>

<t o k i d =”7” c l a s s =” d e a t h b i r t h o c c u p a t i o n ”
t i t l e n e s =” d e a t h b i r t h o c c u p a t i o n ”
s e n t e n c e =”2”>−</ tok>

<t o k i d =”8” c l a s s =”TIME d e a t h b i r t h o c c u p a t i o n ”
t i t l e n e s =”TIME d e a t h b i r t h o c c u p a t i o n ”
s e n t e n c e =”2”>14</ tok>

<t o k i d =”9” c l a s s =”TIME d e a t h b i r t h o c c u p a t i o n ”
t i t l e n e s =”TIME d e a t h b i r t h o c c u p a t i o n ”
s e n t e n c e =”2”> June</ tok>

<t o k i d =”10” c l a s s =”TIME d e a t h b i r t h o c c u p a t i o n ”
t i t l e n e s =”TIME d e a t h b i r t h o c c u p a t i o n ”
s e n t e n c e =”2”>1923</ tok>

<t o k i d =”11” c l a s s =” d e a t h b i r t h o c c u p a t i o n ”
t i t l e n e s =” d e a t h b i r t h o c c u p a t i o n ”
s e n t e n c e =”2”>)</ tok>

<t o k i d =”12” c l a s s =” o c c u p a t i o n ”
t i t l e n e s =” o c c u p a t i o n ” s e n t e n c e =”2”> i s </ tok>

<t o k i d =”13” c l a s s =” o c c u p a t i o n ”
t i t l e n e s =” o c c u p a t i o n ”
s e n t e n c e =”2”> b u l g a r i a n</ tok>

<t o k i d =”14” c l a s s =” o c c u p a t i o n ”
t i t l e n e s =” o c c u p a t i o n ”
s e n t e n c e =”2”> p o l i t i c i a n . </ tok>

Listing 3: An annotated sentence in the CLaDA-BG-
HTML format. (The original sentence is in Bulgarian.)

The processing by the models is done on the sen-
tence level. The BERT model is used for the recog-
nition of named entities and classifies tokens in the
classic BOI format. The names are later mapped to
their specific URLs in the Knowledge Base. The
best model we created achieves a macro-F1 score
of 81.23%. Experiments regarding entity disam-
biguation with fine-tuning models for retrieval (bi-
encoders and cross-encoders) are also made, but
are still in an early stage and will be presented in
the future.

The event extraction is done with the T5 model
which processes the sentences and generates the
event structure into a JSON compatible format. The
output contains a list of events described by event

type, event text span, and a list of roles and their
text spans. The predicted texts are fuzzy matched
to the input tokens of the sentence, in order to get
the token ids of the spans. The model achieves an
F1 score of 84.29% in the extraction of test events.
The models are fine-tuned on the latest version of
the Bulgarian Event Corpus (Osenova et al., 2022).
The development of the corpus and the models is
described in more detail in (Simov et al., 2025).
The annotation subsystem is designed as an inter-
nal REST API which is called by the back-end
server on every update of the documents. The an-
notation returned by the pipeline is then stored in
the database and later cladaHTML is generated
from it.

4 Workflow

The main workflow of the system is:

• The user uploads a document from docx/mark-
down or creates a plain document which is
represented internally in cladaHTML.10

• The user can edit or style the document.

• When the document is saved on the server, it
is sent to the LLM server for automatic anno-
tation, then it is returned to the back-end and
saved in the relational database form.

• After the document is processed, it is returned
in cladaHTML to the UI, the user can edit,
style, edit annotations, create a new annota-
tion, etc. and of course save it again, create a
new version for the document, download it lo-
cally, or share it with another user. A diagram
is presented in Figure 4.

• When the user is working on a document,
he/she could perform different types of search
in the database for additional information re-
lated to the annotations, saved in the BGKG,
or to access other documents.

5 Conclusions and Future Work

In the paper, we presented a web based annotation
system that allows for editing and stylization of
documents in a user friendly way. The system lever-
ages the use of LLMs for automatic annotations
and initial annotation suggestions. Our main contri-
butions are: (1) implementation of an extension of

10The uploading of a set of many documents will be imple-
mented as an offline services in the system.

76

Figure 4: Interaction diagram of the subsystems.

XHTML to incorporate a token-based annotation
of XHTML documents; (2) The TinyMCE rich text
editor was extended to visualize the annotation of
such documents and to allow for manual annota-
tion. We are also working on manual modification
of the automatic annotation; (3) A mechanism for
annotation of XHTML with named entities and
events. We think that in this way we provide the
NLP technologies to the end users without a need
for them to know the details of these technologies.

The specified internal document format
cladaHTML is compatible with the standard
features of the core TinyMCE editor, extending
its functionality. The system is web-based, no
installation is needed, easy to work with, and not
computationally demanding. Developers should
watch out for rich text editors adding hidden tags
and merging multiple same-type tags, which may
not appear even in source view.

In the future, we plan to work in two directions:
(1) Integration with other components of the whole
architecture, presented in the introduction; (2) Ex-
tension of the functionalities presented in the paper.

Plans for future work include: Support for im-
porting from PDF, ability to do OCR and support
for older or ancient languages. Support for export-
ing in docx format and as interactive document for
embedding in web-pages in the format of: XHTML,
CSS and JavaScript document, so some interaction
with the document is possible outside the editor.
Stylization of plain documents with LLMs.

We plan to extend the LLMs to support the edit-
ing process for spell checking, linguistic ambigu-
ity, and others as needed. Although in the paper
we referred to CoNLL in the context of Universal
Treebanks we believe that a format based on tokens
could incorporate not only syntactic annotation, but
any annotations over text.

In the paper we provide integration of the imple-
mented editor with a selected document. The more
complicated searches that are represented shortly

in the introduction. Currently we are working on
a creation of RAG (Retrieval-Augmented Genera-
tion) system — see (Gao et al., 2024) for a Survey.
Such a system will provide a more flexible way of
searching the document database. In this way we
will be able to rank the appropriate documents as
mentioned earlier. We plan to implement a system
to extract new knowledge from selected documents.
The form of the knowledge will depend on the con-
ceptual knowledge in BGKG — the ontological
knowledge, the instance information and syntactic
structure of the text. The significance of this new
knowledge with respect to the selected documents
will be determined by evaluating the extracted new
facts as key ones.

Open-source version is considered after the pro-
duction phase is achieved. For now, the system is
tied to our requirements, but a modular approach
can be implemented.

Acknowledgments

The reported work has been supported by CLaDA-
BG, the Bulgarian National Interdisciplinary Re-
search e-Infrastructure for Resources and Tech-
nologies in favor of the Bulgarian Language and
Cultural Heritage, part of the EU infrastructures
CLARIN and DARIAH. We also acknowledge the
provided access to the e-infrastructure of the Cen-
tre for Advanced Computing and Data Processing
(the Grant No BG05M2OP001-1.001-0003).

We would like to thank the CLaDA-BG team for
the nice working atmosphere and their comments
on the earlier versions of the text. Also, we would
like to thank the reviewers for their valuable and
insightful comments.

References
Kalina Bontcheva, Hamish Cunningham, Ian Roberts,

Angus Roberts, Valentin Tablan, Niraj Aswani, and
Genevieve Gorrell. 2013. Gate teamware: a web-

https://doi.org/10.1007/s10579-013-9215-6

77

based, collaborative text annotation framework. Lan-
guage Resources and Evaluation, 47(4):1007–1029.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4171–4186, Minneapolis, Minnesota. Association for
Computational Linguistics.

Yunfan Gao, Yun Xiong, Xinyu Gao, Kangxiang Jia,
Jinliu Pan, Yuxi Bi, Yi Dai, Jiawei Sun, Meng Wang,
and Haofen Wang. 2024. Retrieval-augmented gen-
eration for large language models: A survey.

Jan-Christoph Klie, Michael Bugert, Beto Boullosa,
Richard Eckart de Castilho, and Iryna Gurevych.
2018. The INCEpTION platform: Machine-assisted
and knowledge-oriented interactive annotation. In
Proceedings of the 27th International Conference on
Computational Linguistics: System Demonstrations,
pages 5–9, Santa Fe, New Mexico. Association for
Computational Linguistics.

Mariana Neves and Jurica Ševa. 2019. An extensive
review of tools for manual annotation of documents.
Briefings in Bioinformatics, 22(1):146–163.

Petya Osenova, Kiril Simov, Iva Marinova, and Mela-
nia Berbatova. 2022. The Bulgarian event corpus:
Overview and initial NER experiments. In Pro-
ceedings of the Thirteenth Language Resources and
Evaluation Conference, pages 3491–3499, Marseille,
France. European Language Resources Association.

Colin Raffel, Noam M. Shazeer, Adam Roberts, Kather-
ine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J. Liu. 2019. Exploring
the Limits of Transfer Learning with a Unified Text-
to-Text Transformer. J. Mach. Learn. Res., 21:140:1–
140:67.

Kiril Simov, Nikolay Paev, Petya Osenova, and Stefan
Marinov. 2025. Bulgarian event extraction with llms.
Presented at RANLP2025.

Kiril Simov, Zdravko Peev, Milen Kouylekov, Alexan-
der Simov, Marin Dimitrov, and Atanas Kiryakov.
2001. CLaRK — an XML-Based System for Cor-
pora Development. In Proc. of the Corpus Linguistics
2001 Conference, pages 558–560.

https://doi.org/10.1007/s10579-013-9215-6
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
http://arxiv.org/abs/2312.10997
http://arxiv.org/abs/2312.10997
https://www.aclweb.org/anthology/C18-2002
https://www.aclweb.org/anthology/C18-2002
https://doi.org/10.1093/bib/bbz130
https://doi.org/10.1093/bib/bbz130
https://aclanthology.org/2022.lrec-1.374/
https://aclanthology.org/2022.lrec-1.374/
https://api.semanticscholar.org/CorpusID:204838007
https://api.semanticscholar.org/CorpusID:204838007
https://api.semanticscholar.org/CorpusID:204838007

