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Abstract

Automated Audio Captioning (AAC) is a mul-
timodal task aimed at generating natural lan-
guage descriptions of audio content. Previ-
ous studies have shown that LLMs can im-
prove AAC performance by summarizing audio
events based on a list of candidate captions,
which are selected by an external reranker
from those generated using Nucleus Sampling.
However, the reranking process often selects
overly similar captions, disregarding the orig-
inal diversity of the sampled captions. In this
work, we show that this diversity reflects the
AAC model’s level of certainty and propose a
lightweight candidate selection approach that
preserves the initial diversity of the generated
captions. This, in turn, enables an LLM to sum-
marize the captions while considering the AAC
model’s certainty in a few-shot setting. Experi-
mental results demonstrate that our method out-
performs previous post-processing techniques
while being significantly faster.

Keywords: Automated Audio Captioning,
Large Language Models, In-context Learning, Post-
processing

1 Introduction

Automated Audio Captioning (AAC) is a mul-
timodal task that aims to generate natural lan-
guage descriptions of the content within audio
samples. Unlike Automatic Speech Recognition
(ASR), which focuses on transcribing spoken lan-
guage, AAC primarily targets environmental and
non-speech sounds, providing meaningful descrip-
tions of auditory scenes and events.

One of the primary challenges in AAC lies
in the inherent ambiguity of audio signals. Un-
like image captioning, where objects can be de-
scribed through concrete attributes such as shape,
color, size, and spatial relationships, describing
audio clips is significantly more complex (Wu

Two metal objects tapping
into each other a number of

times.

A person is making noise by
tapping their fingernails on a

solid surface.

Water is dripping from the
faucet into the sink.

Tapping two metal sticks
together a few times a

second.

Figure 1: Diverse and occasionally conflicting per-
ceptions of a single audio sample due to the inher-
ent ambiguity of audio signals. The captions corre-
spond to one training sample from the Clotho dataset
(dual metal.wav).

et al., 2019). Acoustic events often exhibit over-
lapping or similar sound characteristics, leading to
varied perceptions among individuals, as shown
in Figure 1 (Zhang et al., 2023; Drossos et al.,
2020). Consequently, widely used audio caption-
ing datasets, such as Clotho (Drossos et al., 2020),
provide multiple ground-truth captions from differ-
ent annotators for each audio sample, and models
are typically trained on one-to-many audio-caption
pairs, where each audio clip is randomly paired
with a single ground-truth caption in each itera-
tion (Zhang et al., 2023). This can introduce uncer-
tainty in the learned representations and potentially
result in performance degradation.

Thanks to the annual DCASE challenges1

and the release of open-source audio captioning
datasets such as Clotho (Drossos et al., 2020) and
AudioCaps (Kim et al., 2019), advancements in
AAC research have gained momentum in recent

1IEEE AASP Challenge on Detection and Clas-
sification of Acoustic Scenes and Events, available
at https://dcase.community
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Figure 2: Overview of our proposed method. First, N = 50 captions are generated for a given audio input using
Nucleus Sampling. Next, in the candidate selection stage, K = 5 captions are chosen to preserve the diversity of
the generated captions. Finally, these selected captions are processed by an LLM to further enhance diversity and
produce the final caption.

years. Most state-of-the-art AAC models employ
an encoder-decoder architecture (Xu et al., 2022;
Ye et al., 2022; Narisetty et al., 2021; Wu et al.,
2024), where the encoder is typically a pre-trained
audio encoder, such as PANN (Kong et al., 2020) or
BEATs (Chen et al., 2023), that extracts audio fea-
tures from the input signal. These features are then
passed to an autoregressive text decoder, such as
BART (Lewis et al., 2020) or GPT-2 (Radford et al.,
2019), which generates the corresponding caption.
The decoders normally generate sequences using
greedy decoding and beam decoding.

In addition to these conventional decoding meth-
ods, recent research has demonstrated that a hybrid
sampling and reranking strategy, which leverages
external pre-trained models for reranking, can im-
prove the outputs of AAC models by exploring a
broader search space than beam search (Wu et al.,
2024; Jung et al., 2024). Furthermore, inspired by
the success of Large Language Models (LLMs) in
a zero-shot setting across a variety of tasks and
their ability to generate human-like text (Radford
et al., 2019), recent studies in AAC have incor-
porated zero-shot LLM-based caption summariza-
tion (Jung et al., 2024) and error correction (Liu
et al., 2024) as post-processing steps, demonstrat-
ing the effectiveness of these techniques in refining
the generated captions.

In this work, we hypothesize that the diversity of
sampled captions reflects the AAC model’s level of
certainty regarding a given input. We demonstrate
that reranking is not the most effective approach
for candidate caption selection, as the resulting cap-
tions lack sufficient diversity to both capture the
model’s uncertainty and serve as input for LLM-
based summarization. To address this limitation,
we propose a method that preserves the original
diversity of the sampled captions and employs an
LLM in a few-shot setting to generate a final cap-
tion while considering the AAC model’s uncer-
tainty. Experimental results show that the proposed

method outperforms previous post-processing tech-
niques while being significantly simpler and faster.
Our contributions can be summarized as follows:
(1) we propose a lightweight candidate caption
selection method as an alternative to the hybrid
sampling and reranking strategy, (2) we enhance
AAC performance through an LLM-based post-
processing approach that leverages in-context learn-
ing and accounts for the AAC model’s certainty,
and (3) we introduce a simple technique to iden-
tify high-quality captions generated by AAC mod-
els, enabling selective LLM-based refinement that
improves performance while minimizing unneces-
sary processing overhead. The source code, experi-
ments, and results from this work will be publicly
released upon publication.

2 Related Work

2.1 Sampling and Reranking
Nucleus Sampling (Holtzman et al., 2020), also
known as Top-p Sampling, is a stochastic decod-
ing method commonly used in modern LLMs to
generate more diverse text compared to conven-
tional beam decoding (Shi et al., 2024). Inspired
by this, Wu et al. (2024), the winners of the DCASE
2023 AAC challenge, observed that approximately
one-third of the captions generated using Nucleus
Sampling achieve higher scores on AAC metrics
compared to those produced with beam decoding.
To leverage this advantage, they proposed a sam-
pling and reranking strategy that first generates a
list of N captions (50 in their original work) using
Nucleus Sampling, followed by a hybrid reranking
method to select the most suitable caption from the
list by computing two reranking scores. The de-
coder score is obtained by feeding the input wave-
form into the encoder and the generated captions
into the decoder to directly compute the caption
log-likelihood on the decoder outputs. The encoder
score is calculated as the cosine similarity between
the audio embedding, obtained by feeding the input
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Audio File: Shanghai Traffic Near Peoples Square.wav

CLAP Reranking Our Proposed Method

Candidate
Selection

Several cars and trucks are driving by on a busy street. A car drives by and then stops.
Several cars driving by on a busy street. Several cars are driving by on a busy road.
A busy street with cars driving by on a nearby road. Cars are driving by on the street and a woman is speaking.
A busy street with vehicles passing by. A person is walking down the street with cars driving by.
A large number of cars pass by on a nearby road. A car drives by and people are talking.

LLM
Output

(FENSE)

Several cars and trucks are driving by on a busy street.
(53.67%)

Cars are driving by on a busy road while a person is walking
and people are talking. (70.35%)

Explanation

CLAP Reranking ranks the sampled captions based on their embedding similarity to a fixed-dimensional audio embedding,
capturing only the aspects of the audio emphasized by the CLAP audio encoder. This process may overlook some events detected
by the AAC model, such as the sound of people’s voices in this example. In contrast, our proposed method selects the most salient
concept clusters, better reflecting the full range of events recognized by the AAC model.

Audio File: Fountain Trompenburg 090928.wav

CLAP Reranking Our Proposed Method

Candidate
Selection

A stream is flowing over rocks as people chatter and walk. Water is flowing down a stream as people talk in the background.
Water is flowing in a creek as people talk and walk.
Water is flowing as people talk and walk by.
Water is flowing as people talk and walk through a stream.
A stream of water flows while people talk and walk.

LLM
Output

(FENSE)

Water is flowing in a stream as people talk and walk by.
(45.77%)

Water is flowing down a stream as people talk in the background.
(53.31%)

Explanation

The low diversity among the sampled captions in this example indicates that the AAC model was highly confident about the events
in the audio. This is further supported by the fact that our method identified only a single salient cluster. As a result, we skip
LLM inference and directly use the centroid of this cluster as the final caption. This not only reduces computational overhead but
may also improve evaluation scores, as the AAC model is trained to align with the target caption distribution, whereas the LLM,
operating in a few-shot setting, is less familiar with the characteristics of AAC-generated captions.

Table 1: Illustration of how different candidate selection methods affect the LLM’s output.

waveform into the encoder, and the caption embed-
ding, derived by feeding the generated caption into
a pre-trained text encoder, i.e., INSTRUCTOR (Su
et al., 2023). Finally, the generated captions are
reranked using a weighted sum of the decoder (0.3)
and encoder (0.7) scores, with the top-ranked cap-
tion selected as the system output.

However, our experiments revealed that the de-
coder score has a negligible effect and can be safely
omitted without significantly impacting perfor-
mance. Specifically, the system achieves FENSE
scores of 52.13 and 50.17 when using only the
encoder or decoder score for reranking, respec-
tively, while the fused scores yield a performance
of 52.28. This suggests that the success of the pro-
posed reranking method relies heavily on the addi-
tional supervision signal provided by INSTRUCTOR

during training, which prevents it from being ap-
plied to other pre-trained AAC models.

In DCASE 2024, Jung et al. (2024) introduced
a model-independent reranking approach based on
CLAP (Wu et al., 2023), a multimodal audio and
text encoder that uses contrastive learning tech-

niques to jointly embed these two modalities. Their
approach is similar to the previous sampling and
reranking method, with the key difference that they
encode both the generated captions and the input
audio using CLAP. Additionally, beyond utilizing
CLAP for reranking, they proposed incorporating
it as an additional filtering stage prior to the pre-
viously described hybrid reranking method. This
filtering step removes half of the generated cap-
tions that are not sufficiently aligned with the audio
embedding.

2.2 LLM-based Summarization

Given that LLMs have been proven effective across
a range of zero-shot tasks, Jung et al. (2024) adopt
an LLM-based caption summarization method. In
this approach, a sampling and reranking strategy is
first used to rank a set of sampled captions. Next,
rather than selecting the top-ranked caption, the
top-K captions are fed into an LLM with a zero-
shot caption summarization prompt to generate the
final caption. This method aims to enrich the final
caption by combining key phrases that may be scat-
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Prompt Template

You are provided with several candidate captions generated by
an Automated Audio Captioning system for a specific audio
file. These captions may contain repetitions, inaccuracies, or
illogical details. Each caption may describe one or more main
events. Identify the most frequent and relevant events from all
the captions, and generate a single caption, logically describing
the most probable events present in the original audio. En-
sure the caption is free of punctuation marks, including commas.

Captions:
A car is driving down a road with the window open.
The rain is falling as a car passes by.
Water is flowing as a car passes by.
The rain is falling and the wind is blowing.
Generated Caption:
A car is passing by while the rain is falling and the wind is
blowing.

Captions:
Cars are passing by on a busy road.
Cars drive by on a busy highway while a wind blows.
Cars drive by on a wet road.
A car is driving down the road and then the car drives by.
Generated Caption:
Cars are driving down a busy and wet road while the wind blows.

[more demonstrations]

Captions:
[selected candidates]

Table 2: Few-shot prompt template.

tered across different sampled captions, while also
leveraging the LLM’s ability to generate grammat-
ically accurate sentences. However, in our exper-
iments, we observe that the reranking stage con-
siderably diminishes the diversity of the selected
captions, often resulting in many identical captions,
thereby reducing the effectiveness of LLM-based
summarization.

2.3 LLM-based Error Correction

In their recent work, Liu et al. (2024) used an LLM
as a post-corrector to address potential grammatical
errors and repetitions in the captions generated by
their AAC model, operating in a one-shot setting.
In this approach, only a single caption sample from
the AAC model is provided to the LLM for error
correction.

3 Methodology

A major challenge in AAC arises from the inherent
ambiguity of audio signals. Due to the overlapping
and similar sound characteristics of many acoustic
events, individuals may perceive the same audio
differently, sometimes even with conflicting inter-

pretations (Figure 1). To address this variability,
popular audio captioning datasets, such as Clotho,
provide multiple ground-truth captions from var-
ious annotators for each audio sample (Drossos
et al., 2020). During training, models are exposed
to one-to-many audio-caption mappings, with each
audio clip paired with a randomly selected ground-
truth caption in each epoch. This randomness can
introduce uncertainty into the learned representa-
tions and degrade model performance (Zhang et al.,
2023).

To examine how this uncertainty affects the out-
put of AAC models, we randomly selected 50 audio
samples from the Clotho dataset and generated 50
captions per audio sample with Nucleus Sampling
using two pre-trained AAC models. A careful man-
ual analysis of the generated captions revealed that
the AAC model’s confidence in the acoustic events
of a given input audio is strongly reflected in the di-
versity of the sampled captions. Specifically, when
the AAC model is confident about the audio con-
tent, nearly all sampled captions describe the same
events, differing only in word choice and ordering.
Conversely, when the input audio is ambiguous or
challenging, the sampled captions display greater
diversity, describing a range of possible events.

Thus, we hypothesize that the diversity of sam-
pled captions can serve as an indicator of an AAC
model’s confidence level. Based on this hypothe-
sis, we propose a post-processing method for AAC
models with the following steps (Figure 2): First,
we generate N captions for each input audio us-
ing Nucleus Sampling and encode them with a
lightweight sentence encoder. Next, the encoded
captions are clustered into K groups to identify
the primary event clusters. The K cluster cen-
troids, representing the primary possible events,
are then fed into an LLM along with a few demon-
strations to generate the final caption. When the
selected captions describe similar events, the LLM
is expected to produce a consistent caption with
its inputs. However, when the diversity among the
selected captions is high, the LLM should incorpo-
rate different possible events, resulting in a more
diverse and comprehensive output. The following
subsections provide a detailed explanation of each
step, and Table 1 presents two illustrative examples.

3.1 Sampling and Candidate Selection

For each given input audio, we use Nucleus Sam-
pling to generate a set of N diverse captions. We
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AAC Model Decoding & Post-Processing FENSE (%)

CoNeTTE (Labbé et al., 2024) Beam Decoding (width=5) 51.96
CoNeTTE Beam Decoding (width=5) + LLM-based Error Correction (Liu et al., 2024) 51.60
CoNeTTE Sampling + CLAP Reranking (Jung et al., 2024) 49.86
CoNeTTE Sampling + CLAP Reranking + LLM-based Summarization (Jung et al., 2024) 53.32
CoNeTTE Sampling + Ours 53.76

BEATs-Conformer-BART (Wu et al., 2024) Beam Decoding (width=5) 50.35
BEATs-Conformer-BART Beam Decoding (width=5) + LLM-based Error Correction 50.15
BEATs-Conformer-BART Sampling + Hybrid Reranking (Wu et al., 2024) 52.28
BEATs-Conformer-BART Sampling + Hybrid Reranking + LLM-based Summarization 52.63
BEATs-Conformer-BART Sampling + CLAP Reranking 51.49
BEATs-Conformer-BART Sampling + CLAP Reranking + LLM-based Summarization 52.71
BEATs-Conformer-BART Sampling + CLAP Filtering + Hybrid Reranking 52.75
BEATs-Conformer-BART Sampling + CLAP Filtering + Hybrid Reranking + LLM-based Summarization 52.89
BEATs-Conformer-BART Sampling + Ours 53.49

Table 3: Results on the evaluation subset of Clotho.

then select a set of K = 5 candidate captions that
preserve the original diversity of events present
in the generated captions (the first example in
Table 1). To achieve this, we use a lightweight
pre-trained off-the-shelf text encoder, Sentence-
BERT (Reimers and Gurevych, 2019), to encode
the captions into vector embeddings, and then ap-
ply Agglomerative clustering with complete link
to group them into K clusters. For each cluster,
we compute the center point by averaging the em-
beddings of the captions within the cluster, and se-
lect the caption with the closest embedding to this
center as the cluster representative. In this work,
cosine similarity was used consistently across all
embedding-based steps.

Moreover, to prevent the selection of too infre-
quent events that could mislead the LLM, we in-
corporate an outlier removal step during this phase,
removing clusters with fewer than R = 5 embed-
dings. Additionally, when the majority of embed-
dings fall into a single cluster (at least C = 72% of
the embeddings), indicating high confidence from
the AAC model, we bypass the LLM phase and
directly use the cluster representative as the sys-
tem output (the second example in Table 1). This
approach not only reduces the computational over-
head of LLM inference but also enhances perfor-
mance, as the AAC model is specifically trained to
generate captions and is more adept at producing
outputs that align with the target distribution. This
simple yet effective step is also extendable to other
LLM-based post-processing methods.

3.2 Few-shot Caption Diversity Enhancement

The selected captions are then processed by an
LLM using a few-shot prompt to generate the final

caption. When there is high diversity among the
input candidate captions, the LLM is anticipated
to generate a more diverse caption. Conversely,
when the diversity is low, the LLM is expected to
produce a caption that closely matches the inputs.
Table 2 contains the prompt template used for this
task. Since the primary goal of this study is to
evaluate the impact of diversity-enhanced candi-
date selection, we did not focus on optimizing the
number or content of demonstrations used in the
LLM prompt. Instead, a fixed set of five manually
crafted demonstrations was used across all inputs.
This choice was supported by preliminary experi-
ments, which indicated that four to six demonstra-
tions are generally sufficient for reasonable LLM
performance, depending on the model. Given that
manually creating this small number of examples
is straightforward, we leave the exploration of auto-
matic demonstration optimization for future work.
The complete list of demonstrations can be found
in the accompanying source code.

4 Experimental Setup

4.1 Models

Our proposed post-processing method is inde-
pendent of the AAC model. Thus, we con-
duct our experiments using two open-source mod-
els: CoNeTTE2 (Labbé et al., 2024) and BEATs-
Conformer-BART3 (Wu et al., 2024). Additionally,
GPT-4o-mini is used as the LLM in our experi-
ments, accessed through the OpenAI API.

2https://github.com/Labbeti/conette-audio-captioning
3https://github.com/slSeanWU/beats-conformer-bart-

audio-captioner
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4.2 Hyperparameters

During the sampling phase of all methods, Nucleus
Sampling was performed with a temperature of 0.5
and a top-p value of 0.95. Greedy decoding was
used for all LLM-based stages. The max tokens
parameter was set to 50 for both Nucleus Sampling
and LLM generations.

The parameters K = 5 and R = 5 were se-
lected based on intuition and preliminary experi-
ments. We observed that moderate changes to these
values do not significantly affect the results, and the
chosen values offer a good balance that works well
across a wide range of AAC models and LLMs. In
contrast, C = 0.72 was determined through grid
search on Clotho’s validation subset.

4.3 Dataset

We conduct our experiments using the Clotho v2.1
dataset (Drossos et al., 2020), which served as the
standard benchmark in previous DCASE scientific
challenges. The dataset consists of four subsets.
The development and validation subsets are in-
tended solely for optimizing AAC models, while
the evaluation subset is used for assessing and com-
paring results. The testing subset is reserved exclu-
sively for scientific challenges, such as the DCASE
challenge. To conform with this standard, we use
only the evaluation subset of the dataset to compare
and report our results.

4.4 Evaluation Metrics

We adopt the FENSE metric (Zhou et al., 2022),
the standard evaluation metric of the DCASE
2024 challenge, as our evaluation metric. Prior
to FENSE, AAC evaluation metrics were borrowed
from machine translation and image captioning and
focused on the surface form of the words (Labbé
et al., 2024). FENSE, on the other hand, leverages
pre-trained models to capture sentence meanings.
It also penalizes grammatically incorrect or inco-
herent sentences.

5 Results and Discussion

The experimental results (Table 3) demonstrate the
effectiveness of our proposed method compared
to other post-processing approaches when applied
to the outputs of two open-source AAC models.
These findings underscore the importance of pre-
serving the diversity of sampled candidates, partic-
ularly for LLM-based post-processing methods.

Method FENSE (%)

Random Selection (K=5) 52.46
Random Selection (K=20) 53.05
All Candidates (K=50) 53.07

Clustering (K=5) 52.21
+ Outlier Removal 53.31
+ Skipping LLM Usage 53.49

Table 4: Ablation study of the candidate selection
stages.

Additionally, Table 1 presents two concrete ex-
amples that illustrate how our method works in
practice and provide intuition behind its effective-
ness. In these examples, the same prompt template
was used across different candidate selection meth-
ods to enable a fair comparison, ensuring that the
observed improvements can be attributed solely to
the proposed candidate selection strategy rather
than differences in prompt design compared to
prior studies.

5.1 Ablation Study

We conduct a comprehensive ablation study on the
candidate selection phase, beginning with a random
candidate selection method and gradually incorpo-
rating the proposed components. Table 4 shows
that the clustering phase is significantly affected by
outliers, leading to performance that falls behind
random candidate selection. However, removing
the outliers results in a notable improvement, em-
phasizing the importance of this step. Addition-
ally, while including more samples in the prompt,
up to selecting all generated captions, can slightly
improve performance, it still lags behind the pro-
posed clustering method. This is likely due to the
large volume of redundant information the LLM
must process, as well as the presence of outliers
that represent highly unlikely events in the inputs.
These findings underscore the importance of tar-
geted candidate selection. Finally, skipping LLM
inference when a single cluster contains more than
C captions leads to additional performance gains.
In this specific scenario, although the overall im-
provement across the entire Clotho evaluation set
may appear modest, the FENSE score increases
from 55.15 to 56.11 for the 116 samples where this
condition applies (approximately 11% of the sub-
set). This demonstrates that the method effectively
identifies cases where the AAC model is confident
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Stage Time (ms)

Beam Decoding (width=5) 487
Nucleus Sampling (N=50) 991

Hybrid Reranking (Wu et al., 2024) 739
CLAP Reranking (Jung et al., 2024) 340
CLAP Filtering + Hybrid Reranking 833
Candidate Selection (Ours) 15

LLM Inference (GPT-4o-mini) 779

Table 5: Average processing time per sample (in mil-
liseconds) for various decoding and post-processing
methods.

and avoids unnecessary LLM processing.

5.2 Runtime Analysis

As depicted in Table 5, our proposed candidate
selection stage is considerably faster than previ-
ous reranking strategies. The processing times
were calculated by running the methods on the
entire evaluation subset of Clotho v2.1 using a ma-
chine with a single Nvidia RTX 3090 GPU. The
LLM inference time, which includes the HTTP re-
quest and response times as well, was measured on
Google Colaboratory servers. Since this time was
consistently similar across different inputs, with
negligible variations, only the average time is re-
ported. During each stage, parallelism was dis-
abled, and all samples were processed sequentially.
The AAC model used throughout all stages was
BEATs-Conformer-BART.

6 Conclusion and Future Work

In this work, we explored various post-processing
methods for automated audio captioning and pro-
posed a novel LLM-based method for enhancing
caption diversity. The proposed approach leverages
in-context learning to consider the certainty of the
AAC model, reflected in the diversity of its gener-
ated captions. Despite being considerably faster,
our method demonstrates performance improve-
ments over previous post-processing techniques, as
evidenced by experiments conducted on two open-
source models.

Future work could investigate the effectiveness
of alternative embedding and clustering methods
in the proposed candidate selection phase. Addi-
tionally, since the demonstrations in our prompt
were manually crafted and remained fixed across
all inputs, future research could improve perfor-

mance by exploring automatic example generation
techniques or employing more advanced prompting
strategies.

7 Limitations

This study is limited to experiments conducted with
a single LLM (GPT-4o-mini) due to resource lim-
itations. A broader evaluation involving multiple
LLMs could offer deeper insights into the strengths
and limitations of LLM-based post-processing
methods for AAC.
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