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Abstract

This paper presents our submission to the Ira-
nian division of the Text-Dependent Speaker
Verification Challenge (TdSV) 2024. Conven-
tional TdSV approaches typically jointly model
speaker and linguistic features, requiring un-
segmented inputs during training and incur-
ring high computational costs. Additionally,
these methods often fine-tune large-scale pre-
trained speaker embedding models on the tar-
get domain dataset, which may compromise the
pre-trained models’ original ability to capture
speaker-specific characteristics. To overcome
these limitations, we employ a TdSV system
that utilizes two pre-trained models indepen-
dently and demonstrate that, by leveraging pre-
trained models with targeted domain adapta-
tion, competitive results can be achieved while
avoiding the substantial computational costs as-
sociated with joint fine-tuning on unsegmented
inputs in conventional approaches. Our best
system reached a MinDCF of 0.0358 on the
evaluation subset and secured first place in the
challenge.

Keywords: Text-dependent Speaker Verifica-
tion, Speaker Verification, Memory-efficient Train-
ing, Pre-trained Models, Transfer Learning

1 Introduction

Speaker verification (SV) is the task of confirming
an individual’s identity based on their voice. It
involves comparing one or more enrollment utter-
ances with a test utterance and can be performed in
either a text-independent (TiSV) or text-dependent
(TdSV) setting. In TiSV, the phonetic content of the
utterances is unrestricted, and only the speaker’s
identity is verified, whereas in TdSV, the system
verifies both the speaker’s identity and the specific
phrase spoken. With the development of various
neural network architectures (Xie et al., 2019; Des-
planques et al., 2020; Zeinali et al., 2019b; Snyder
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et al., 2018), loss functions (Xiang et al., 2019;
Zhang and Koishida, 2017; Wang et al., 2018;
Deng et al., 2019), and pooling methods (Sny-
der et al., 2018; India et al., 2019; Zhu et al.,
2018), TiSV has seen considerable improvement
in recent years, whereas TdSV has remained rela-
tively underexplored. TdSV systems can be either
phrase-dependent (i.e., shared passphrases), where
a fixed set of phrases is predefined by the system, or
phrase-independent (i.e., user-defined passphrases),
allowing users to customize their phrases (Hossein
et al., 2024). With the growing demand for voice-
based authentication, TdSV has gained increasing
attention, as the phonetic content can be used as
passphrases (Tu et al., 2022), adding an extra layer
of security to voice-based access control systems.

This paper presents our system submitted to Task
1 of the Text-dependent Speaker Verification Chal-
lenge 2024! (Zeinali et al., 2025), which aimed to
encourage participants to explore novel approaches
for TdSV. The challenge was organized into two
divisions: an international one, which included
two subtasks focusing on shared and user-defined
passphrases, and an Iranian division, which mir-
rored Task 1 of the worldwide challenge but specifi-
cally emphasized developing methods with limited
GPU resources. In this challenge, model enroll-
ment is done using three enrollment utterances, and
each trial consists of a test utterance and a model
identifier. Speaker verification trials fall into one
of the following categories:

» Target Correct (TC): The speaker matches
the claimed model and utters the correct
phrase.

» Target Wrong (TW): The speaker matches
the claimed model but utters an incorrect
phrase.

!Challenge website: https://tdsvc.github.io
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* Impostor Correct (IC): The speaker does not
match the claimed model but utters the correct
phrase.

Impostor Wrong (IW): The speaker does
not match the claimed model and utters an
incorrect phrase. This category was excluded
from the current year’s challenge, as it does
not pose sufficient difficulty for contemporary
models.

In the context of TdSV, proposed systems are
required to integrate both speaker and phrase veri-
fication scores and accept only TC trials?. Task 1
is phrase-dependent, employing a fixed set of ten
phrases (five in Persian and five in English) for en-
rollment and testing. Additionally, to enhance the
complexity of the challenge, some test utterances in
TW trials were sourced from free-text recordings.

The primary evaluation metric adopted by TdSV
2024 is the normalized minimum Detection Cost
Function (MinDCF), as defined in NIST SRE 2008
as a weighted sum of miss and false error probabil-
ities, with Pigrger = 0.01, Craiseiarm = 1, and
Chriss = 10. The Equal Error Rate (EER) will also
be reported as a secondary performance measure.

Previous successful approaches to TdSV typ-
ically jointly model speaker characteristics and
the linguistic content of utterances. For instance,
Liu et al. (2021) proposed a phoneme-aware at-
tentive pooling method that incorporates frame-
level phoneme posteriors into attentive pooling,
improving the model’s ability to utilize phonetic
information effectively. Also, some studies have
employed supervised multi-task learning to jointly
learn speaker and linguistic features for further im-
provement (Yang et al., 2020; Han et al., 2021).

However, joint speaker and phrase modeling has
some drawbacks compared to independent mod-
eling. First, model development becomes more
complex than developing the system based on in-
dependent phrase and speaker embedding models.
Additionally, since phrase modeling requires at-
tending to an entire utterance, inputs cannot be
chunked during training, requiring variable-length
inputs to be zero-padded. This issue substantially
increases GPU memory requirements, particularly
for recent transformer-based models, due to their
quadratic time and memory complexity (Vaswani
etal., 2017).

2For Text-independent Speaker Verification (TiSV), the
task definition differs: both TC and TW trials are accepted.
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Furthermore, as demonstrated in this work, pre-
trained speaker embedding models are highly ef-
fective at extracting speaker-related features while
disregarding other information in input utterances.
However, when subjected to multi-task fine-tuning,
these models are prone to lose their initial ability
to extract speaker-related features, allocating ca-
pacity to learning linguistic content instead. This
shift reduces their effectiveness, especially when
in-domain data for multi-task fine-tuning is limited.

Motivated by these challenges, we leverage the
full capacity of pre-trained models and develop
a TdSV system based on independent pre-trained
models for phrase and speaker verification. For
phrase verification, we fine-tune a pre-trained cross-
lingual speech representation model for bilingual
automatic speech recognition (ASR) in Persian and
English, followed by a further fine-tuning stage
for phrase classification. This classifier is used
to reject incorrect phrases. Similarly, we develop
several speaker embedding extractors based on pre-
trained ResNets and Whisper (Radford et al., 2023)
for our speaker verification system. After reject-
ing incorrect phrases using the phrase classifier,
final verification scores are obtained by comput-
ing cosine similarity between test and enrollment
embeddings.

Experimental results demonstrate that with well-
designed fine-tuning stages, our TdSV system built
on independently pre-trained models can achieve
performance comparable to systems that jointly
model speaker-related and linguistic information
while using only a single Nvidia RTX 3090 GPU.
This strategy substantially lowers GPU memory
requirements and, consequently, reduces compu-
tational costs compared to the multi-GPU setups
typically employed for training speaker recogni-
tion models (Zheng et al., 2023). Our best system
secured first place in the Iranian division of the
challenge and outperformed the third-place team
in the international division (Zeinali et al., 2025).

The rest of the paper is organized as follows:
Section 2 introduces the datasets used in this work.
Sections 3 and 4 describe the architecture of our
phrase and speaker verification systems, respec-
tively. The experimental results and discussion are
given in Section 5, and we conclude in Section 6.

2 Challenge Datasets

The DeepMine dataset (Zeinali et al., 2018, 2019a)
is the primary source of the training and evalua-



tion data for TdSV 2024. It was collected through
crowd-sourcing, and while all participants were
native Persian speakers, most contributed to the
English portion of the dataset as well. The official
TdSV 2024 data for Task 1 includes three subsets:
training, development, and evaluation. The training
subset consists of 183,431 utterances from 1,620
speakers. Among the utterances, 31,738 are free-
text, while the rest were drawn from a fixed set of
ten phrases comprising five Persian and five En-
glish phrases. The development and evaluation
subsets are intended solely for system evaluation
and contain 117,348 and 6,464,241 trials, respec-
tively. During evaluation, model enrollment is con-
ducted using three recordings of a specific phrase,
and each trial includes a test utterance and a model
identifier. The development set is provided to par-
ticipants for evaluation and parameter tuning before
submitting results to the official leaderboard. The
evaluation subset is used for the official evalua-
tion of the challenge. In addition to the DeepMine
dataset, participants are also allowed to use the
following datasets:

* VoxCeleb 1&?2 (Nagrani et al., 2017; Chung
et al., 2018) are two large-scale datasets
collected from YouTube videos, which con-
tain over one million recordings from 7,205
celebrities. In this work, due to resource con-
straints, only VoxCeleb 1 was used, which
includes over 100,000 utterances from 1,251
speakers.

LibriSpeech (Panayotov et al., 2015) is a stan-
dard ASR corpus in US English that com-
prises approximately 1,000 hours of speech
from 2,338 speakers. We only used the train-
clean-100 subset of this dataset to train our
phrase verification system, which contains
about 100 hours of speech.

Common Voice (Ardila et al., 2020) is a mul-
tilingual speech dataset created from contribu-
tions of volunteers from worldwide. For this
challenge, teams are restricted to using the
Persian (Farsi) subset, which contains approx-
imately 363 hours of validated speech from
4,148 speakers®. To prepare this subset for
training our speaker verification systems, we
excluded speakers with fewer than 30 record-
ings. From the remaining speakers with more

3Common Voice 18.0, released on 6/19/2024

97

than 650 recordings, we randomly selected
650 utterances per speaker, resulting in a fi-
nal dataset with 125,017 utterances from 813
speakers.

The challenge rules prohibit the use of any other
public or private data for training.

2.1 Data Augmentation

We did not use any augmentation methods in our
phrase verification system. However, following
the previous successful studies on speaker verifi-
cation (Chen et al., 2022; Zheng et al., 2023), we
adopted SoX-based speed perturbation by factors
of 0.9 and 1.1 to triple the number of speakers
during training, followed by an on-the-fly imple-
mentation of the following augmentations, each
applied with a probability of 0.6: noise addition
using the MUSAN dataset (Snyder et al., 2015),
reverberation using RIRs dataset (Ko et al., 2017),
and gain augmentation.

3 Phrase Verification System

Our proposed system for TdSV 2024 consists of
two independent subsystems for phrase and speaker
verification. The phrase verification system is a
classifier that rejects TW trials, while the speaker
verification system is responsible for producing
similarity scores. Although this system design does
not benefit from joint modeling of speaker and text,
it greatly simplifies the system development pro-
cess and allows for the use of various pre-trained
models for each subsystem with minimal modifica-
tions.

The phrase classifier is an 11-class model trained
with standard softmax. The first ten classes corre-
spond to the set of phrases in the challenge, and
the final class represents free text (or “none of the
above™). This classifier is built on XLSR* (Con-
neau et al., 2021), a pre-trained cross-lingual
speech representation model trained by solving a
self-supervised contrastive task, proven to be effec-
tive in low-resource languages compared to tradi-
tional feature extraction methods. This model takes
a raw waveform as input and produces a sequence
of features.

Moreover, to improve the model’s ability to ex-
tract linguistic features from Persian and English
inputs, we initially fine-tuned the XL.SR for bilin-
gual speech recognition in Persian and English.

“Facebook/wav2vec2-x1s-r-300m



Full Training Domain Adaptation
System
Epoch BS LR Epoch BS LR
S2 - - - 15 32 3e-4
S3 100 64 le-3 15 32 3e-4
S4 15 64 le-3 7 28  5e-5
S5 15 64 le-3 7 28  5e-5

Table 1: Hyper-parameters used in different submitted
systems S2-S5 (BS = batch size, LR = learning rate).

During this phase, 30% of the training subset of
Common Voice Farsi and LibriSpeech (train-clean-
100) were used, and the model was trained using
CTC loss (Graves et al., 2006) for 40 epochs, with
an initial learning rate of 0.001 and an effective
batch size of 32. In our experiments, this phase
contributes to improving the performance of the
phrase verification system.

Finally, to train the classifier, an attention-based
pooling layer was added to the fine-tuned XLSR to
compute fixed-dimensional utterance-level feature
vectors from frame-level representations h; (t =

1,...7):
et:VVlht—Hn, (1)
exp(e)
= 2
" ST exp(er) ?
~ T
h=> a(Wahy +by), 3)

t

where, e; and o are the attention score and weight,
respectively. h refers to the utterance-level feature
vector, which is finally fed to a fully connected
layer with ReLU activation, followed by a linear
classifier. The network was trained using the Cross-
Entropy loss function for one epoch on the entire
training samples of the challenge dataset, with a
learning rate of 0.0005 and an effective batch size
of 64.

4 Speaker Verification System

To leverage the full power of pre-trained SV mod-
els and mitigate the computational cost of training
randomly initialized models, we explored two di-
rections for developing our SV system. In the first
approach, we fine-tuned several pre-trained ResNet-
based models, widely used as a standard architec-
ture in speaker verification. In the second approach,
we studied the performance of pre-trained ASR
models adapted for SV, which have shown promis-
ing results in previous studies (Zhang et al., 2022;
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Cai et al., 2023; Liao et al., 2023). More specifi-
cally, we employed the Whisper-PMFA (Zhao et al.,
2024) method, which involves fine-tuning a pre-
trained Whisper model for speaker recognition.

4.1 Training Protocol

We trained our models in two stages:

e Full training (77): In this stage, models were
trained on a combination of out-of-domain
data (Common Voice Farsi and VoxCeleb
1) and in-domain (DeepMine) data, totaling
3,684 speakers, to learn robust and general-
izable speaker embeddings across different
domains. Pre-trained ResNets did not un-
dergo this stage, as they are already capable
of extracting rich speaker-specific features.
During this phase, 300 consecutive frames
of each input utterance were randomly se-
lected in each epoch to prevent overfitting,
reduce GPU memory usage, and accelerate
training. Moreover, all augmentation methods
explained in Section 2.1 were applied. We em-
ployed the widely used AAM-Softmax (Deng
et al., 2019) loss with the subcenter method
and the Inter-TopK penalty (Zhao et al., 2021)
to train our models, with a constant margin
and scale of 0.2 and 32, respectively.

Domain adaptation (75): We fine-tuned our
models using in-domain data after full train-
ing to bridge the domain gap and improve
performance. During this stage, augmentation
methods and the Inter-TopK penalty were re-
moved to prevent domain mismatch. Addition-
ally, the number of randomly selected frames
was increased from 300 to 600 to enhance
the models’ generalization capability (Garcia-
Romero et al., 2019, 2020). Fine-tuning was
performed with smaller learning rates to pre-
serve the models’ generalization abilities.

All models were optimized using SGD with a
momentum of 0.9 and a weight decay of 1e-4. We
also utilized an exponential decay scheduler with
a minimum learning rate of 5e-5 for 7} and le-6
for T5. Other training hyper-parameters are listed
in Table 1. Note that gradient accumulation was
used to achieve the target effective batch size when
GPU memory was limited. The dimensionality
of speaker embeddings was set to 256 across all
models. All experiments were conducted on a sin-



System Architecture Training Stages Development Evaluation
MinDCFj o; EER(%) MinDCF o1 EER(%)
S1 ResNet34 0.0614 1.3938 0.0784 1.7390
S2 ResNet293 To 0.0225 0.8733 0.0376 1.1080
S3 ResNet152 T + T 0.0191 0.6757 0.0764 2.3444
S4 Whisper-PMFA Ty + To 0.0163 0.6121 0.0584 2.0410
S5 Whisper-PMFA T+ T2 0.0161 0.6126 0.0583 2.0445
Fusion (S1~S5) 0.0119 0.5605 0.0358 1.2457
Table 2: Results of different submissions on the development and evaluation sets.

Subset MinDCF, o EER(%) posed Whlsper—PMFA (.Partlal Multi-Scale Feature

Aggregation using Whisper) to leverage the capa-

Development 0.0000 0.00 bilities of Whisper, a large-scale multilingual ASR

Evaluation 0.0003 0.01

Table 3: Phrase verification performance on TC-vs-TW
trials.

gle Nvidia RTX 3090 GPU using the WeSpeaker
toolkit (Wang et al., 2024).

4.2 ResNet

ResNet (Xie et al., 2019) is a widely used archi-
tecture for speaker recognition that has performed
excellently in previous speaker verification chal-
lenges (Zheng et al., 2023). Consequently, many
open-source implementations and pre-trained mod-
els have been publicly released based on this archi-
tecture. Trained on large-scale datasets like Vox-
Celeb 1&2, these pre-trained models can provide
a robust starting point for training speaker recog-
nition models on other datasets by improving their
generalization and speeding up the convergence.

During the challenge period, we submitted three
systems based on a bottleneck-block ResNet, all
adopting temporal statistics pooling (Snyder et al.,
2018) for aggregating variable-length sequence fea-
tures into utterance-level embeddings. The first
system (S1) was a pre-trained ResNet34 without
domain adaptation, while the second one (S2) was
a pre-trained ResNet293 that underwent domain
adaptation. Finally, we applied both training stages
to a randomly initialized ResNet152 to obtain our
last ResNet-based system (S3).

4.3 Whisper-PMFA

Building on the successful use of pre-trained ASR
models in speaker verification (Zhang et al., 2022;
Cai et al., 2023), Zhao et al. (2024) recently pro-
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model based on transformer architecture. Whisper-
PMFA adapts Whisper for speaker verification by
selectively concatenating frame-level outputs from
specific transformer layers rather than aggregating
features from all layers. This approach not only
reduces computational overhead but also enhances
performance by minimizing the integration of irrel-
evant information from lower-impact layers.

Inspired by this, we studied the performance of
Whisper-PMFA in this challenge. Since Whisper
was not trained for the speaker recognition task, we
applied both training stages to Whisper-PMFA. Ad-
ditionally, before the full training stage, we froze
the Whisper parameters and fine-tuned the model
for five epochs to prevent updating the pre-trained
model in the wrong direction due to the random
initialization of newly added components. We sub-
mitted two Whisper-PMFA-based systems (S4 and
S5) to this challenge, differing only in the AAM-
Softmax margin used during the domain adaptation
phase: 0.35 for S4 and 0.2 for S5.

4.4 Feature Extraction

80-dimensional log Mel filter bank energies with a
25ms window and 10ms frame-shift were extracted
for our ResNet-based models. Voice activity de-
tection (VAD) was not applied, and all features
were mean-normalized. Likewise, 80-dimensional
log magnitude Mel spectrograms consistent with
the pre-trained Whisper were utilized for training
Whisper-PMFA.

4.5 Backend

Speaker embeddings were extracted from the final
fully connected layer of the models, and cosine sim-
ilarity was used to compute scores. Since model



Development

Methods
MinDCFOAm EER(%)
Whisper-PMFA (T;) 0.0234 0.9253
+ Domain adaptation (T3) 0.0177 0.6273
++ AS-Norm 0.0161 0.6126

Table 4: Ablation study on Whisper-PMFA.

enrollment is done using three utterances in this
challenge, we used the average of embedding vec-
tors of each model during scoring.

Afterward, AS-Norm (Wang et al., 2020) was
used for score normalization, using 1,620 cohorts
obtained from speaker-wise averaging of all em-
beddings in the training subset of the challenge
dataset. The top 300 most similar scores were se-
lected to compute the mean and standard deviation
for normalization.

Finally, we adopted score fusion by averaging
single-system scores to further improve perfor-
mance.

5 Results

Table 2 shows the evaluation results of our sin-
gle and fusion systems on the development and
evaluation subsets of the challenge after applying
AS-Norm and rejecting TW trials. The results
indicate that the Whisper-PMFA method outper-
forms the widely used ResNet architecture with
random initialization, conforming to the findings
of previous studies on the effectiveness of adapting
pre-trained ASR models for speaker verification.
However, it can be observed from the results that
the ResNets pre-trained on approximately twice
the data (VoxCeleb 1&2) can considerably surpass
Whisper-PMFA after a well-designed domain adap-
tation stage, which highlights the importance of
large-scale pre-training in improving the general-
ization ability of speaker verification models.

In addition, Figure 1 presents the Detection Error
Tradeoff (DET) curves of the best-performing sys-
tem for different categories of evaluation data. The
results indicate that the model generally performs
better on Persian phrases, which is expected given
that the DeepMine dataset was collected from na-
tive Persian speakers, many of whom are likely less
fluent in English. Furthermore, the results show
noticeably higher performance for male speakers
compared to female speakers. This disparity is not
solely due to the inherent challenges of verifying
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Figure 1: DET curves of our best-performing system.

female voices, but is also influenced by the spe-
cific characteristics of the DeepMine dataset, as
discussed in its original description (Zeinali et al.,
2018, 2019a) and in the official challenge results
paper (Zeinali et al., 2025).

We also report the MinDCF and EER of the
proposed phrase verification system on TC-vs-TW
trials of the development and evaluation subsets
(Table 3). According to the results, our phrase
verification system demonstrates a near-optimal
performance on this task.

5.1 Ablation Study

We conducted an ablation study on our Whisper-
PMFA system (S5). The development set of the
challenge dataset was used as our evaluation bench-
mark. We can observe from the results (Table 4)
that the domain adaptation phase improved the
MinDCF from 0.0234 to 0.0177. Also, a further
improvement of MinDCF to 0.0161 was achieved
after applying AS-Norm.

5.2 Comparison with Other Teams

To contextualize our performance, we report in
Table 5 the evaluation results of our best system
alongside the top-performing submissions in Task
1 of the international division of the TdSV Chal-
lenge. Team names and scores are taken directly
from the official challenge results paper (Zeinali
et al., 2025), which also provides brief descriptions
and comparisons of the proposed architectures. As
shown, our system achieves a lower MinDCF than
the team ranked third in the international division.

6 Conclusion

In this paper, we present our system for Task
1 of the Iranian division of the Text-dependent
Speaker Verification (TdSV) Challenge 2024, fo-



Team MinDCF ¢ EER(%)
Team 04 (Sreekanth, 2024) 0.0297 1.132
Team 08 0.0326 1.013
Our System 0.0358 1.246
Team 02 0.0379 1.164
Team 01 0.0504 2.245

Table 5: Evaluation results for our best system and the
top-ranked teams in Task 1 of the international division
of TdSV.

cusing on resource-constrained training for TdSV
systems. Unlike previous methods that jointly
model speaker-related and linguistic features, our
approach leverages two independent pre-trained
models for phrase and speaker verification. This
design reduces the computational costs associated
with joint modeling during training while fully
utilizing the capabilities of pre-trained models to
achieve competitive performance. Our best system
achieved a MinDCF of 0.0358 on the evaluation
subset, securing first place in the challenge.
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