Voice Spoofing Detection via Speech Rule Generation
Using wav2vec 2.0-Based Attention
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Abstract

Recent advancements in Al-based voice
cloning have led to increasingly convincing
synthetic speech, posing significant threats
to speaker verification systems. In this
paper, we propose a novel voice spoofing
detection method that integrates acoustic
feature  variations ~ with  attention
mechanisms derived from wav2vec 2.0
representations. Unlike prior approaches
that directly utilize wav2vec 2.0 features as
model inputs, the proposed method
leverages wav2vec 2.0 features to construct
speech rules characteristic of bona-fide
speech. Experimental results indicate that
the proposed RULE-AASIST-L system
significantly outperforms the baseline
systems on the ASVspoof 2019 LA
evaluation set, achieving a 24.6% relative
reduction in equal error rate (EER) and an
10.8% reduction in minimum tandem
detection cost function (min t-DCF).
Ablation studies further confirm the
importance of incorporating speech rules
and selecting appropriate hidden layer
representations. These findings highlight
the potential of using self-supervised
representations to guide rule-based
modeling for robust spoofing detection.
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1 Introduction

Telecom fraud has become a critically important
issue today, particularly the method of using Al to
synthesize the voices of victims' family members
to impersonate them and commit financial fraud.
This has emerged as a new tactic employed by
scam groups. Voice spoofing can be primarily
divided into two categories: Physical Access (PA)
attacks and Logical Access (LA) attacks.
According to past research in relevant literature,
the difficulty of signal detection in LA attacks is
typically greater than that in PA attacks. This is
primarily because voice conversion and text-to-
speech technologies can more accurately mimic
the target speaker's voice, rather than merely
reproducing recorded playback quality.

To address the growing threat of voice spoofing
attacks, many studies have adopted deep neural
network (DNN)-based models to classify speech as
either genuine or spoofed (Y. Zhang et al., 2021; J.
Zhou et al., 2022; A. Gomez-Alanis et al., 2019).
However, these approaches typically treat spoofing
detection as a binary classification problem that
focuses solely on surface-level acoustic differences,
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without accounting for the complexity and
diversity of feature variations introduced by
different spoofing methods. To address this
limitation, (J. Boyd et al., 2023) proposed using a
multi-class  classification  framework  that
distinguishes between genuine, voice conversion,
speech synthesis, and replay categories. This
enables the model to learn more discriminative
features for identifying various types of spoofing
attacks targeting genuine speech. However, most
existing research on voice spoofing detection
focuses on feature analysis from a single audio
perspective.

Self-supervised learning (SSL) has emerged as
a powerful alternative for extracting high-
dimensional representations of speech signals (A.
Baevski etal, 2020; W.-N. Hsu et al., 2021; S. Chen
et al,, 2022). These models typically rely on
convolutional neural network (CNN)-based feature
encoders, where CNN kernels perform nonlinear
transformations on short segments of audio. A key
advantage of self-supervised learning lies in its
ability to learn from large-scale unlabeled data,
enabling pre-trained models to capture a wide
range of speech variability. Compared to
conventional frequency-domain methods, these
learned representations often yield more robust and
informative features. Recently, SSL models such as
wav2vec 2.0 (A. Baevski et al., 2020) have gained

significant attention in various speech-related tasks.

Originally developed for automatic speech
recognition (ASR) (A. Bawitlung et al., 2025),
these models have also demonstrated strong
performance in speaker verification (Z. Fan et al.,
2021) and speech emotion recognition (B.
Nasersharif and M. Namvarpour, 2024). Recently,
several studies have investigated the application of
wav2vec 2.0 for spoofing detection tasks (H. Tak
et al., 2022), taking advantage of its rich
contextualized speech representations to improve
feature modeling and detection accuracy.

This work proposes a novel framework that
integrates conventional acoustic feature analysis
with the sequential representation patterns derived
from wav2vec 2.0. By exploring the interactions
between acoustic features and the sequential rule of
wav2vec 2.0 representations, the proposed
approach enables voice spoofing detection not only
from the inherent characteristics of speech but also
through identifying inconsistencies in the sequence
patterns of wav2vec 2.0 representations correlated
with spoofed audio. This joint analysis enhances
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detection performance by uncovering unnatural
patterns indicative of spoofed speech.

This paper addresses the fraudulent methods
arising from current Al voice cloning technologies
by proposing a detection method that combines the
correlation between acoustic features and wav2vec
2.0-based attention mechanisms. This approach
simultaneously considers the interaction between
variations in acoustic features, and the rules of
speech representations, aiming to enhance the
accuracy of distinguishing between synthetic and
genuine voices.

2 Related Work

2.1 AASIST

The AASIST network is composed of four main
components: an encoder module, graph modules, a
max graph operation (MGO) module, and an
output module, as shown in the upper part of
Figure 1. The encoder, based on RawGAT-ST (H.
Tak et al, 2021), extracts high-level feature
representations F directly from the raw audio
waveform. Two parallel graph modules are
employed to model the spectral and temporal
characteristics of F, respectively, producing graph-
structured features in both domains. These outputs
are then fused to construct a heterogeneous graph,
which is further processed by the MGO module.

The MGO module consists of two parallel upper
and lower branches, each comprising two
heterogeneous attention mechanisms and two
stacked nodes that store time-frequency
heterogeneous information. The final
representation is obtained by applying an element-
wise max operation to the outputs of the two
branches. This representation is used to
discriminate between bona-fide and spoofed
speech.

2.2 wav2vec 2.0 Representations

wav2vec 2.0 leverages self-supervised learning to
derive informative and high-level speech
representations directly from raw audio input. Its
architecture consists of two primary components: a
convolutional feature extractor and a Transformer-
based contextual module. The convolutional
encoder transforms the input waveform into a
sequence of latent vectors that capture fine-grained
acoustic details. These latent features are
subsequently processed by the contextual module,
which employs self-attention mechanisms to
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Figure 1:
detection.

model temporal dependencies across the sequence,
resulting in contextualized embeddings that reflect
both short- and long-range speech characteristics.
The model is pretrained using a contrastive
objective, where segments of the latent sequence
are masked and the network learns to distinguish
the true representation from a set of distractors
based on surrounding context. This training
strategy enables wav2vec 2.0 to acquire phonetic
and semantic knowledge from unlabeled speech
data, making the learned representations broadly
applicable to downstream tasks such as automatic
speech recognition, speaker verification, and
spoofing detection.

3 Speech Rule Generation via wav2vec
2.0-Based Attention

Unlike previous studies that directly utilize
wav2vec 2.0 features as input to classification
models, this work explores the use of wav2vec 2.0
representations to learn the underlying speech rules
present in bona-fide speech. We hypothesize that
spoofed speech introduces inconsistencies or
deviations from these learned regularities. By
identifying such rule violations, the proposed
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The proposed wav2vec 2.0-based attention network for high-level feature extraction in voice spoofing

approach aims to enhance the accuracy of voice
spoofing detection. The proposed wav2vec 2.0-
based attention network for high-level feature
extraction as depicted in Figure 1.

3.1 wav2vec 2.0-Based Attention

Initially, wav2vec 2.0 is used to extract hidden
states s from the raw training audio, where s €
R™*L denotes a sequence of T time steps, each
represented by an L -dimensional feature vector.
These representations are then passed through N
Residual Blocks for feature transformation.
Assuming the py = s, the standard transformation
performed by each Residual Block is defined as
follows:

Pi+1 = F(F(0i; Kin); Kiz) + pi (1)
where F(-) denotes a 2D convolutional layer
parameterized by kernel Xy, and each input of
F () is nonlinearly transformed by a composite
function consisting of batch normalization
followed by the scaled exponential linear unit
(SELU) activation.

After that, the feature size of py and the raw
audio after encoder processing are different, we



Layer Input shape  Output shape
Raw audio - (64600)
Wa2vec 2.0 (64600) (199, 768)
hidden states
Expand dim (199, 768) (1, 199, 768)
ResBlock A x2 (1,199,768) (Cy, 199, 768)

ResBlock Bx 4 (Cy, 199,768) (C,, 199, 768)

Conv2D (C5,199,768)  (C3,29,69)
kernel: (7, 11)
stride: (7, 11)

BN - -

MaxPool (C,, 29, 69) (Cy, 29, 23)
kernel: (1, 3)

Softmax dim=1 (Cy, 29, 23)

Hybrid High-Level (Cs, 29, 23) (C,, 58, 23)
Features combine R, F

Table 1: The speech rule generation architecture for
voice spoofing detection.

apply local convolution and max pooling to
compress the size of py to match the encoder
output size.

T = MaxPool(BN(F(pn))) (2)
eTC,t,f
Porf= o——s—
MR el 3)

where MaxPool(+) is max pooling, BN(-) is batch
normalization, and P € R*T*F can be defined as
the attention weights employed to regulate speech
rules.

3.2 Hybrid High-Level Features

Since P is the attention weights derived from the
hidden states of wav2vec 2.0, we further apply an
element-wise product between P and the encoder
output F to generate the corresponding speech
rules.
R=PQOF @)
Finally, the speech rule R is used as auxiliary
features and concatenated with F to obtain the

hybrid high-level features. The size for each layer
is illustrated in Table 1.
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4 Experimental Results

4.1 Data Preparation

In alignment with the data preparation
methodology outlined in (J.-w. Jung et al., 2022),
all experiments in this study are conducted using
the LA partition of the ASVspoof 2019 dataset (M.
Todisco et al., 2019). The dataset is divided into
three distinct subsets: training, development, and
evaluation. The training and development subsets
include spoofed speech generated using six known
attack algorithms (A01-A06), while the evaluation
subset extends this with an additional set of seven
attack methods (A07-A19). Furthermore, the
ASVspoof 2021 (J. Yamagishi et al., 2021)
evaluation set is used to evaluate the cross-corpus
performance of the proposed voice spoofing
detection method.

In  this paper, we
“facebook/wav2vec2-base-960h” model, a
Transformer-based architecture designed for
speech representation learning. The model is
pretrained in a self-supervised manner on 960
hours of unlabelled audio from the LibriSpeech
corpus and later fine-tuned for automatic speech
recognition tasks. Its structure consists of a
convolutional feature extractor followed by twelve
Transformer encoder layers, enabling the model to
capture hierarchical representations of speech
signals. We extract hidden states from both
intermediate layers and the final layer. The
intermediate layers are known to preserve more
acoustic-level and phonetic information, making
them well-suited for tasks that require detailed
speech characteristics such as prosody, speaker
traits, or subtle temporal variations. In contrast, the
final layer tends to encode high-level semantic
features aligned with the ASR objective, capturing
more abstract linguistic content but potentially
discarding lower-level acoustic cues.

employ  the

4.2 Experimental Setup

In our experiments, we adopt lightweight variant
AASIST-L as the backbone architecture, following
the experimental setup outlined in (J.-w. Jung et al.,
2022). The input to the model consists of raw audio
waveforms with a fixed length of 64,600 samples,
corresponding to approximately four seconds of
speech. No data augmentation techniques are
applied during training, ensuring that all models
are trained on the original waveform data without
synthetic variation. Model training is conducted



min

System A07 A08 A09 A10 A11 A12 A13 Al4 Al5 A16 A17 A18 A19 EER -DCF
RawNet2 [13] 9.8 179 73 89 42 88 20 13 73 46 2.4 629 58 554 0.1547
RawGAT-ST [14] 1.19 0.33 0.03 1.54 0.41 1.54 0.14 0.14 1.03 0.67 1.44 3.22 0.62 1.19 0.0333
AASIST-L (reproduced) 0.45 0.34 0.02 0.63 0.34 0.69 0.19 0.23 0.53 0.42 1.96 2.97 0.88 1.14 0.0316

RULE-AASIST-L
0.77 0.16 0.02 0.90 0.16 0.79 0.12 0.10 0.42 0.57 1.18 2.34 0.87 0.86 0.0282

(proposed)

Table 2: EER (%) and minimum t-DCF results for baseline and proposed model on the ASVspoof 2019 LA
evaluation set.

® spoof
bonafide

® spoof
bonafide

(A) AASIST-L

(B) RULE-AASIST-L

Figure 2: The distribution of output features from the last hidden layer of different models visualized using t-

SNE, based on 240 randomly selected samples.

using the Adam optimizer with a batch size of 24
and a total of 100 training epochs. The objective
function used is categorical cross-entropy loss.

As demonstrated in the study by (X. Wang and
J. Yamagishi, 2021), the performance of spoofing
detection systems can vary considerably
depending on the choice of random seed due to the
inherent stochasticity of the training process. To
ensure a fair and robust evaluation, all experiments
in this work are conducted using three different
random seeds. In the experimental analysis, this
paper reports the best result obtained from model
training conducted with three different random
seeds.

To evaluate system performance, we adopt two
widely used metrics: the minimum tandem
detection cost function (min t-DCF) and the equal
error rate (EER).

4.3 Voice Spoofing Detection Results

The results are summarized in Table 2. Compared
to the baseline systems, the proposed RULE-
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AASIST-L. demonstrates significantly improved
performance. Under the same backbone
architecture and experimental setup, RULE-
AASIST-L achieves a relative improvement of
24.6% in EER (i.e., 0.86% vs. 1.14%) and an
10.8% reduction in min t-DCF (i.e., 0.0282 vs.
0.0316), highlighting the effectiveness of the
proposed method. On the other hand, Figure 2
illustrates the distribution of the output features
from the last hidden layer of different models. It is
evident that the proposed RULE-AASIST-L model
yields more compact distributions for both spoof
and bonafide classes compared to the AASIST-L
baseline. This indicates that the RULE-AASIST-L
model can more effectively distinguish between
genuine and spoofed speech.

The results indicate that RULE-AASIST-L
successfully leverages the attention generated
during model training to define bona-fide speech
rules. These learned rules help identify
inconsistencies in spoofed speech, thereby



System EER min t-DCF
RULE-AASIST-L 0.86 0.0282
/o F in the high-level feat
w/o F in the high-level features 154 0.0468
S
Use only P as the high-level
2.80 0.0830

features S
Replace wav2vec 2.0 hidden
state extraction from layer 6 1.29 0.0371

with layer 12

Table 3: Results for ablation studies on AASIST-L

backbone.
ASVspoof 2021
evaluation set
System min
EER t-DCF
AASIST-L 13.65 0.4574
RULE-AASIST-L 1291 0.4347

Table 4: EER (%) and minimum t-DCF results for
baseline and proposed model on the ASVspoof 2021
LA evaluation set.

enhancing the system's voice spoofing detection
capabilities.

Notably, the proposed approach does not
directly use the wav2vec 2.0 features as input to the
spoofing detection model. Instead, it employs these
representations to construct speech rules, which in
turn modulate the output of high-level features F.
This indirect usage of wav2vec 2.0 features
contributes to the strong performance gains
observed. As a result, the method opens promising
directions for future research on using self-
supervised representations to guide rule-based
structures in voice spoofing detection.

4.4 Ablation Study

Table 3 presents the results of ablation experiments,
in which individual components of the AASIST
model are either removed or replaced. The results
show a clear drop in performance when only the
speech rule R is used as the high-level
representation S. This performance degradation is
attributed to the fact that R, while effective in
modeling sequential consistency, lacks the rich
acoustic information contained in the original
high-level features F, making it insufficient on its
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own for effective spoofing detection. Similarly,
replacing S directly with attention weights P
results in an even more significant decline in
performance. This suggests that attention weights
alone, without the support of learned feature
representations, are inadequate as standalone
features.

Finally, we examine the effect of changing the
source layer for feature extraction within the
wav2vec 2.0 encoder. When the hidden states are
extracted from layer 12 (the final layer) instead of
layer 6 (an intermediate layer), a noticeable
performance drop is observed. This can be
explained by the representational nature of the final
layer, which is optimized for ASR and tends to
encode more abstract semantic features. While
such features are wuseful for linguistic
understanding, they often lack the lower-level
acoustic cues that are critical for spoofing detection,
thereby reducing detection effectiveness.

4.5 Cross-Corpus Evaluation

In this experiment, the ASVspoof 2021 LA
evaluation set was further used to evaluate the
cross-corpus performance of voice spoofing
detection as shown in Table 4. It is evident that
training solely on the ASVspoof 2019 training set
and evaluating on the ASVspoof 2021 evaluation
set leads to an increase in EER due to data
mismatch. Nevertheless, the proposed RULE-
AASIST-LL. model consistently outperforms the
baseline AASIST-L, demonstrating that the
wav2vec 2.0-based attention mechanism remains
effective in improving the performance of voice
spoofing detection in cross-corpus evaluations.

5 Conclusions

This work introduces RULE-AASIST-L, a rule-
aware voice spoofing detection framework that
utilizes attention-derived speech rules based on
wav2vec 2.0 representations. By modeling the
correlation between acoustic features and attention
weights, the proposed method captures rule-based
inconsistencies introduced by synthetic speech.
Unlike previous methods that treat wav2vec 2.0
features as direct inputs, our approach exploits
these representations to guide the learning of bona-
fide speech patterns, thereby improving detection
robustness. Experimental results on the ASVspoof
2019 LA dataset confirm the effectiveness of our
method, with substantial performance gains over



baseline systems. Ablation experiments further
underscore the importance of rule modeling and
the choice of representation layer, showing that
intermediate-layer features (e.g., layer 6) retain
richer  acoustic cues than  final-layer
representations. In the future, this study opens new
directions for integrating self-supervised learning
and rule-based reasoning in the field of voice
spoofing detection, and we plan to further
investigate the possibility of utilizing the
constructed speech rules during the inference stage
without relying on wav2vec 2.0 features. One
potential direction involves integrating alignment
search and a flow-based module to generate
approximated wav2vec 2.0 representations during
inference, thereby eliminating the need for direct
feature extraction from the original model.

Acknowledgments

This work was supported in part by the National
Science and Technology Council (NSTC), Taiwan,
under Grant No. NSTC 113-2222-E-218 -003 -
MY2.

References

Y. Zhang, F. Jiang, and Z. Duan. 2021. One-class
learning towards synthetic voice spoofing detection.
IEEFE Signal Processing Letters, Volume 28, pages
937-941.

J. Zhou, T. Hai, D. N. A. Jawawi, D. Wang, E. Ibeke,
and C. Biamba. 2022. Voice spoofing
countermeasure for voice replay attacks using deep
learning. Journal of Cloud Computing, 11:51.

A. Gomez-Alanis, A. M. Peinado, J. A. Gonzalez, and
A. M. Gomez. 2019. A light convolutional GRU-rnn
deep feature extractor for ASV spoofing detection.
In Proceedings of INTERSPEECH, pages 1068—
1072.

J. Boyd, M. Fahim, and O. Olukoya. 2023. Voice
spoofing  detection for multiclass attack
classification using deep learning. Machine
Learning With Applications, 14:100503.

A. Baevski, H. Zhou, A. Mohamed, and M. Auli. 2020.
wav2vec 2.0: A framework for self-supervised
learning of speech representations,” In Proceedings

of Neural Information Processing Systems
(NeurIPS), pages 12449-12460.

W.-N. Hsu, B. Bolte, Y.-H. H. Tsai, K. Lakhotia, R.
Salakhutdinov, and A. Mohamed. 2021. Hubert:
Self-supervised speech representation learning by
masked prediction of hidden units. IEEE/ACM
transactions on audio, speech, and language
processing, Volume 29, pages 3451-3460.

114

. Chen, C. Wang, Z. Chen, Y. Wu, S. Liu, Z. Chen, J.
Li, N. Kanda, T. Yoshioka, X. Xiao, J. Wu, L. Zhou,
S.Ren, Y. Qian, Y. Qian, J. Wu, M. Zeng, X. Yu, and
F. Wei. 2022. Wavlm: Large-scale self-supervised
pre-training for full stack speech processing. /EEE
Journal of Selected Topics in Signal Processing,
Volume 16, Number 6, pages 1505—-1518.

. Bawitlung, S. K. Dash, and R. M. Pattanayak.
2025, Mizo Automatic Speech Recognition:
Leveraging Wav2vec 2.0 and XLS-R for Enhanced
Accuracy in Low-Resource Language
Processing. ACM Transactions on Asian and Low-
Resource Language Information Processing.

. Fan, M. Li, S. Zhou, and B. Xu. 2021. Exploring
wav2vec 2.0 on speaker verification and language
identification. In Proceedings of INTERSPEECH,
pages 1509-1513.

. Nasersharif and M. Namvarpour. 2024. Exploring
the potential of Wav2vec 2.0 for speech emotion
recognition using classifier combination and
attention-based feature fusion. The Journal of
Supercomputing, Volume 80, Number 16, pages
23667-23688.

H. Tak, M. Todisco, X. Wang, J.-w. Jung, J. Yamagishi,
and N. Evans. 2022. Automatic speaker verification
spoofing and deepfake detection using wav2vec 2.0
and data augmentation. The Speaker and Language
Recognition Workshop (Odyssey), pages 112—119.

H. Tak, J.-w. Jung, J. Patino, M. Kamble, M. Todisco,
and N. Evans. 2021. End-to-End Spectro-Temporal
Graph Attention Networks for Speaker Verification
Anti-Spoofing and Speech Deepfake Detection.
2021 Edition of the Automatic Speaker Verification
and Spoofing Countermeasures Challenge.

J.-w. Jung, H.-S. Heo, H. Tak, H.-j. Shim, J. S. Chung,
B.-J. Lee, H.-J. Yu, and N. Evans. 2022. AASIST:
Audio anti-spoofing using integrated spectro-
temporal graph attention networks. In Proceedings
of IEEE International Conference on Acoustics
Speech and Signal Processing (ICASSP), pages
6367-6371.

M. Todisco, X. Wang, V. Vestman, M. Sahidullah, H.
Delgado, A. Nautsch, J. Yamagishi, N. Evans, T.
Kinnunen, and K. A. Lee. 2019. Asvspoof 2019:
Future horizons in spoofed and fake audio detection.
In Proceedings of INTERSPEECH, pages 1008—
1012.

J. Yamagishi, X. Wang, M. Todisco, M. Sahidullah, J.
Patino, A. Nautsch, X. Liu, K. A. Lee, T. Kinnunen,
N. Evans, and H. Delgado. 2021. ASVspoof 2021:
accelerating progress in spoofed and deepfake
speech detection. 2021 Edition of the Automatic
Speaker Verification and Spoofing
Countermeasures Challenge, pages 47-54.



X. Wang and J. Yamagishi. 2021. A Comparative Study
on Recent Neural Spoofing Countermeasures for
Synthetic Speech Detection. In Proceedings of
INTERSPEECH, pages 4259-4263.

115



