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Abstract 

Recent advancements in AI-based voice 

cloning have led to increasingly convincing 

synthetic speech, posing significant threats 

to speaker verification systems. In this 

paper, we propose a novel voice spoofing 

detection method that integrates acoustic 

feature variations with attention 

mechanisms derived from wav2vec 2.0 

representations. Unlike prior approaches 

that directly utilize wav2vec 2.0 features as 

model inputs, the proposed method 

leverages wav2vec 2.0 features to construct 

speech rules characteristic of bona-fide 

speech. Experimental results indicate that 

the proposed RULE-AASIST-L system 

significantly outperforms the baseline 

systems on the ASVspoof 2019 LA 

evaluation set, achieving a 24.6% relative 

reduction in equal error rate (EER) and an 

10.8% reduction in minimum tandem 

detection cost function (min t-DCF). 

Ablation studies further confirm the 

importance of incorporating speech rules 

and selecting appropriate hidden layer 

representations. These findings highlight 

the potential of using self-supervised 

representations to guide rule-based 

modeling for robust spoofing detection. 

Keywords: Voice spoofing detection, Speech rule 

generation, wav2vec 2.0 

1 Introduction 

Telecom fraud has become a critically important 

issue today, particularly the method of using AI to 

synthesize the voices of victims' family members 

to impersonate them and commit financial fraud. 

This has emerged as a new tactic employed by 

scam groups. Voice spoofing can be primarily 

divided into two categories: Physical Access (PA) 

attacks and Logical Access (LA) attacks. 

According to past research in relevant literature, 

the difficulty of signal detection in LA attacks is 

typically greater than that in PA attacks. This is 

primarily because voice conversion and text-to-

speech technologies can more accurately mimic 

the target speaker's voice, rather than merely 

reproducing recorded playback quality. 

To address the growing threat of voice spoofing 

attacks, many studies have adopted deep neural 

network (DNN)-based models to classify speech as 

either genuine or spoofed (Y. Zhang et al., 2021; J. 

Zhou et al., 2022; A. Gomez-Alanis et al., 2019). 

However, these approaches typically treat spoofing 

detection as a binary classification problem that 

focuses solely on surface-level acoustic differences, 
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without accounting for the complexity and 

diversity of feature variations introduced by 

different spoofing methods. To address this 

limitation, (J. Boyd et al., 2023) proposed using a 

multi-class classification framework that 

distinguishes between genuine, voice conversion, 

speech synthesis, and replay categories. This 

enables the model to learn more discriminative 

features for identifying various types of spoofing 

attacks targeting genuine speech. However, most 

existing research on voice spoofing detection 

focuses on feature analysis from a single audio 

perspective.  

Self-supervised learning (SSL) has emerged as 

a powerful alternative for extracting high-

dimensional representations of speech signals (A. 

Baevski et al, 2020; W.-N. Hsu et al., 2021; S. Chen 

et al., 2022). These models typically rely on 

convolutional neural network (CNN)-based feature 

encoders, where CNN kernels perform nonlinear 

transformations on short segments of audio. A key 

advantage of self-supervised learning lies in its 

ability to learn from large-scale unlabeled data, 

enabling pre-trained models to capture a wide 

range of speech variability. Compared to 

conventional frequency-domain methods, these 

learned representations often yield more robust and 

informative features. Recently, SSL models such as 

wav2vec 2.0 (A. Baevski et al., 2020) have gained 

significant attention in various speech-related tasks. 

Originally developed for automatic speech 

recognition (ASR) (A. Bawitlung et al., 2025), 

these models have also demonstrated strong 

performance in speaker verification (Z. Fan et al., 

2021) and speech emotion recognition (B. 

Nasersharif and M. Namvarpour, 2024). Recently, 

several studies have investigated the application of 

wav2vec 2.0 for spoofing detection tasks (H. Tak 

et al., 2022), taking advantage of its rich 

contextualized speech representations to improve 

feature modeling and detection accuracy. 

This work proposes a novel framework that 

integrates conventional acoustic feature analysis 

with the sequential representation patterns derived 

from wav2vec 2.0. By exploring the interactions 

between acoustic features and the sequential rule of 

wav2vec 2.0 representations, the proposed 

approach enables voice spoofing detection not only 

from the inherent characteristics of speech but also 

through identifying inconsistencies in the sequence 

patterns of wav2vec 2.0 representations correlated 

with spoofed audio. This joint analysis enhances 

detection performance by uncovering unnatural 

patterns indicative of spoofed speech. 

This paper addresses the fraudulent methods 

arising from current AI voice cloning technologies 

by proposing a detection method that combines the 

correlation between acoustic features and wav2vec 

2.0-based attention mechanisms. This approach 

simultaneously considers the interaction between 

variations in acoustic features, and the rules of 

speech representations, aiming to enhance the 

accuracy of distinguishing between synthetic and 

genuine voices. 

2 Related Work 

2.1 AASIST 

The AASIST network is composed of four main 

components: an encoder module, graph modules, a 

max graph operation (MGO) module, and an 

output module, as shown in the upper part of 

Figure 1. The encoder, based on RawGAT-ST (H. 

Tak et al., 2021), extracts high-level feature 

representations 𝐹  directly from the raw audio 

waveform. Two parallel graph modules are 

employed to model the spectral and temporal 

characteristics of 𝐹, respectively, producing graph-

structured features in both domains. These outputs 

are then fused to construct a heterogeneous graph, 

which is further processed by the MGO module. 

The MGO module consists of two parallel upper 

and lower branches, each comprising two 

heterogeneous attention mechanisms and two 

stacked nodes that store time-frequency 

heterogeneous information. The final 

representation is obtained by applying an element-

wise max operation to the outputs of the two 

branches. This representation is used to 

discriminate between bona-fide and spoofed 

speech. 

2.2 wav2vec 2.0 Representations 

wav2vec 2.0 leverages self-supervised learning to 

derive informative and high-level speech 

representations directly from raw audio input. Its 

architecture consists of two primary components: a 

convolutional feature extractor and a Transformer-

based contextual module. The convolutional 

encoder transforms the input waveform into a 

sequence of latent vectors that capture fine-grained 

acoustic details. These latent features are 

subsequently processed by the contextual module, 

which employs self-attention mechanisms to 
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model temporal dependencies across the sequence, 

resulting in contextualized embeddings that reflect 

both short- and long-range speech characteristics. 

The model is pretrained using a contrastive 

objective, where segments of the latent sequence 

are masked and the network learns to distinguish 

the true representation from a set of distractors 

based on surrounding context. This training 

strategy enables wav2vec 2.0 to acquire phonetic 

and semantic knowledge from unlabeled speech 

data, making the learned representations broadly 

applicable to downstream tasks such as automatic 

speech recognition, speaker verification, and 

spoofing detection. 

3 Speech Rule Generation via wav2vec 

2.0-Based Attention 

Unlike previous studies that directly utilize 

wav2vec 2.0 features as input to classification 

models, this work explores the use of wav2vec 2.0 

representations to learn the underlying speech rules 

present in bona-fide speech. We hypothesize that 

spoofed speech introduces inconsistencies or 

deviations from these learned regularities. By 

identifying such rule violations, the proposed 

approach aims to enhance the accuracy of voice 

spoofing detection. The proposed wav2vec 2.0-

based attention network for high-level feature 

extraction as depicted in Figure 1. 

3.1 wav2vec 2.0-Based Attention 

Initially, wav2vec 2.0 is used to extract hidden 

states s from the raw training audio, where 𝑠 ∈
ℝ𝑇×𝐿  denotes a sequence of T time steps, each 

represented by an 𝐿 -dimensional feature vector. 

These representations are then passed through 𝑁 

Residual Blocks for feature transformation. 

Assuming the 𝑝0 = 𝑠, the standard transformation 

performed by each Residual Block is defined as 

follows: 

 
𝑝i+1 = ℱ(ℱ(𝑝i; 𝒦𝑖1); 𝒦𝑖2) + 𝑝i   (1) 

 

where ℱ(∙)  denotes a 2D convolutional layer 

parameterized by kernel 𝒦(∙) , and each input of 

ℱ(∙)  is nonlinearly transformed by a composite 

function consisting of batch normalization 

followed by the scaled exponential linear unit 

(SELU) activation. 

After that, the feature size of 𝑝N  and the raw 

audio after encoder processing are different, we 

 

 

 
 

Figure 1:   The proposed wav2vec 2.0-based attention network for high-level feature extraction in voice spoofing 

detection. 
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apply local convolution and max pooling to 

compress the size of 𝑝N  to match the encoder 

output size. 

 
𝒯 = MaxPool(BN(ℱ(𝑝N)))   (2) 

 

𝑃𝑐,𝑡,𝑓 =  
𝑒𝒯𝑐,𝑡,𝑓

∑ 𝑒𝒯𝑐,𝜏,𝑓𝑇
𝜏=1

  
(3) 

 

where MaxPool(∙) is max pooling, BN(∙) is batch 

normalization, and 𝑃 ∈ ℝ𝐶2×𝑇×𝐹 can be defined as 

the attention weights employed to regulate speech 

rules. 

3.2 Hybrid High-Level Features 

Since 𝑃 is the attention weights derived from the 

hidden states of wav2vec 2.0, we further apply an 

element-wise product between 𝑃 and the encoder 

output 𝐹  to generate the corresponding speech 

rules. 

 
𝑅 = 𝑃 ⊙ 𝐹   (4) 

 

Finally, the speech rule 𝑅  is used as auxiliary 

features and concatenated with 𝐹  to obtain the 

hybrid high-level features. The size for each layer 

is illustrated in Table 1.  

4 Experimental Results 

4.1 Data Preparation 

In alignment with the data preparation 

methodology outlined in (J.-w. Jung et al., 2022), 

all experiments in this study are conducted using 

the LA partition of the ASVspoof 2019 dataset (M. 

Todisco et al., 2019). The dataset is divided into 

three distinct subsets: training, development, and 

evaluation. The training and development subsets 

include spoofed speech generated using six known 

attack algorithms (A01–A06), while the evaluation 

subset extends this with an additional set of seven 

attack methods (A07–A19). Furthermore, the 

ASVspoof 2021 (J. Yamagishi et al., 2021) 

evaluation set is used to evaluate the cross-corpus 

performance of the proposed voice spoofing 

detection method. 

In this paper, we employ the 

“facebook/wav2vec2-base-960h” model, a 

Transformer-based architecture designed for 

speech representation learning. The model is 

pretrained in a self-supervised manner on 960 

hours of unlabelled audio from the LibriSpeech 

corpus and later fine-tuned for automatic speech 

recognition tasks. Its structure consists of a 

convolutional feature extractor followed by twelve 

Transformer encoder layers, enabling the model to 

capture hierarchical representations of speech 

signals. We extract hidden states from both 

intermediate layers and the final layer. The 

intermediate layers are known to preserve more 

acoustic-level and phonetic information, making 

them well-suited for tasks that require detailed 

speech characteristics such as prosody, speaker 

traits, or subtle temporal variations. In contrast, the 

final layer tends to encode high-level semantic 

features aligned with the ASR objective, capturing 

more abstract linguistic content but potentially 

discarding lower-level acoustic cues. 

4.2 Experimental Setup 

In our experiments, we adopt lightweight variant 

AASIST-L as the backbone architecture, following 

the experimental setup outlined in (J.-w. Jung et al., 

2022). The input to the model consists of raw audio 

waveforms with a fixed length of 64,600 samples, 

corresponding to approximately four seconds of 

speech. No data augmentation techniques are 

applied during training, ensuring that all models 

are trained on the original waveform data without 

synthetic variation. Model training is conducted 

 

Layer Input shape Output shape 

Raw audio - (64600) 

Wa2vec 2.0 

hidden states 

(64600) (199, 768) 

Expand dim (199, 768) (1, 199, 768) 

ResBlock_A × 2 (1, 199, 768) (𝐶1, 199, 768) 

ResBlock_B × 4 (𝐶1, 199, 768) (𝐶2, 199, 768) 

Conv2D (𝐶2, 199, 768) 

kernel: (7, 11) 

stride: (7, 11) 

(𝐶2, 29, 69) 

BN - - 

MaxPool (𝐶2, 29, 69) 

kernel: (1, 3) 

(𝐶2, 29, 23) 

Softmax dim=1 (𝐶2, 29, 23) 

Hybrid High-Level 

Features 

(𝐶2, 29, 23) 

combine 𝑅, 𝐹 

(𝐶2, 58, 23) 

Table 1: The speech rule generation architecture for 

voice spoofing detection. 
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using the Adam optimizer with a batch size of 24 

and a total of 100 training epochs. The objective 

function used is categorical cross-entropy loss. 

As demonstrated in the study by (X. Wang and 

J. Yamagishi, 2021), the performance of spoofing 

detection systems can vary considerably 

depending on the choice of random seed due to the 

inherent stochasticity of the training process. To 

ensure a fair and robust evaluation, all experiments 

in this work are conducted using three different 

random seeds. In the experimental analysis, this 

paper reports the best result obtained from model 

training conducted with three different random 

seeds. 

To evaluate system performance, we adopt two 

widely used metrics: the minimum tandem 

detection cost function (min t-DCF) and the equal 

error rate (EER).  

4.3 Voice Spoofing Detection Results 

The results are summarized in Table 2. Compared 

to the baseline systems, the proposed RULE-

AASIST-L demonstrates significantly improved 

performance. Under the same backbone 

architecture and experimental setup, RULE-

AASIST-L achieves a relative improvement of 

24.6% in EER (i.e., 0.86% vs. 1.14%) and an 

10.8% reduction in min t-DCF (i.e., 0.0282 vs. 

0.0316), highlighting the effectiveness of the 

proposed method. On the other hand, Figure 2 

illustrates the distribution of the output features 

from the last hidden layer of different models. It is 

evident that the proposed RULE-AASIST-L model 

yields more compact distributions for both spoof 

and bonafide classes compared to the AASIST-L 

baseline. This indicates that the RULE-AASIST-L 

model can more effectively distinguish between 

genuine and spoofed speech. 

The results indicate that RULE-AASIST-L 

successfully leverages the attention generated 

during model training to define bona-fide speech 

rules. These learned rules help identify 

inconsistencies in spoofed speech, thereby 

 

System A07 A08 A09 A10 A11 A12 A13 A14 A15 A16 A17 A18 A19 EER 
min 

t-DCF 

RawNet2 [13] 9.8 17.9 7.3 8.9 4.2 8.8 2.0 1.3 7.3 4.6 2.4 62.9 5.8 5.54 0.1547 

RawGAT-ST [14] 1.19 0.33 0.03 1.54 0.41 1.54 0.14 0.14 1.03 0.67 1.44 3.22 0.62 1.19 0.0333 

AASIST-L (reproduced) 0.45 0.34 0.02 0.63 0.34 0.69 0.19 0.23 0.53 0.42 1.96 2.97 0.88 1.14 0.0316 

RULE-AASIST-L 

(proposed) 
0.77 0.16 0.02 0.90 0.16 0.79 0.12 0.10 0.42 0.57 1.18 2.34 0.87 0.86 0.0282 

Table 2: EER (%) and minimum t-DCF results for baseline and proposed model on the ASVspoof 2019 LA 

evaluation set. 

 

  
(A) AASIST-L (B) RULE-AASIST-L 

Figure 2: The distribution of output features from the last hidden layer of different models visualized using t-

SNE, based on 240 randomly selected samples. 
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enhancing the system's voice spoofing detection 

capabilities. 

Notably, the proposed approach does not 

directly use the wav2vec 2.0 features as input to the 

spoofing detection model. Instead, it employs these 

representations to construct speech rules, which in 

turn modulate the output of high-level features 𝐹. 

This indirect usage of wav2vec 2.0 features 

contributes to the strong performance gains 

observed. As a result, the method opens promising 

directions for future research on using self-

supervised representations to guide rule-based 

structures in voice spoofing detection.  

4.4 Ablation Study 

Table 3 presents the results of ablation experiments, 

in which individual components of the AASIST 

model are either removed or replaced. The results 

show a clear drop in performance when only the 

speech rule 𝑅  is used as the high-level 

representation 𝑆. This performance degradation is 

attributed to the fact that 𝑅 , while effective in 

modeling sequential consistency, lacks the rich 

acoustic information contained in the original 

high-level features 𝐹, making it insufficient on its 

own for effective spoofing detection. Similarly, 

replacing 𝑆  directly with attention weights 𝑃 

results in an even more significant decline in 

performance. This suggests that attention weights 

alone, without the support of learned feature 

representations, are inadequate as standalone 

features.  

Finally, we examine the effect of changing the 

source layer for feature extraction within the 

wav2vec 2.0 encoder. When the hidden states are 

extracted from layer 12 (the final layer) instead of 

layer 6 (an intermediate layer), a noticeable 

performance drop is observed. This can be 

explained by the representational nature of the final 

layer, which is optimized for ASR and tends to 

encode more abstract semantic features. While 

such features are useful for linguistic 

understanding, they often lack the lower-level 

acoustic cues that are critical for spoofing detection, 

thereby reducing detection effectiveness.  

4.5 Cross-Corpus Evaluation 

In this experiment, the ASVspoof 2021 LA 

evaluation set was further used to evaluate the 

cross-corpus performance of voice spoofing 

detection as shown in Table 4. It is evident that 

training solely on the ASVspoof 2019 training set 

and evaluating on the ASVspoof 2021 evaluation 

set leads to an increase in EER due to data 

mismatch. Nevertheless, the proposed RULE-

AASIST-L model consistently outperforms the 

baseline AASIST-L, demonstrating that the 

wav2vec 2.0-based attention mechanism remains 

effective in improving the performance of voice 

spoofing detection in cross-corpus evaluations. 

5 Conclusions 

This work introduces RULE-AASIST-L, a rule-

aware voice spoofing detection framework that 

utilizes attention-derived speech rules based on 

wav2vec 2.0 representations. By modeling the 

correlation between acoustic features and attention 

weights, the proposed method captures rule-based 

inconsistencies introduced by synthetic speech. 

Unlike previous methods that treat wav2vec 2.0 

features as direct inputs, our approach exploits 

these representations to guide the learning of bona-

fide speech patterns, thereby improving detection 

robustness. Experimental results on the ASVspoof 

2019 LA dataset confirm the effectiveness of our 

method, with substantial performance gains over 

 

System EER min t-DCF 

RULE-AASIST-L 0.86 0.0282 

w/o 𝑭 in the high-level features 

𝑺 
1.54 0.0468 

Use only 𝑷 as the high-level 

features 𝑺 
2.80 0.0830 

Replace wav2vec 2.0 hidden 

state extraction from layer 6 

with layer 12 

1.29 0.0371 

Table 3: Results for ablation studies on AASIST-L 

backbone. 

 

System 

ASVspoof 2021 

evaluation set 

EER 
min  

t-DCF 

AASIST-L 13.65 0.4574 

RULE-AASIST-L 12.91 0.4347 

Table 4: EER (%) and minimum t-DCF results for 

baseline and proposed model on the ASVspoof 2021 

LA evaluation set. 
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baseline systems. Ablation experiments further 

underscore the importance of rule modeling and 

the choice of representation layer, showing that 

intermediate-layer features (e.g., layer 6) retain 

richer acoustic cues than final-layer 

representations. In the future, this study opens new 

directions for integrating self-supervised learning 

and rule-based reasoning in the field of voice 

spoofing detection, and we plan to further 

investigate the possibility of utilizing the 

constructed speech rules during the inference stage 

without relying on wav2vec 2.0 features. One 

potential direction involves integrating alignment 

search and a flow-based module to generate 

approximated wav2vec 2.0 representations during 

inference, thereby eliminating the need for direct 

feature extraction from the original model. 
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