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摘要

本研究使用多項最新技術，包含 RoPE、
Flash Attention 等，並在結合大規模中文
網路語料與百科全書資料的基礎上，預訓
練一個專為長文本設計的繁體中文編碼器
模型。我們在閱讀理解、文本分類等任務
上進行評估，結果顯示模型效能整體落後
於既有中文基準。透過 pseudo-perplexity
分析，我們推測預訓練階段未能充分學習
資料分布，並討論了超參數、收斂與資料
品質等可能影響因素。雖然結果不理想，
本研究仍提供中文語言模型發展的實驗經
驗與改進方向。

Abstract

This study employs several state-of-the-
art techniques, including RoPE and Flash
Attention, and leverages large-scale Chi-
nese web corpora and encyclopedic data
to pre-train an encoder model specifically
designed for long text in Traditional Chi-
nese. We evaluate the model on tasks
such as reading comprehension and text
classification, and the results show that
its overall performance lags behind exist-
ing Chinese benchmarks. Through pseudo-
perplexity analysis, we infer that the pre-
training phase did not sufficiently capture
the data distribution, potentially due to
factors such as hyperparameters, conver-
gence, and data quality. Although the
results are suboptimal, this study still of-
fers valuable experimental insights and di-
rections for improving Chinese language
model development.

關鍵字： Transformer、繁體中文、長文
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1 前言 Introduction
自 BERT (Devlin et al., 2019)問世以來，僅編
碼器（encoder-only）的 Transformer (Vaswani
et al., 2017) 模型已成為眾多自然語言處理
（NLP）任務的核心架構。儘管近年來主流
的大型語言模型（LLM）如 GPT (Radford
et al., 2018, 2019)、Qwen (Bai et al., 2023;
Yang et al., 2024)等多採用僅解碼器（decoder-
only）架構，但基於編碼器的模型在性能與計
算效率的平衡上仍具備獨特優勢，並在文本分
類、命名實體識別（NER）、資訊檢索（IR）
等下游任務中獲得廣泛應用。
上下文長度對大型語言模型而言至關重要，
擁有更長的上下文處理能力，使 LLM 能夠
勝任更多樣化的任務。同樣地，對於 BERT、
RoBERTa 等編碼器模型，上下文長度亦是關
鍵因素。然而，這些基於 Transformer 的模型
由於 self-attention 機制具有 O(n2) 的時間複
雜度，限制了其處理長上下文的能力，導致可
處理的上下文長度普遍較短。
雖然後續推出的編碼器模型在上下文長度方
面有所改進，但主要集中於英文和簡體中文的
優化，針對繁體中文的研究相對稀少。因此，
本研究旨在填補此一研究缺口，為繁體中文的
長上下文編碼器模型發展貢獻力量。

2 研究方法 Methods
2.1 模型架構 Model Architecture
本研究使用了多項已經過廣泛測試的最新進
展，以提升模型表現以及訓練效率:

• Rotary Positional Embedding (RoPE)：
相較於傳統的絕對位置編碼，RoPE (Su
et al., 2024) 能更有效捕捉長距離依賴，
提升模型處理長文本的能力。

• Pre-Normalization： 採 用 Pre-
Normalization (Xiong et al., 2020)
結構，有助於穩定訓練過程，促進深層模
型的收斂。
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• Alternating Global and Local Attention：
交替使用全局與局部注意力機制 (Beltagy
et al., 2020)。在局部注意力下，token 僅
能與 sliding window 內的其他 token 互
動；全局注意力則可與整個序列互動。我
們每三層採用一次全局注意力。局部注意
力的 RoPE theta 設為 10,000，全局注意
力的 RoPE theta 設為 160,000。

• Unpadding：將 batch 內所有序列的
padding token移除 (Zeng et al., 2022)並
串接成一個長序列計算，減少不必要的運
算，提升訓練效率。

• Flash Attention：使用 Flash Attention
(Dao et al., 2022) 以降低記憶體使用量，
提升訓練速度。

2.2 中文分詞器 Tokenizer
本研究使用 benchang1110/Qwen2.5-Taiwan-
1.5B-Instruct 1 所提供的分詞器做為基礎，此
分詞器基於 Qwen2.5 (Qwen Team, 2024) 模
型，並透過 tokenizer swapping，將簡體中文
的 token 替換為相對應的繁體中文 token，以
優化對繁體中文的處理能力。
且為了符合 BERT 模型的相容性，我
們在此額外加入了 [PAD]、[UNK]、[SEP]、
[CLS]、[MASK] 等特殊 token，並將模型配置
中的 pad_token 明確指定為 [PAD]，以取代
原有的 <|endoftext|>，使模型的可以沿用
以前 BERT 的預訓練任務。

2.3 訓練資料 Training Data
本研究的預訓練資料主要由以下兩部分構成:

• FineWeb2: FineWeb2 2 是一個大規模、
開放且多語言的資料集，專門為訓練高
品質的大型語言模型 (LLM) 而設計。其
資料主要源自於對 Common Crawl 存檔
的大規模處理與精煉。該資料集涵蓋了從
2013 年到 2024 年 4 月的 96 個 Common
Crawl 數據快照，並透過一個包含過濾、
去重和語言辨識的複雜流程進行處理，旨
在為開發能夠理解和生成多種語言文字的
大型語言模型提供一個強大且可擴展的高
品質資源。我們使用的是 FineWeb2 的中
文部分 (cmn_Hani)的一個子集，約包含
4 千萬個樣本，其中繁體中文的樣本比例
較高。

1https://huggingface.co/benchang1110/Qwen2.
5-Taiwan-1.5B-Instruct

2https://huggingface.co/datasets/
HuggingFaceFW/fineweb-2

• 中文維基百科資料: 為了增強模型在中文
領域的知識與理解能力，我們額外納入了
完整的中文維基百科資料 3。此資料集包
含了百科全書中的所有條目，內容涵蓋歷
史、文化、科技、地理等多個領域，具有
結構化、高品質、事實性強的特點。使用
此資料有助於模型學習中文世界豐富的背
景知識和正規的書面語表達方式。其中約
包含 140 萬個樣本。

2.4 資料預處理 Data Preprocessing
為了確保訓練資料的品質與針對性，我們對原
始資料進行了以下預處理步驟：

• 內容過濾：我們移除了訓練資料中的非必
要章節，包括但不限於參考資料、外部連
結、延伸閱讀等章節。這些章節通常包含
大量的 URL 連結、引用格式等非自然語
言內容，對模型學習語言理解能力的幫助
有限，反而可能引入雜訊。

• 地區與語言變體篩選：考慮到中文存在不
同的地區變體（如台灣、中國大陸、香港
等），且不同地區在用詞、表達習慣上存
在差異，我們在資料篩選時以保留臺灣正
體的部分為主，並賦予其較高的優先度。

經過上述預處理後，最終用於預訓練的資料
集共包含約 35.7B 個 tokens，在保持多樣性
的同時，也具備了更高的針對性與品質。

2.5 預訓練任務 Pretraining Task
本研究採用遮罩語言模型 (Masked Lan-
guage Modeling, MLM) 任務，並結合 n-
gram masking 策略，在中文語料上進行模型
預訓練。整體訓練過程分為以下兩個的階段：

1. 第一階段 (短文本學習): 模型以最大序列
長度 1024 的文本進行訓練。此階段的核
心目標是讓模型掌握中文的基礎語法結構
與核心語義知識。

2. 第二階段 (長文本建模): 在繼承第一階段
學習到的權重基礎上，我們將最大序列長
度擴展至 8192 進行接續訓練。此階段旨
在顯著提升模型對長距離文本依賴關係的
捕捉與建模能力。

詳細的超參數設置如表 1所示，模型訓練使用
8 張 NVIDIA H100 GPU，總訓練時間約為 7
天。

3https://dumps.wikimedia.org/zhwiki/
20250520/
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Phase 1 Phase 2
Max Sequence Length 1024 8192
Batch Size 512 512
Training Steps 233000 40000
Learning Rate 8e-4 3e-4
LR Schedule WSD WSD
Weight Decay 1e-5 1e-5
Optimizer AdamW AdamW
Betas (0.9, 0.999) (0.9, 0.999)
Epsilon 1e-8 1e-8

表 1. 訓練參數設定

圖 1: 預訓練過程中的損失函數變化。左圖為訓練損失，右圖為驗證損失。

3 評估 evaluation

我們將模型在多個下游任務上進行實驗，以驗
證其有效性，並將結果與其他研究論文中報告
的中文模型結果進行比較 (Cui et al., 2021) 。
實驗任務包括：

• 閱讀理解任務：CMRC2018 (Cui et al.,
2019)、DRCD (Shao et al., 2019)

• 單句分類任務：ChnSentiCorp (Tan and
Zhang, 2008)、THUCNews (Li and Sun,
2007)、TNEWS (Xu et al., 2020)

• 句子對分類任務：XNLI (Conneau et al.,
2018)、LCQMC (Liu et al., 2018)、BQ
(Chen et al., 2018)、OCNLI (Hu et al.,
2020)

由於訓練語料中繁體中文比例較高，所有資
料集在實驗前皆使用 OpenCC 4 進行簡繁轉
換。

4https://github.com/BYVoid/OpenCC

3.1 閱讀理解任務 Machine Reading
Comprehension

閱讀理解任務會提供模型一組 (文本, 問題) 的
文字對，模型需根據文本內容生成問題的答
案，答案通常為文本中的一段文字（span）。
我們使用 DRCD 與 CMRC2018 兩個中文閱
讀理解資料集進行評估。結果展示在表 2. 中，
其中 EM (Exact Match) 表示完全匹配率，F1
Score 表示 F1 分數。從結果可見，本研究模
型在 DRCD 資料集上的表現與早期 BERT 模
型（如 BERT-base）相當，但在 CMRC2018
資料集上則有顯著的效能落差，尤其在測試集
（Test set）的表現遠不如其他基準模型，這可
能暗示模型在特定領域的泛化能力較弱。

3.2 單句分類任務 Single Sentence
Classification

單句分類任務會提供模型一段句子，要求模型
根據該句子進行分類。我們在三個中文資料集
上進行驗證：

• ChnSentiCorp：中文情感分析資料集，
包含正向（positive）與負向（negative）
兩個類別。
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CMRC2018 DRCD
Dev Test Dev Test

Model EM F1 EM F1 EM F1 EM F1
BERT-base 65.5 84.5 70.0 87.0 83.1 89.9 82.2 89.2
BERT-wwm 66.3 85.6 70.5 87.4 84.3 90.5 82.8 89.7
BERT-wwm-ext 67.1 85.7 71.4 87.7 85.0 91.2 83.6 90.4
RoBERTa-wwm-ext 67.4 87.2 72.6 89.4 86.6 92.5 85.6 92.0
ELECTRA-base 68.4 84.8 73.1 87.1 87.5 92.5 86.9 91.8
MacBERT-base 68.5 87.9 73.2 89.5 89.4 94.3 89.5 93.8
Ours 55.2 81.3 32.2 68.1 83.4 92.5 82.6 91.9

表 2. 各模型於 CMRC2018 及 DRCD 資料集之閱讀理解任務表現，(單位：%)。

• THUCNews：新聞分類資料集，本研究
使用其子集，任務為判斷輸入新聞文本的
主題類別。

• TNEWS：中文短新聞分類資料集，包含
15 個類別，任務為對輸入文本進行主題
分類。

表 3. 展示了各模型在單句分類任務上的準
確率 (Accuracy) 表現。在 ChnSentiCorp 與
TNEWS 任務上，本模型表現與基準模型相
近；然而，在 THUCNews 新聞分類任務上，
效能則有明顯落後，顯示模型在處理長文本或
特定主題分類時可能存在不足。

3.3 句子對分類任務 Sentence Pair
Classification

句子對分類任務會提供模型一組 (文本, 文本)
的文字對，要求模型根據該句子進行分類。我
們在四個中文資料集上進行驗證：

• XNLI:跨語言自然語言推理資料集，本研
究使用中文部分，任務為判斷句子對是否
具備「蕴涵、矛盾或中立」關係（textual
entailment）。

• LCQMC: 大規模中文問答語料庫，用於
評估中文問答對語意相似度的自然語言處
理資料集。

• BQ Corpus: 中文語義等價判斷（Sen-
tence Semantic Equivalence Identifica-
tion, SSEI）資料集，用於識別句子對是
否語義相同。

• OCNLI: 原生中文自然語言推理資料集，
為首個非翻譯、專為中文語境設計的大型
NLI 資料集。

表 4展示了各模型在句子對分類任務上的準
確率 (Accuracy) 表現。相較於其他任務，本

模型在句子對分類的整體表現較不理想。雖然
在 XNLI 與 LCQMC 任務上僅略遜於基準模
型，但在 BQ Corpus 與 OCNLI 資料集上出
現了更大幅度的效能下降，尤其是在 OCNLI
這個專為中文原生語境設計的資料集上，表現
最不理想，這可能反映出模型在捕捉語意相似
度與自然語言推論的細微差異方面仍有待加
強。

4 討論 Discussion
雖然模型在多個下游任務微調後，表現仍顯著
落後於現有基準，我們推測主要原因來自預訓
練階段未能充分學習語料的潛在分佈。
為了量化模型對訓練語料的擬合程度，我們
引入了偽困惑度（Pseudo-Perplexity, PPPL）
(Salazar et al., 2020) 作為評估指標。對於自
回歸語言模型，較低的困惑度（PPL）通常意
味著模型能更好地建模語料；而 PPPL 則可
對遮罩語言模型（MLM）進行近似評估。對於
一個語料集 W，其 PPPL 的計算方式如下：

PPPL(W) := exp
(
− 1

N

∑

W∈W
PLL(W)

)

其中 N 是語料集的總詞數，而 PLL(W) 是
單一樣本 W 的偽對數似然率（Pseudo-Log-
Likelihood），其定義為：

PLL(W) :=

|W|∑

t=1

logPMLM(Wt | W\t; Θ) (1)

此處模型需預測每個詞 wt 在其上下文 w\t 中
的機率。
我們從訓練語料中隨機採樣文本，並在本模
型及幾個基準模型上計算 pseudo-perplexity。
結果如表 5. 顯示，部分基準模型對這些文本
表現出更低的 pseudo-perplexity 值，這表明
本模型在預訓練階段可能未能充分捕捉資料分
布。基於此，我們提出以下幾個可能原因：
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ChnSentiCorp THUCNews TNEWS
Model Dev Test Dev Test Dev
BERT-base 94.7 95.0 97.7 97.8  56.3
BERT-wwm 95.1 95.4 98.0 97.8  56.5
BERT-wwm-ext 95.4 95.3 97.7 97.7 57.0
RoBERTa-wwm-ext 95.0 95.6 98.3 97.8 57.4
ELECTRA-base 93.8 94.5 98.1 97.8 56.1
MacBERT-base 95.2 95.6 98.2 97.7 57.4
Ours 94.4 95.0 93.0 93.8 56.2

表 3. 各模型於 ChnSentiCorp、THUCNews 及 TNEWS 資料集之單句分類任務表現，(單位：%)。

XNLI LCQMC BQ Corpus OCNLI
Model Dev Test Dev Test Dev Test Dev
BERT-base 77.8 77.8 89.4 86.9 86.0 84.8 86.0
BERT-wwm 79.0 78.2 89.4 87.0 86.1 85.2 86.1
BERT-wwm-ext 79.4 78.7 89.6 87.1 86.4 85.3 86.4
RoBERTa-wwm-ext 80.0 78.8 89.0 86.4 86.0 85.0 86.0
ELECTRA-base 77.9 78.4 90.2 87.6 84.8 84.5 84.8
MacBERT-base 80.3 79.3 89.5 87.0 86.0 85.2 86.0
Ours 77.1 77.1 86.0 86.6 82.0 79.6 70.0

表 4. 各模型於 XNLI、LCQMC、BQ Corpus 及 OCNLI 資料集之句子對分類任務表現，(單位：%)。

Model pppl
BERT-base 2.49
BERT-wwm 2.73
BERT-wwm-ext 3.48
MacBERT-base 13.39
Ours 5.60

表 5. 各模型於本模型訓練集之 pseudo-
perplexity。

4.1 超參數設置不理想

雖然大部分超參數與原始論文保持一致，但
由於訓練語料不同，原論文的超參數對中文語
料可能不完全適用，可能導致模型未達最佳效
果。

4.2 模型尚未完全收斂

若模型在建模能力上仍不理想，可能原因之一
是模型尚未完全收斂。我們推測第一階段短文
本訓練可能過早結束，模型尚未充分學習資料
分布。

4.3 訓練資料品質

資料中可能存在雜訊或標註不均衡，這會影響
模型學習到準確的語言分布，進而影響下游任
務表現。

除了預訓練因素，下游任務的資料分布亦可
能影響模型表現。如同 2.3節所述，訓練語料
以繁體中文為主，因此模型的語言分布更接
近繁體中文。然而下游任務資料集多為簡體中
文，即便經過繁簡轉換，語法、詞彙偏好與用
字習慣仍存在差異，進而導致本模型在這些任
務上的表現不如其他基準模型。

5 結論 Conclusion

在這篇論文中，我們嘗試使用文語料，對現有
的 state-of-the-art 語言模型架構進行預訓練，
並在多個下游任務上進行評估。雖然最終的實
驗結果尚未能超越既有的中文基準模型，但這
些結果為我們提供了寶貴的觀察。

我們的分析指出，模型效能不佳可能與語料
分布、語言特性、預訓練設定以及詞彙表設計
等因素有關。這些推論顯示，將現有方法直接
應用於中文語料並非一件簡單的工作，仍需更
多針對中文語言特性的調整與研究。

在未來的工作中，我們計畫針對語料來源與
品質進行優化，並嘗試更合適的預訓練策略與
模型設定。我們相信這些經驗將成為我們後續
研究的重要基礎，幫助我們在中文語言模型的
探索上持續改進。
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