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Abstract

End-to-End Neural Diarization (EEND)
has undergone substantial development,
particularly with powerset classification
methods that enhance performance but
can exacerbate speaker confusion. To ad-
dress this, we propose a novel training
strategy that complements the standard
cross entropy loss with an auxiliary ordi-
nal log loss, guided by a distance matrix
of speaker combinations. Our experiments
reveal that while this approach yields sig-
nificant relative improvements of 15.8% in
false alarm rate and 10.0% in confusion er-
ror rate, it also uncovers a critical trade-off
with an increased missed error rate. The
primary contribution of this work is the
identification and analysis of this trade-
off, which stems from the model adopt-
ing a more conservative prediction strat-
egy. This insight is crucial for designing
more balanced and effective loss functions
in speaker diarization.
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1 Introduction

Speaker diarization is the task of determining
“who spoke when” in a recording with multi-
speaker. Clustering-based (Wang et al., 2018;
Landini et al., 2022; Garcia-Romero et al.,
2017) are typically structured as a pipeline of
modules, including Voice Activity Detection
(VAD), speaker embedding extraction, and a
clustering algorithm. While clustering-based
approaches can evolve with advancements in
speaker embedding and clustering algorithms,
its inherent limitation of assigning only a sin-
gle speaker to each frame still prevents it from
performing well on overlapped speech.

Although some studies (Bullock et al., 2020;
Charlet et al., 2013) have attempted to mit-
igate the inherent limitation of clustering-
based by using methods such as Overlapped
Speech Detection (OSD). However, the addi-
tional modules may exacerbate the problem
of error propagation within the pipeline. To
address the problem of overlapping speech,
End-to-End Neural Diarization (EEND) (Fu-
jita et al., 2019a,b; Horiguchi et al., 2020) was
proposed. This approach trains a single neural
network to directly output the diarization re-
sult, thereby removing the potential for error
propagation. Furthermore, EEND formulates
diarization as a multi-label classification task,
which enables it to process overlapped speech.
Nevertheless, its direct application to longer
audio recordings is impractical due to memory
requirements and degraded performance when
handling more than four speakers.

The EEND-VC framework, introduced by
Kinoshita et al. (2021), ingeniously integrates
clustering-based with EEND, bypassing the
challenges of standard EEND by applying the
EEND model to shorter chunks. Nevertheless,
a significant hurdle for most EEND-related
methods is the immense amount of training
data they require, typically requiring thou-
sands of hours, which necessitates a depen-
dency on simulated data. Consequently, the
mismatch between these simulated datasets
and the target domain typically requires fur-
ther model adaptation. To enable training di-
rectly on real data, the Pyannote framework
(Bredin, 2023) applies EEND to even shorter
chunks, enabling the assumption that only a
few speakers are present within each chunk.
This approach significantly reduces the data
dependency, making it feasible to train the
EEND model directly on real data.
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Recent advancements building upon the
Pyannote framework have delivered superior
performance in speaker diarization. These
improvements are largely attributed to key
strategies such as switching speaker diariza-
tion from multi-label to powerset multi-
class classification problem (Plaquet and
Bredin, 2023) and leveraging pre-trained Self-
Supervised Learning (SSL) models with more
robust encoder like the Conformer (Han et al.,
2025; Plaquet et al., 2025). However, while
the powerset formulation offers significant ad-
vantages over multi-label methods, it can also
exacerbate issues related to speaker confusion.
Consequently, enhancing the ability of model
to classify speakers accurately within powerset
remains a valuable area for future research.

In this paper, we use the cross entropy loss
as the main objective function and introduce
an ordinal log loss (Castagnos et al., 2022) that
considers distances between different classes
as an auxiliary objective. Because we believe
that using cross entropy loss alone makes it
difficult for the model to learn the relation-
ship between different classes during training
(e.g., {1} and {1, 2} both contain speaker 1).
Although speaker diarization is typically eval-
uated using nominal metrics, we contend that
strategic incorporation of a distance-aware ob-
jective function can be beneficial. We call
this hybrid objective function as the Multi-
task Logarithmic Loss (Multi-task Log Loss).
This combination has been proven effective in
ordinal classification (Kasa et al., 2024).

2 Methodology
2.1 Multi-task Log Loss

Since speaker diarization is a task primarily
evaluated using nominal metrics, we employ
the cross entropy loss (Lcg) as main objective
function:
N
Lop=—Y_ pilog(p:), (1)
i=1
where N represents the number of classes, and
p; is 1 if class i € {1,2,..., N} is the ground-
truth class and 0 otherwise. Assuming that
class j is the ground-truth label, cross entropy
loss can be simplified to —log(p;), where p;

denotes the probability for class j as predicted
by the model.
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To guide the model to learn the relation-
ships between different classes, we incorporate
an ordinal log loss (Lorr) as an auxiliary ob-
jective function. This approach utilizes a dis-
tance matrix to define the distance between
classes, where each class represents a unique
combination of speakers. The loss is formu-
lated as follows:

N
Lorr = — Y log(1 —p)d(j,i)*,  (2)
im1

where d(j,7) is the distance between class j
and class 4, which is defined by the distance
matrix D and scaled by a hyperparameter a.
The multi-task log loss (L) is composed
of cross entropy loss and ordinal log loss:
Lyrr = Lor + AoLr, 3)

where X is a hyperparameter that respectively

determine the weight of the contribution of or-
dinal log loss to the overall loss.

2.2 Distance Matrix

In ordinal tasks, a distance matrix can be read-
ily constructed from explicitly defined relation-
ships between classes. However, such ordinal
relationships are absent in speaker diarization.
Therefore, we propose to construct a distance
matrix based on the set-theoretic relationships
between the different speaker combinations.
The distance D;; between any two speaker sets,
s; and sj, is defined by their symmetric dif-
ference, which counts the number of speakers
present in one set but not the other. This can
be formulated as the size of their union minus
the size of their intersection:

Dij = |si U sj| = |si 0 541, (4)
where S = {si, s2,..., SN} represents the set
of powerset classes. Assuming each segment
contains C' = 3 speakers and a maximum of
K = 2 overlapping speakers, the number of
powerset class is N = T:

e () for non-speech frames;
o {1}, {2} and {3} for one speaker;

o {1,2}, {1,3} and {2, 3} for two speaker.



For example, the distance between the class
representing speakers 1 and 2, s; = {1,2}, and
the class representing only speaker 1, s; = {1},
would be D;; = |{1,2}U{1}| - [{1,2}Nn{1}| =
{1,2}| — [{1}| = 2 — 1 = 1. This intuitively
means there is one speaker difference between
the two classes. Therefore, when C' = 3 and
K = 2, the distance matrix D is:

0111222
1022113
1202131

D=|1220311 (5)
2 1130 2 2
213120 2
2311220

2.3 Speaker Diarization Pipeline

We adopt the same three-stage pipeline
as Pyannote, which proceeds sequentially
through three main components:

1. Segmentation: The input audio is first
split into overlapping short segments, and
End-to-End Neural Diarization (EEND)
is applied to each segment to produce lo-
cal diarization results.

2. Embedding: Based on the local diariza-
tion information, speaker embeddings are
extracted from speech segments corre-
sponding to each speaker.

3. Clustering: The extracted speaker embed-
dings are grouped using a clustering algo-
rithm to map speakers across all segments
and generate the final global speaker di-
arization result.

For the segmentation stage within our pipeline,
we retrain the model by adopting the EEND
framework proposed by Han et al. (2025). As
depicted in Figure 1, the architecture first ex-
tracts features from an audio input using a
pre-trained WavLM model. The feature out-
puts from each layer are subsequently com-
bined through a weighted sum with learnable
parameters to create a fused representation.
This representation then undergo a projection
layer and layer normalization before being fed
into the Conformer. Finally, another linear
layer as the classifier, producing logits for the
N output classes. During training, all param-
eters of the pre-trained WavLM backbone are
kept frozen.

Conformer

WavLM Base+

in-

Confurmer
Block

Figure 1: The architecture of EEND model.

3 Experiments

To ensure that experimental results are repro-
ducible, we will conduct model training and
evaluation using the DiariZen toolkit!, which
is driven by AudioZen and Pyannote 3.1.

3.1 Baseline

In this paper, we conduct a comparative anal-
ysis against a model trained exclusively with
cross entropy loss. To ensure a fair evaluation,
we maintained a consistent model architecture
and configuration for all experiments, with the
exception being the additional hyperparame-
ters introduced by the multi-task log loss.

3.2 Datasets

We use AMI, AliMeeting, and AISHELL-4 as
datasets for model training and evaluation,
with total durations of 98.38, 126.34, and
120.25 hours respectively.The detailed dura-
tion for each dataset is presented in Table 1.

Table 1: A summary of the datasets (hrs.)

Dataset Train Dev Test
AMI 79.65  9.67  9.06
AliMeeting 111.36 4.21 10.78
AISHELL-4 97.39 10.14 12.73
Compound 288.40 24.01 32.56

3.3 Evaluation Metrics

For evaluation, we employ Diarization Error
Rate (DER), which is the sum of three error
types: Missed Error Rate (MER), the percent-
age of speech time that is incorrectly labeled as
non-speech; False Alarm Rate (FAR), the per-
centage of non-speech time incorrectly labeled
as speech; and Confusion Error Rate (CER),
the percentage of speech time assigned to the
wrong speaker.

"https://github.com/BUTSpeechFIT /DiariZen
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Table 2: A comparison of speaker diarization performance on the AMI, AliMeeting, and AISHELL-4
datasets for EEND model trained with cross entropy loss (Lo ) versus multi-task log loss (Larrr)-

AMI AliMeeting AISHELL-4
MER FAR CER | MER FAR CER | MER FAR CER
Lcr (baseline) 9.08 394 446 | 858 3.07 713 | 2.96 429 341
- 250ms collar 687 195 258 | 454 087 563 | 121 171  2.36
Lyrr (proposed) 1051 3.12  4.03 | 925 2.55 6.30 | 3.62 3.79 3.16
- 250ms collar 807 146 230 | 509 070 495 | 152 148 219

Table 3: An ablation study on the performance of
the multi-task log loss with varying weights (\).
This comparison highlights three scenarios: (1)
A = 0.5, which yields the best performance, along-
side (2) A = 0.3 and (3) A = 0.7, which represent
cases with a lesser and greater influence from the
ordinal log loss, respectively.

Table 4: A comparison of the performance with
different distance between the non-speech and
speaker-active classes within the distance matrix.
The conditions are as follows: (1) represents the
original configuration, (4) sets the distance to 2
(i.e., d(0,i) = 2 and d(j,0) = 2), and (5) sets the
distance to 4.

Compound Compound
DER MER FAR CER DER MER FAR CER
baseline 1547 6.65 3.74 5.08 baseline 1547 6.65 3.74 5.08
(1) 15.23 751 3.15 4.57 (1) 15.23 751 3.15 4.57
(2) 15.59 757 3.15  4.88 (4) 15.69  6.95 3.72  5.02
(3) 15.54 7.74 3.22  4.58 (5) 15.80  6.80 3.82  5.19
3.4 Experimental Setups 3.5 Results

The EEND model was trained on the com-
pound training set and validated on the com-
pound development set, using a pre-trained
WavLM Base+ model? as a frozen feature
extractor. We set the maximum number of
speakers to C = 4 and the maximum over-
lapping speakers to K = 2. The input audio
was divided into 8-second segments with a 6-
second hop size. The model was trained for a
maximum of 100 epochs using the AdamW op-
timizer with a learning rate of 1 x 1073 and
a batch size of 64. Early stopping with a
patience of 10 epochs was applied based on
the validation loss. The hyperparameter « for
ordinal log loss was set to 1.5. In the sub-
sequent diarization pipeline, speaker embed-
dings were extracted using the ResNet34-LM3,
followed by Agglomerative Hierarchical Clus-
tering (AHC) to produce the final output.

https://huggingface.co/microsoft /wavlm-base-
plus

3https://huggingface.co/pyannote/wespeaker-
voxceleb-resnet34-LM
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The diarization performance of the EEND
models, trained with either the conventional
cross entropy loss or our proposed multi-task
log loss, is detailed in this section. Table 2
presents a comprehensive comparison of the
two models across the AMI, AliMeeting, and
AISHELL-4, evaluated under two conditions:
with no forgiveness collar (rows 1 and rows 3)
and with a 250ms forgiveness collar (rows 2
and rows 4). On the compound dataset, our
proposed multi-task log loss achieves relative
improvements of 15.8% in FAR and 10.0% in
CER compared to the baseline. These gains,
however, are accompanied by a notable regres-
sion in MER, which leads to only a marginal
improvement in the overall DER from 15.47%
to 15.23%. This outcome suggests a fundamen-
tal trade-off: our ordinal-aware loss function
effectively guides the model to be more pre-
cise in identifying speakers and avoiding false
speech detection, but it does so by adopting
a more conservative behavior. We will further
explain this in subsequent experiments.



To determine the optimal contribution of
our auxiliary objective, we conducted an ab-
lation study on its weight, A, with results
shown in Table 3. The findings indicate that a
weight of A = 0.5 yields the best overall DER.
While different weights modulate the balance
between MER, FAR, and CER, the study rein-
forces the previously observed trade-off, where
a lower FAR and CER consistently correlate
with a higher MER compared to the baseline.

We hypothesize that in segments of high un-
certainty, the model prefers to predict non-
speech to minimize the penalties associated
with incorrect speaker assignments, thus in-
creasing the MER. To further investigate the
cause of the elevated MER and validate our
hypothesis regarding the model’s conservative
behavior, we performed a targeted analysis
by modifying the distance between the non-
speech class and all speaker-active classes in
the distance matrix. The results, presented in
Table 4, reveal a clear and direct relationship.
As the distance from the non-speech class is
increased (conditions (4) and (5)), the MER
shows a corresponding improvement. How-
ever, this improvement comes at the cost of
a gradual regression in both FAR and CER.
This experiment confirms our hypothesis: a
smaller distance incentivizes the model to pre-
dict non-speech in uncertain segments as a low-
penalty alternative, leading to more missed
Conversely, a larger distance forces
the model to make more definitive—and con-
sequently, more error-prone—classifications
among speaker-active classes.

€ITors.

In summary, our investigation into apply-
ing an ordinal-aware loss to the EEND frame-
work has yielded a crucial insight. While the
proposed multi-task log loss effectively reduces
FAR and CER, its primary contribution is the
revelation of a distinct trade-off with the MER.
Our experiments, particularly the analysis of
the non-speech class distance, provide strong
evidence that this trade-off arises directly from
the incentive of model to adopt a more conser-
vative prediction strategy under this loss struc-
ture. Therefore, the key takeaway from our re-
sults is the characterization of this complex be-
havior. This insight is critical for understand-
ing the implications of incorporating ordinal
constraints in powerset speaker diarization.
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4 Conclusion

In this paper, we investigated the effect of in-
troducing an ordinal log loss to the training of
an EEND model. Our findings demonstrate
that equipping the model with distance in-
formation between different speaker combina-
tion classes effectively enhances performance
in terms of FAR and CER, yielding relative im-
provements of 15.8% and 10.0%, respectively.
However, these gains were largely offset by a
regression in the MER, which resulted in only
a marginal improvement in the overall DER.
We further identified that this MER degra-
dation was directly linked to the distance as-
signed to the non-speech class within our pro-
posed distance matrix. Our experiments con-
firmed that a smaller distance incentivizes the
model to adopt a more conservative predic-
tion strategy in uncertain segments, thereby
increasing missed speech errors. Therefore,
the key takeaway from our results is the iden-
tification and explanation of this complex be-
havior. This insight is critical for understand-
ing the implications of incorporating ordinal
constraints in powerset-based speaker diariza-
tion and offers a clear direction for future im-
provements.

5 Future Work

Based on our findings, we propose two poten-
tial improvements. First, the manually de-
fined, set-theoretic distance matrix could be
replaced by a data-driven approach. A fu-
ture direction would be to learn the distances
between speaker combination classes directly
from the training data. This could yield a dis-
tance matrix that is more optimally aligned
with the acoustic features of the data and po-
tentially improve the overall balance of the
proposed multi-task log loss. Second, to di-
rectly counteract the MER regression observed
in our experiments, we propose integrating
feature fusion techniques that have proven ef-
fective for VAD. Inspired by recent findings
from Tripathi et al. (2025), who demonstrated
that fusing traditional MFCC features with
pre-trained model representations can signif-
icantly reduce the MER, we plan to explore a
similar strategy. A promising approach would
be to incorporate a feature fusion module at
the input stage of our EEND model.
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