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Abstract

Automatic speech recognition (ASR) for
low-resource languages such as Taiwanese
Hokkien is difficult due to the scarcity
of annotated data. However, direct fine-
tuning on Han-character transcriptions of-
ten fails to capture detailed phonetic and
tonal cues, while training only on roman-
ization lacks lexical and syntactic cov-
erage. In addition, prior studies have
rarely explored staged strategies that inte-
grate both annotation types. To address
this gap, we present CLiFT-ASR, a cross-
lingual fine-tuning framework that builds
on Mandarin HuBERT models and progres-
sively adapts them to Taiwanese Hokkien.
The framework employs a two-stage pro-
cess in which it first learns acoustic and
tonal representations from phonetic Tai-lo
annotations and then captures vocabulary
and syntax from Han-character transcrip-
tions. This progressive adaptation enables
effective alignment between speech sounds
and orthographic structures. Experiments
on the TAT-MOE corpus demonstrate that
CLiFT-ASR achieves a 24.88% relative re-
duction in character error rate (CER) com-
pared with strong baselines. The results
indicate that CLiFT-ASR provides an ef-
fective and parameter-efficient solution for
Taiwanese Hokkien ASR and that it has
potential to benefit other low-resource lan-
guage scenarios.
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1 Introduction

Taiwanese Hokkien is an important dialect in
Taiwan with rich cultural and historical signif-
icance. However, as Mandarin Chinese domi-
nates education and daily life, the use of Tai-
wanese Hokkien has been declining, especially
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among younger generations. A 2020 survey'
reports that only 7.4% of children regularly
use Taiwanese Hokkien. Despite the existence
of several speech corpora (Liao et al., 2022;
Chou et al., 2023; Lin et al., 2024), the over-
all amount of annotated data is limited com-
pared to high-resource languages such as Man-
darin and English (Zhang et al., 2022; Wang
et al., 2021). This data scarcity poses a signif-
icant challenge for developing robust Speech
Translation (Chen et al., 2023) and automatic
speech recognition (ASR) systems.

Existing Taiwanese Hokkien ASR systems
face additional challenges due to inconsistent
transcription standards. Some systems em-
ploy Tai-lo romanization (Chou et al., 2023;
Chao et al., 2021), which combines phonetic
scripts with tonal markings, making it less
intuitive and harder for general users to ac-
cept (Khoo, 2019). Other approaches anno-
tate speech with Mandarin characters, but
the mapping between Taiwanese Hokkien vo-
cabulary and Mandarin text is often one-to-
many or partially aligned, leading to longer
and less accurate output sequences (Lin et al.,
2024). Using Taiwanese Hokkien Han charac-
ters provides a practical alternative that bal-
ances readability and phonological detail, im-
proving recognition usability.

To overcome these challenges, we introduce
CLiFT-ASR?, a Cross-Lingual Fine-Tuning
framework for low-resource Automatic Speech
Recognition that leverages Mandarin Hu-
BERT backbone models and progressively
adapts them to Taiwanese Hokkien. The
framework follows a two-stage fine-tuning

"ttps://www.stat.gov.tw/News_Content .aspx?
Create=1&n=2755&state=1327FD6ADS8DCDA52&s=
230300&ccms_cs=1&sms=11065/

2https://github.com/redsheep913/CLiFT-ASR/
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strategy where it first acquires acoustic-level
knowledge from phonetic Tai-lo annotations
and then learns language-level structures such
as vocabulary and syntax using Taiwanese
Hokkien Han characters. Comprehensive ex-
periments on the TAT-MOE corpus demon-
strate that CLIFT-ASR achieves a 24.88% rel-
ative reduction in character error rate (CER).
The framework offers an effective solution for
Taiwanese Hokkien ASR and provides guid-
ance for developing ASR systems for other low-
resource languages.

2 Background

2.1 Linguistic Characteristics of
Taiwanese Hokkien

Taiwanese Hokkien has a seven-tone system
and exhibits tone sandhi, which creates tonal
variations that differ from Mandarin (Cheng,
1968).  These tonal patterns make auto-
matic speech recognition challenging, as accu-
rate recognition requires modeling both static
tones and context-dependent tone changes.
Despite these differences, Taiwanese and Man-
darin share similar morphological and syntac-
tic structures (Sun, 2006), which allows knowl-
edge transfer from Mandarin-pretrained mod-
els. Previous studies show that Mandarin-
pretrained ASR models outperform English-
pretrained models when recognizing roman-
ized Taiwanese (Tai-lo), indicating that cross-
lingual transfer can be effective for end-to-
end ASR targeting Taiwanese Han characters
(Chou et al., 2023). These observations mo-
tivate the design of CLiFT-ASR, which lever-
ages cross-lingual knowledge and adapts it pro-
gressively to Taiwanese Hokkien. Note that
this work does not focus on modeling tone
sandhi phenomena, which is left for future re-
search.

2.2 Orthographic Systems and Their
Role in ASR

Taiwanese Hokkien uses two main orthogra-
phies: romanization and Han characters. Ro-
manization systems such as Peh-oe-j1 (POJ)
and Tai-lo provide systematic phonetic repre-
sentations (Khoo, 2019). The Ministry of Ed-
ucation has published a recommended set of
roughly 700 Han characters for writing Tai-
wanese, which can be combined with roman-
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Figure 1: Overview of the proposed CLiFT-ASR.
The € operator denotes element-wise tensor addi-
tion. The dashed arrow indicates that during infer-
ence, ground-truth labels are not available, so the
model outputs are fed back autoregressively into
the prediction network.

ization in a mixed-script form known as han-
16 3. For ASR, using Han characters or han-16
offers a practical balance between phonetic de-
tail and readability and informs the two-stage
fine-tuning strategy employed in CLiFT-ASR.

3 Proposed Method

3.1 Model Architecture

The proposed CLiFT-ASR framework builds
upon the RNN-Transducer (RNN-T) (Graves,
2012) to align variable-length acoustic se-
quences with token sequences, as illustrated
in Figure 1. Given an input audio signal
O and a sequence of target tokens W =
(Wi, w2,...,wy), where N denotes the num-
ber of output tokens, CLiFT-ASR estimates
a probability distribution over possible tokens
at each alignment step. The model consists
of three components: an audio encoder, a pre-
diction network, and a joint network. The au-
dio encoder processes 1" acoustic feature frame
vectors (01,02,...,07) extracted from O and
maps them to a sequence of high-level repre-
sentations that capture phonetic, tonal, and

*https://language.moe.gov.tw/ . ../D005. pdf
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other essential speech information:

H" = AudioEncoder(0), (1)
where H®" represents the sequence of encoder
hidden states (h{"°, ... h%¢). This representa-
tion integrates both local and global acoustic
patterns, which is crucial for accurately model-
ing the tonal variations in Taiwanese Hokkien.
The prediction network generates a context
representation autoregressively, conditioning
on the previous two target tokens to form a
trigram-style context that models short-term
sequential dependencies in the output space:

hPred = PredictionNetwork(w, 2, w,_1). (2)

The joint network combines the encoder out-
put at time step ¢, h{"¢, which corresponds to
the t-th element of H®"¢, with the prediction
network state to form a joint representation.
The conditional distribution over the next to-
ken is then obtained by applying a softmax:

(3)

(4)

This architecture allows CLiFT-ASR to jointly
leverage acoustic and linguistic context at each
step, which is essential for capturing tonal and
phonological patterns in Taiwanese Hokkien.

2, = JointNetwork(hi™ + hgred)7

P(WTL | Oawan:nfl) = Softmax(zt,n).

3.2 Training Strategy

To handle limited annotated Taiwanese
Hokkien data, CLiFT-ASR adopts a two-stage
fine-tuning framework based on a pre-trained
Mandarin HuBERT encoder. In the first stage,
the model learns acoustic-level representations

from phonetic Tai-lo annotations. Given a
training set {(O(i),W(jfii_lo)}EJ:Tf“O, the model

parameters # are updated to minimize the neg-
ative log-likelihood:

(4)

Tai-lo | 0(1)7 0)

(5)
This stage captures fine-grained acoustic and
phonetic details, providing a solid foundation
for language-level learning. In the second
stage, the model is fine-tuned on Taiwanese
Hokkien Han character annotations. Starting
from the network parameter ¢’, it is trained on

0 = argmein Z —logP(W

=
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Split Spk. Utt. Hr.

Training 328 86,072  153.33
Development 58 16,357 28.60
Test 54 15,962 26.28
Total 440 118,391  208.21

Table 1: Statistics of the TAT-MOE dataset across
training, development, and test splits, including
the number of speakers (Spk.), utterances (Utt.),
and total duration in hours (Hr.).

{(O(J)’Wg;n)}UHan to learn vocabulary, syn-

j=1
tax, and higher-level linguistic structures:
UHan ( )
. . J ).
0 = arg min Zl —log P(W{, | 0(1)70).
]:

(6)
By progressively adapting from phonetic to
linguistic representations, CLiFT-ASR effec-
tively leverages cross-lingual knowledge and
maximizes the use of limited annotated data,
resulting in more accurate and robust Tai-
wanese Hokkien ASR.

4 Experimental Setup
4.1 Dataset

All experiments were conducted on the TAT-
MOE subset of the TAT corpus (Liao et al.,
2022), a large-scale Taiwanese Hokkien speech
resource covering diverse regions of Taiwan.
The corpus captures variation in speaker ac-
cents and pronunciation, providing a suitable
testbed for robust ASR development. Audio
recordings were sampled at 16 kHz with 16-bit
PCM encoding to ensure consistent acoustic
quality. Transcriptions were provided in Han-
Lo6-Tai-blin, a mixed orthography combining
Han characters and romanized phonetics. Al-
ternative annotations, including Peh-oe-j1, Tai-
lo, and tone-marked Tai-lo, were also avail-
able to support different modeling strategies.
Table 1 summarizes the number of speakers,
utterances, and total duration for the train-
ing, development, and test sets. To further
evaluate model performance, we included a
cleaner test set drawn from the pilot test of the
Formosa Speech Recognition Challenge 2020
(FSR-2020) (Liao et al., 2020), referred to as
the clean test. The TAT-MOE corpus there-
fore provides high-quality acoustic data and
multiple orthographic representations, making



Model Parameters (M) Development Test Clean Test
CER Rel. CER Rel. CER Rel
Zipformer 65 48.57 - 45.82 - 15.69 -
FSR-2020 Best - - - - - 15.62 0.07
Whisper-base 74 27.36  21.21 24.02 21.80 10.05 5.64
HuBERT-base 96 26.16 2241 24.49 21.33 1297 2.72
HuBERT-base-cmn 96 24.06 24.51 2241 2341 9.08 6.61
CLiFT-ASR 96 22.37 26.20 20.94 24.88 8.06 7.63
Whisper-small 244 22.47  26.10 18.68 27.14 T7.66 8.03

Table 2: CERs (%) and relative reductions (Rel., %) for Taiwanese Hokkien ASR using various audio
encoder initialization strategies. CLIFT-ASR applies a two-stage fine-tuning strategy with the HuBERT-
base-cmn encoder. FSR-2020 Best refers to the top-performing model from FSR-~2020.

it a valuable benchmark for low-resource Tai-
wanese Hokkien ASR.

4.2 Data preprocessing

The transcripts in the TAT-MOE dataset were
written in Han-L6-Tai-biin, a mixed system of
Han characters and romanized phonetics. To
unify the representation, we first constructed a
mapping table using additional corpora to con-
vert romanized segments into the correspond-
ing Han characters. Arabic numerals were
also converted into Chinese numerals, and vari-
ant or synonymous characters were normalized
to a single standardized form. These prepro-
cessing steps reduce inconsistencies and lexical
variation in the annotations, thereby improv-
ing the stability of training and the accuracy
of recognition.

4.3

All training procedures followed Icefall’s offi-
cial recipes and default settings?. To estab-
lish a fair baseline and assess the benefit of
cross-lingual transfer, we considered two en-
coder configurations: the baseline Zipformer
model and a HuBERT-based Transformer ini-
tialized with Mandarin pretrained weights pro-
vided by the toolkit. The prediction network
adopted Icefall’s stateless design for efficient
sequence modeling, and the joint network fol-
lowed the standard implementation for inte-
grating audio encoder and prediction network
features into output distributions (Yao et al.,
2024; Hsu et al., 2021; Ghodsi et al., 2020).
For tokenization, we employed Icefall’s byte-
level BPE model, which has proven effective

Model Configuration

‘https://github.com/k2-fsa/icefall/
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for handling large CJK vocabularies in bilin-
gual and multilingual ASR tasks. This config-
uration enables a direct comparison between a
strong baseline and our cross-lingual strategy,
ensuring that performance gains are consistent
and interpretable.

4.4 Training Details

Speech data were prepared using the Lhotse
toolkit (Zelasko et al., 2021). For feature ex-
traction, the Zipformer baseline model used
80-dimensional filter bank (FBank) features,
while the HuBERT-based model was fine-
tuned directly from raw waveform inputs. In
CLiFT-ASR, the first stage was trained for
20 epochs and the second stage for 40 epochs.
For comparison, a direct fine-tuning approach
without staging was trained for 60 epochs. All
models were trained with gradient accumula-
tion over 4 steps to stabilize optimization. To
balance computational efficiency and contex-
tual coverage, the maximum audio duration
per training sample was limited to 120 seconds.
The learning rate was initialized at 0.0005 and
scheduled over 40 epochs for smooth conver-
gence. Model embeddings were set to 256
dimensions, and training was initialized from
pretrained checkpoints. Optimization was per-
formed with the ScaledAdam optimizer, which
applied adaptive learning rates and gradient
clipping at 2.0 for stability. A custom learn-
ing rate scheduler, Eden, was employed to dy-
namically adjust the learning rate across both
batch and epoch progression (Yao et al., 2024).


https://github.com/k2-fsa/icefall/

Fine-tuning Strategy Frozen Development Test Clean Test
Direct None 24.06 22.41 9.08
Audio Encoder 36.82 35.72 26.84
Two-st Prediction Network 25.23 23.91 11.84
Omstage Joint Network 29.58 28.59 18.46
None 22.37 20.94 8.60

Table 3: CERs (%) on development, test, and clean test sets for different training strategies and parameter

freezing configurations.

The table compares direct fine-tuning with the proposed two-stage strategy,

evaluating the impact of freezing specific components (audio encoder, prediction network, joint network)

during the first stage.

4.5 Evaluation Metric

Character error rate (CER) was employed as
the primary evaluation metric. CER quanti-
fies the discrepancy between the predicted out-
put and the reference transcription by count-
ing the number of substitutions, deletions, and
insertions. It is computed as the ratio of total
character errors to the number of characters
in the reference:

D+1
CER:u’

- 7

where S, D, and I represent the numbers of
substitutions, deletions, and insertions, respec-
tively, and C denotes the total number of
characters in the reference. As a character-
level measure, CER provides a precise and
widely accepted evaluation of recognition ac-
curacy for speech recognition tasks, with lower
values indicating better performance. For Tai-
wanese Hokkien, where annotations include a
mix of Han characters and romanized phonet-
ics, CER is particularly suitable because it
captures errors across both orthographic forms
and effectively reflects the ability of the model
to handle tonal and phonological variations.

5 Results and Discussion

5.1 Effects of Language Initialization

Table 2 summarizes the impact of differ-
ent encoder initialization strategies on Tai-
wanese Hokkien ASR performance.  The
comparison includes Zipformer without pre-
training, HuBERT-base pretrained on English,
Whisper models with multilingual pretraining,
and HuBERT-base-cmn pretrained on Man-
CLiFT-ASR, built on the Mandarin-
pretrained HuBERT-base-cmn encoder and

darin.
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the proposed two-stage fine-tuning strategy,
achieves the strongest overall performance.

Models without language-specific pretrain-
ing, such as Zipformer, exhibit the low-
est performance, highlighting the difficulty
of learning effective acoustic representations
from limited Taiwanese data alone. Whisper-
base, benefiting from large-scale multilingual
pretraining, shows significant improvement
and robust generalization across languages.
English-pretrained HuBERT-base offers mod-
erate gains, indicating that cross-lingual trans-
fer helps but is constrained by the phonologi-
cal mismatch between English and Taiwanese
Hokkien. Compared with these strong base-
lines, CLiFT-ASR consistently reduces CER
across all evaluation sets, achieving up to
26.2% relative improvement on the develop-
ment set and 24.88% on the test set. While
Whisper-small slightly outperforms CLiFT-
ASR on certain splits, it contains more than
twice the number of parameters. CLiFT-ASR
therefore offers a parameter-efficient solution
with substantial gains over competitive base-
lines, demonstrating the effectiveness of cross-
lingual initialization combined with progres-
sive two-stage fine-tuning.

5.2 Analysis of Fine-tuning Strategies

Table 3 presents the effects of different
fine-tuning strategies and parameter freezing
configurations on CLiFT-ASR performance.
Compared with direct end-to-end fine-tuning,
the proposed two-stage strategy, which first
adapts the model on phonetic (romanized)
transcriptions and then refines it with Han
character targets, consistently improves recog-
nition accuracy across all evaluation sets.
Analyzing parameter freezing during the
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Figure 2: Row-normalized substitution confusion matrices for Taiwanese Hokkien tone prediction, com-
paring the baseline and proposed models. Tone labels are derived from Taibun surface forms without

applying sandhi rules.

first stage highlights the contribution of each
module. Freezing the audio encoder or joint
network restricts the ability of the model to
adapt to target phonetics and orthography,
leading to notable performance degradation,
whereas freezing the prediction network has
a milder effect. The lowest CER is achieved
when all components are trainable, indicat-
ing that full model adaptation within the
two-stage fine-tuning strategy enables effective
integration of acoustic and linguistic knowl-
edge. These results demonstrate that CLiFT-
ASR with a carefully designed multi-stage fine-
tuning strategy outperforms direct adaptation
and provides a robust solution for low-resource
mixed-orthography ASR scenarios.

5.3 Investigation of Tone Confusions

Figure 2 depicts the substitution confusion ma-
trix for tone prediction in Taiwanese Hokkien.
The diagonal dominance indicates that most
tones are correctly classified, yet tones 5, 7,
and 8 exhibit frequent mutual misclassifica-
tions. These errors are likely attributed to
tone sandhi phenomena, overlapping pitch con-
tours, and speaker-dependent prosodic varia-
tions, which complicate accurate tone model-
ing in ASR. To conduct this analysis, we em-
ployed the Taibun tool® to convert Taiwanese
Han character outputs into Romanized forms
with numerical tone labels. By aligning ref-

*https://github.com/andreihar/taibun/
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erence and predicted tone sequences, we con-
structed row-normalized substitution matrices
to quantify tone-level confusions.

In the Zipformer baseline, tones 1, 5, and
7 emerge as the most error-prone categories.
Tone 1 is correctly recognized only 29% of
the time, with 16% of its instances misclas-
sified as tone 2. Tone 5 is frequently misclas-
sified as tone 1 (21%), while tones 7 and 8
show substantial cross-confusions, indicating
the limited ability of the baseline model to dis-
criminate between acoustically similar tones.
In contrast, the proposed CLiIFT-ASR system
demonstrates clear improvements across most
tonal categories. Tone 1 accuracy increases
from 29% to 35%, while tone 4 recognition
improves from 20% to 25%. The overall mis-
classification rate decreases, particularly for
tones 5 and 7, where cross-tone errors are sub-
stantially reduced. These results highlight the
enhanced discriminative capability of the pro-
posed framework. In summary, the tone con-
fusion analysis confirms that CLiFT-ASR ef-
fectively reduces inter-tone errors, especially
among acoustically similar tone pairs. This im-
provement can be attributed to the proposed
feature design and training strategy, which to-
gether provide more robust tonal modeling for
Taiwanese Hokkien ASR.


https://github.com/andreihar/taibun/

6 Conclusion

This study presents CLiFT-ASR, a cross-
lingual fine-tuning framework designed for
low-resource Taiwanese Hokkien ASR. By ini-
tializing the audio encoder with Mandarin
speech representations and applying an effec-
tive two-stage fine-tuning strategy, CLiFT-
ASR achieves the best overall performance.
The first stage leverages Taiwanese romaniza-
tion to capture detailed phonetic information,
and the second stage adapts to Han character
transcriptions to integrate orthographic and
syntactic knowledge. This progressive strat-
egy highlights the advantage of aligning acous-
tic and linguistic representations in stages
rather than directly training with limited an-
notated data. An analysis of tone recognition
shows that while general tone recognition is ac-
curate, tones 5, 7, and 8 remain difficult due
to tone sandhi, overlapping acoustic patterns,
and speaker-specific prosodic variation, all of
which complicate precise tone modeling.

7 Future Work

Several directions can be explored to extend
the proposed CLiFT-ASR. One promising av-
enue is targeted data augmentation that bal-
ances underrepresented tones. Another is ex-
plicit modeling of tone sandhi, which may fur-
ther reduce tonal confusion. The integration
of larger and more diverse pretraining corpora
is expected to improve robustness, particularly
for conversational speech. Future research
may also apply advanced sequence modeling
or structured prediction techniques to capture
tonal dependencies more effectively. Finally,
evaluating multilingual models such as Whis-
per could provide additional gains through
large-scale pre-training and enhanced contex-
tual modeling.

8 Limitations

Although CLiFT-ASR achieves competitive
improvements, the current design relies on a
stateless RNN-Transducer framework. The
stateless prediction network constrains the
ability to model long-range dependencies,
which may reduce accuracy in recognizing
tonal patterns and complex tone sandhi. Com-
pared with recent large-scale pretrained mod-
els, the architecture also has limited capac-

ity to exploit fully contextualized acoustic rep-
resentations. These limitations suggest that
adopting more expressive architectures with
stronger context modeling could further ad-
vance Taiwanese Hokkien ASR.
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