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4—% 2 Narrative Assessment of Syntax for

Children), which integrates the MAIN

Sy st LFTFENER R story framework with the MAPS-R
Fr iR sRRE AT o Ka o syntactic framework to construct a Chinese

narrative corpus encompassing four
categories and 20 indicators. We evaluated

EaE At ) SR M R

N "i P%ql Tk AT AR commercial models (ChatGPT-4, Claude
FRRABRPF Ry peitaii Sonnet 4, Gemini 2.5 Flash, DeepSeck)
R FL?};}% e g fe AP LHRY through prompt engineering, and fine-
MINAS (Mandarin Intelligent Narrative tuned open-source models (Chinese
Assessment of Syntax for Children) > % & RoBERTa, OpenHermes-2.5) with LoRA.
MAIN #& % 5 ¥ MAPS-R 3% % % B A Experimental results show that few-shot
ZrnFe BAEY 20 BopfEad 2 prompFing achieves }'ﬁgh aceuracy across
5T FAFAHEE o AP 2 Prompt most indicators, while fine-tuning with

LoRA achieves better performance in noun
and verb phrase identification but is not as
good for complex sentence structures. This

Engineering =& @ * #-3] (ChatGPT-4
Claude Sonnet 4 ~ Gemini 2.5 Flash ~

’

DeepSeek ) » i 1 LoRA ficsd B ik 3 study validates the feasibility of applying
(Chinese RoBERTa ~ OpenHermes- large language models to syntactic
25) o F % % % & 7 > Few-shot classification of Chinese child narrative
Prompt i &< % #cdp henyr B AL R corpora, highlighting their potential in
LoRA Mg | & 287 de2iiess b 4 30 clinical applications and linguistic research.
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Abstract

Children’s narrative ability is an important 1 Introduction

indicator of langgage ‘dc'evelopment ?,Ild is 243 H; b hE B R B BE Ffi il
commonly used in clinical diagnosis and

=i : 33 7o
linguistic research. However, the lack of FOLRFG R HUL BT VA ﬁF
large-scale, standardized, and accurately e T (narratlve ability/ it 45 FE &% 5 ~ 3
annotated Chines.e child language corpora ENEREE R T e .%F‘« iE & ;fﬁ & > 549 )3 pEd
makes gramn(;atwal anal};s.ls ‘po.th tlr}?T- TR 2E 9L S £ @24 E (Berman et al
consuming and prone to subjectivity, while i NI
existing automated tools fall short of 1994) TEE ;}ﬂ P ST *ﬁ
clinical and research needs. This study gHFTHR&EFY B A R L LA
introduces MINAS (Mandarin Intelligent B> Tt iR G R B UThE B Ry o
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% > MAIN (Multilingual Assessment
Instrument for Narrative) 7 MAPS-R
(Multidimensional Assessment of Preschool

Syntax — Revised) % 1 B B F 4L 3k 1 - MAIN
B E R a‘%l,«%—? v ende ¥ 5
H8 (Gagarina et al., 2012) » = &% ** 23k 65
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«’ A 3% 7 #i- 3] (Large Language

Models, LLMs) «lir' ChatGPT-4 ~ Claude Sonnet

4 ~ Gemini 2.5 Flash #2 DeekSeek i & % E

% Bira s fEad e R p RFG Eir
PERRE AR I * ET 142 (Prompt

Engineering ) # ~ & % (Few-shot

Learning) ~ #%] ## (Fine-tune model) %
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Instrument )
MAIN -
ENNI(Schneider etal., n.d.)4* %+ 4-9 # s2 3 3%
Tt AT ETER I E ek EG TS
oS AR 4R A Bcdy o Renfrew
Bus Story ¥ - B# B AF SR E> 5N
KT 23 v FAE N HET F B R E
B % 1 MAIN (Multilingual
Assessment Instrument for Narratives ) £3iT# 7
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AAE B m%\ o EIRE
}‘T P mIRE SHE G R A
S BRI -
?l-._p% Fre oo ¢ 2 FTRipRG
F”r HHCE < 23 ZHE CHILDES
R gl

» Renfrew Bus Story (RBS)

g m

—_— o
7~

L

°\=4|=

..,
=
W
PR N

ok 3¢

My I

< H o E R

;‘T;\‘—l““?vﬂ@ﬂﬂJ \’—"

2

et
F.

T SLER S SERG R
g szmx mﬁfi% - %
£ CLAN
Ewwﬂfﬁm&ﬂ1é’ua
& A K (tien)th T s S 2 3E 2 M

Fr - ERpRr fRE > A F R
_+ enFEg(MacWhinney & Snow, 1985); Sinica
Treebank (Huang et al., 2000)2 3% & 7 3% ;= &3¢
fe i A AL L A o F kAT E 2 MAIN 5 &
#H o EFOEAEG F""’”fﬁ}ﬁf ERENAR
TR o R IRA TR AR B ERE S PR
AERF TR A2 BE2 238 Al {7

-

et A
o W
.y

~
O
o)
i\,

<y

—

3”( =

ok RO A
=4

AT o B EIEDF AT E R A
225 %+ UFF Ik
SAFIHEA AR RF T I E L ¢ B
RBREA AH é_;f»ﬂ IR
U FAIFRE 9 0 C RR AR TER
AT e Ay enficd] ¢ 7 ChatGPT-4 ~

Claude Sonnet4 ~ Gemini 2.5 Flash ¥ DeepSeek-
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A2 FBH 7 & = 4% 5 DeepSeek-V3 (DeepSeek-
Al et al., 2025)3% $ic 4] % & Multi-Head Latent
Attention (MLA) ¥7 Multi-Token Prediction
(MTP) #jkv > 8 ~ 258 widde @
i B ALEL T o

B3 e B

LLaMA & 7(Touvronetal.,2023) 4 B 2z g &£
LR AL Ed o AL R LEDR R
LLM - LLaMA-1 # & 7B ~ 13B ~ 33B ¥ 65B
w B A > g+ 80 Transformer layers & 64
attention heads 1% fx ; H {4 e LLaMA-2 2 5
7 LLaMA-1 ehZf 5 > Bid AL B g
rigiFigic - 4 7B~ 13B &2 70B P daglind
Ao HASHAREHR AR LA TN
¥ %7 &2 ¥ i & Mistral
Mistral—7B ¢ 7 32 i Transformer layers ~ 32
attention heads > I & * Grouped Query
Attention (GQA) # Sliding Window Attention
(SWAY S 41 > it § »2 AT & A 785 »
OpenHermes ,# 7| %_# Mistral- 7B 25 A FA)
EEMA DR R > T4 Aﬁ»%w
Bip 4 T8~ d GPT-44 S andk & > 112
His Al Ap 3% o B 38 (Teknium/OpenHermes-
2.5-Mistral-7B- Hugging Face, 2024) o }* #F » 4+
7 At LoRA/QLoRA (Low-Rank
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2.4 Prompt Engineering 2 Fine-tune

~ 4] # 3 # 4] (Large Language Models,
LLMs) e % B > 3% 77 1 42 (prompt
B 50 A BCRDRa hE &
= ;% o few-shot prompting (Brown et al., 2020) %2
T '#éﬁv/{‘u =
B 0o T A F o 504 & R 5 Chain-of-
Thought (CoT) ™ ;* (Wei etal., 2023) ] 1% i 5| %
A Y FHREAR A KT REE
FFEND RS o AFE Y » ® % finetuning 3 B R
Alend R o 4P #T prompt engineering K =
B FE M finetuning st AP F R EIRE S
(e i e Haped T & gp 0t
i R R &8 T R(Ziegler et al,
2020) -
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1. Prompt Engineering - 4%t * LLM @

T AR o
ii. LLM fine-tuning - i * LoRA(Hu et al,,
2021) ¥ B R AR 7 SR o
Positlive(l) ) Negative (0)
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*Eﬂlzi)ﬁﬂ% m Af) ~: smunﬁmsm: =

Test set EEGNTE) - EERMRTE) - ero |
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| | @) chatGPT ¥ Claude

Prompt Engineering
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Instruction +
Few-shot learning |

s ikER

F| Hf 5L Fine-Tuning Models

+ Chinese Roberta

* OpenHermes 2.5 <« Optunajxft £ $ & ~——

B 1. 7 2o A2 H)

f{%ﬁiﬂ i /H ﬁié’ a 7}_'_ QIJ 2@/’_ PI‘Ompt r/{
%*&&uﬂ\ﬁﬂw SERT BA
J‘éfbvf)» o F] EX:-a il‘—;»« MAPS-R ’f#_mt’ R

JHAFFEAFTAE > EFRF Prompt
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* Optuna (Akibaetal.,2019):& {74z $-#cp & i*
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3.1 Dataset

AET G % B p MAPS-R TR B
(Cheung et al., 2024) > 3% F L f 2 d = =4 =
MAPS-R #5320 A5 = 55 B & 4 oh e i

EEREEBOF LI f F¢ 2 2F
BACE 3E 4 i 47 o S B 20%:HE 4 it
= Inter-rater reliability (IRR) » 3+ & ! & kappa

091 = 095 F AL kim 5 & * MAIN
(Gagarina et al., 2012)en& ¥ B % 51 - #1c & e
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(Positive) » # {# £ 3%3% 2 dg o + Pl ikze
2 f A (Negative) » § e+t # 3552 4
W A B R R AT E S
MRERARE o

AR ATE S R DREEY LD f B
Aot PR B RER Y 13 Gl f R A B o
23 iéifﬁ%ﬂﬁ?%%ﬂ\ﬁicﬂ A3 10 3 1000 424 %
FOoFPRARFEEEALTIGERY SR
BFLRE c RFOTHRELSFHRFELE o

itk | BH Training Test set
set
fa-rak iz Pos | Neg | Pos | Neg
NP1 £37- 805 | 805 | 58 174
NP2 F@-#F_ | 195 | 195 | 58 174
NP3 X eh 352 | 352 |40 | 120
NP4 XY 365 | 365 |40 | 120
NP5 A 510 | 510 | 43 129
VPI HWimikie | 395 | 395 |92 | 276
VP2 BEAFE 462 | 462 | 69 | 207
VP3 Age A | 252 | 252 | 47 | 141
VP4 RE A | 100 | 100 | 40 120
VP5 VA E | 100 | 100 | 40 120
VP6 | #&BA4E | 122 | 122 |41 | 123
W EiE
PP1 w43 | 100 | 100 | 48 144
PP2 s A | 102 | 102 | 42 | 126
(it 38)
a3
S1 FFe 127 | 127 | 42 126
S2 F 100 | 100 | 40 | 120
S3 TR 100 | 100 | 82 | 246
S4 A GRS | 255 | 255 |83 | 249
14 3%)
S5 ¥ 165 | 165 | 95 | 285
4F @7
S6 % HEAE e | 100 | 100 | 45 135
S7 R &/ 100 | 100 | 93 | 279
ST
w3

ELFRE L
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3.2 Prompt Engineering

YoB 2 AT 0 AT EY SR RK
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4P o PR ETRE  RR

A EZ s FEAN (10) v T

9&2#']%?]51}] #7324 > A3 HidCA R
2

Few-shot Learning : % 3% 3% 2 €& ¥

Instruction

BT S2R BB RS HE > BARAH
ﬁﬁ'@‘?‘i(@#?'é‘"ﬁ%’ffna 185 %8 - CSV & 3%
Fauh4R 6) > label PAZIE A 1 &4 &oT sk &) B
AR BEYM 0 AT AR A" ME AR EMEy
e UTA"BRAAC" EE> G, BRA - FLE
BENE X RERNERARR  XHEREKL
B R E/REFZH -

P

AT A —HREEEHK > AN RA SRR
HRR T RIREE o BB B3 RBYIN4EE T R AviE
BRSO RABHERT TR - REEAEIT RF
RABEEEEN > AR E L RS RS

i B R EALBH BT RIAIE R Fo R AE ©

EIRGE

1. #feirieeyig -

TR aBEE TR SKRE L -

B RER > RTHEEREL -

fE ¢ FOoR B FIE AR AT

% RKEME -

R Ek HEER (0 TV — V) &K
TVV ) AN &Sfeisst ~ RFEXREY » b
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Few-shot Learning
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BREEEE -
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LLM > 4 %] % ChatGPT-4 ~ Claude Sonnet 4
Gemini 2.5 Flash 2 DeepSeek » 14 i& {7 & Hp
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3.3 Fine-Tuning Models

~# 3 #% * Chinese RoBERTa-wwm-ext
(Chinese  Roberta) 3¢ 3" M  fic 3|
(https://huggingface.co/hfl/chinese-roberta-wwm-
ext) {fr  OpenHermes-2.5-Mistral-7B-GPTQ
(OpenHermes-2.5) g 2" . # F]
(https://huggingface.co/TheBloke/OpenHermes-
2.5-Mistral-7B-GPTQ) & {7 & 47 3®= & o
RoBERTa (Liu et al, 2019)& - #& A *
Transformer 7 #57%& § ¥ #3] > @ Chinese
Roberta i& - # 31 » 7 Whole Word Masking
(WWM) (Cui et al., 2021) > A iE ¥ Ti37 4+
HEBFFEAFEY  a2H-3~ > # 2
LEPRl > Ea RAHAFHAY 2 F 8
3% 2 M 2 4 o Chinese Roberta i i 154t 2
RETT o AP RF T AR EERAK
A % 22§25 - OpenHermes-2.5 B 5 + 4|3
% #-3] Mistral-7B » GPTQ £ i* éE%(Jlang et
al 2023) » % 753 Transformer 7% 1 > &

4#:(":% Hb » ¥ 1__”}; KE\IGPU‘U’%’EQT ‘if” LOM
jés(gz’féﬂﬁéi&/,%r‘v&,z BHEEE E
= 2le A

FORTIAE © 20 45 el b & 44
AR E (80%) freki B (20%) T FE
NI B N e Jr'h/v 5
% i Chinese Roberta v OpenHermes2.5 3%
Tokenizer # 4 7 $i3)] %7 % mﬁa?] »F gl e

LoRA : ##F 7 #* 7 LoRA #&#h Hilv - &
3 "Lant ¥ FRT F s 4 Chinese Roberta £2
OpenHermes-2.5 :& {7 Fine-Tune - LoRA %
BRI EFVREAAELELSI L5 B

low-rank ¥ 3" RAEE o A UEARY o 0
Ta Bt lic A RASEA OIE D R
BEREFA o L BHERS IV IRE
Poihfe® o < bR ',ﬁ"c'h%’é‘;%iﬂ'%i—?’i?é""éﬁf’?@ ,
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3 4 Over-

» 3 * Optuna 1=
i AL D $ AR @ v 7

R U= P UF W £ A L
BT AR E D B AT - 2B
g—ﬁ SRR SRS d

e 2k i

&éfx»

¥ Optunaﬂ&ﬂa T R AT Sk

. leammg_rate DA le-6 3] le-3 ¥t B
iE o

. batch_size : f%[4, 8, 16,32]7 EH -

1#[8,12,16,20,24]° E# -

. lora_alpha : j%]4, 8, 16, 32, 64]° £ # -

. lora r:

J lora_dropout : % 0.0 3] 0.5 FF3&F » H £
% 0.1
FRFTHETHEF 30 K FEHR o UKE

& ¥ ¢hvalidation loss 1% 5 B iE 1 enp Hf o B %
A A B ETEE A SRS
F- ol SN R AR I ) S Ay I
R4 * Hugging Face = Trainer #f %
(7 F % Optuna 45 3 end 242 28> 3
3 B2k Over-fitting » 2% iF* % * Early Stopping
| » % validation loss i § 15 # epoch i<}
L PE IR E pE R o I AR
e *“'Héi BoM o PR RIRE R
#3‘? TiF 2 BHEHRE Y goci o
L4+ Chinese ROBERTa 1% %8 DNN % 1‘#17,
ﬁi’i—i B 3o éia,] » gt € L5 d Tokenizer #
e L BV > %2 ~ Chinese RoBERTa -

& * LoRA it {7 % 8ciich o B %@ %3 Dense
Layer &2 Softmax &7 = ~ &5 > FF 120

i % s Ao Bl & Positive 2t Negative &4 -

Input—> Tokenizer 1 0
_________________ ! e
Input IDs + Input mask + Label | Soﬁ‘max
Chinese Dense layer
. [ RoBERTa f
input < @+ contextual embeddings
“Aj B [CLS] Vector

%l 3. &% RoBERTa-LoRA

+ & 4 4 DNN % #

4 Result and Discussion


https://huggingface.co/hfl/chinese-roberta-wwm-ext
https://huggingface.co/hfl/chinese-roberta-wwm-ext
https://huggingface.co/TheBloke/OpenHermes-2.5-Mistral-7B-GPTQ
https://huggingface.co/TheBloke/OpenHermes-2.5-Mistral-7B-GPTQ

:}Fq &= Few-shot Zero-shot
Gemini | Claude | ChatGPT | Deepseek | Gemini | Claude | ChatGPT | Deepseek
NP1 0983 | 0.966 | 0.975 0.922 0.945 10952 |0.974 0.758
NP2 0.779 | 0.855 | 0.689 0.769 0.780 10.790 |0.775 0.820
NP3 0976 | 0.988 | 0.987 1.000 0.975 10981 |0.870 1.000
NP4 0.987 1.000 | 0.909 0.963 0.980 |0.985 | 0.867 0.935
NP5 0966 | 0.930 | 0.913 0.945 0.960 | 0.967 | 0.966 0.977
VP1 0948 | 0.928 | 0.879 0.845 0917 10910 | 0.938 0.738
VP2 0.763 0.789 | 0.838 0.872 0.724 10.745 |0.644 0.769
VP3 0.842 | 0.793 | 0.832 0.839 0.835 |0.823 |0.825 0.839
VP4 0.988 1.000 | 0.833 0.975 0976 | 0.980 | 0.951 1.000
VP5 1.000 1.000 | 1.000 1.000 1.000 | 1.000 | 1.000 1.000
VP6 0932 | 0911 |0.975 0.874 0914 |0.920 | 0.845 0.953
PP1 0.787 10922 | 0.750 0.883 0.853 | 0.864 | 0.831 0.949
PP2 0.966 | 0.953 |0.977 0.943 0.910 |0.930 |0.788 0.989
S1 1.000 | 0.976 | 0.822 0.988 0.986 | 0.985 | 0.988 0.977
S2 1.000 1.000 | 1.000 1.000 1.000 | 1.000 | 1.000 1.000
S3 0.747 10.796 | 0.793 0.755 0.742 | 0.750 | 0.761 0.720
S4 0964 | 0.878 | 0.698 0.872 0.881 |0.907 | 0.626 0.943
S5 0940 | 0.931 | 0.581 0.935 0.569 | 0.580 | 0.540 0.593
S6 0977 | 0.957 |0.911 0.945 0.945 0956 | 0.846 0.936
S7 0.883 0.690 | 0.962 0.690 0.617 |0.657 | 0.583 0.633
Micro_F1 | 0.902 | 0.890 | 0.854 0.878 0.832 |0.840 | 0.797 0.844
Macro_F1 | 0.920 | 0.912 | 0.865 0.901 0.875 10.884 | 0.831 0.876
4. 2. Few-shot % %% #7 | 1 F1-Score
4.1 Prompt Engineering 3<% 4 45 Aprt 2.7 > Few- shot B LG k]
3 g = N R S RPNt
% 2 & 3 Few-shot 14 2 Zero-shot prompting ﬁﬁ] S A A il - E. I,I i “3:’ "hg ﬁt
b % 3% % 5T enF1-Score H S % o BHA T o ’ Pfompt P mEKA L FFE S AR
%L N gl o G E

AN

#iciF 2 4p % & Few-shot i i+ T 325 & "Jf:ﬁ;
% & rg R e 3 F1-Score #.0.95 12}
S R fe s (e rfé.
FL";‘Z‘?PPJ N thm,/\ T M3
qﬁﬁ » F1- Score 7%.“

a1
1) b H A R AR
0.792 fr 0.855 2_ f¥
. Zero-shot § S fx % 7 o BEIRIRAGEE 4
o e TX ) ~ @a; | G A
Boo e A d BRSO Few-
shot 1§ » X H &4 52 %f#f;%%:ﬁk,?ﬂ??im
Zﬁﬁ_ﬁ]t‘ AL 5P & > b4 r)@‘;frr/:cij!’_;j%@
#37 | #8 % & Few-shot ¥ i 7 ¢ Fl-Score #&
Zero-shot # <1 30.5% > @ F i@ 745 o P 3% 2
34.7%

dO T L H B e iz
F BRI XA RDF R T
Few-shot =51 »~ P ¢ &g & % 2 #1073 434 RN
W] g 4 I o Zero- shot B E IR T
2 §p’;—i’r*""%ﬁ?ﬁ54 vofe A Beapw b i &
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