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Abstract

We propose the Linguistics Olympiad Bench-
mark for Structured Evaluation on Reason-
ing, or LOBSTER , a linguistically-informed
benchmark designed to evaluate large lan-
guage models (LLMs) on complex linguis-
tic puzzles of the International Linguistics
Olympiad (IOL). Unlike prior benchmarks that
focus solely on final answer accuracy, our
benchmark provides concrete evaluation proto-
cols and rich typological metadata across over
90 low-resource and cross-cultural languages
alongside the puzzles. Through systematic
evaluations of state-of-the-art models on mul-
tilingual abilities, we demonstrate that LLMs
struggle with low-resource languages, under-
scoring the need for such a benchmark. Exper-
iments with various models on our benchmark
showed that IOL problems remain a challeng-
ing task for reasoning models, though there
are ways to enhance the performance—for ex-
ample, iterative reasoning outperforms single-
pass approaches in both final answers and ex-
planations. Our benchmark offers a compre-
hensive foundation for advancing linguistically
grounded, culturally informed, and cognitively
plausible reasoning in LLMs. 1

Keywords: reasoning, large language model,
benchmark, linguistics olympiad

1The benchmark and the source code can be found at
https://github.com/lopentu/LOBSTER.

1 Introduction

While advances in LLM have revolutionized natu-
ral language processing, significant challenges per-
sist in achieving robust reasoning capabilities—
particularly for tasks requiring multi-step ab-
straction, symbolic verification, and constraint-
based hypothesis testing. Several reasoning-
enhancement paradigms have emerged with the
hope to solve more complex problems, such as hy-
brid tool-integrated approaches (He et al., 2025;
Gao et al., 2025; Paranjape et al., 2023; Schick
et al., 2023;Wu et al., 2025), or agentic systems (Li
et al., 2025; Ke et al., 2025).

The International Linguistics Olympiad (here-
inafter abbreviated as IOL; 2003-2025) presents
uniquely challenging problems that require solvers
to induce linguistic rules from micro-data, often
in low-resource or unfamiliar languages. These
problems test not just surface-level pattern recog-
nition, but demand multi-step abstraction, struc-
tural reasoning, and cultural inference. Compris-
ing four parts (see Appendix A.1), an IOL prob-
lem is meticulously crafted to be self-contained,
without the necessity of any prior knowledge in
linguistic rules. The logical consistency and suf-
ficiency thus allows participants to decode the un-
derlying linguistic rules purely through reasoning
and pattern analysis (Bozhanov and Derzhanski,
2013), the low-resource nature of the languages in
which these problems made offers an isolated envi-
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ronment to test the reasoning performance of mod-
els. (See Section 3)

In addition to abstract linguistic reasoning,
some IOL problems incorporate elements that go
beyond standard textual input, requiring models to
process non-standard scripts, phonetic transcrip-
tions, or visual symbol systems such as maps or
family trees. Some problems involve rare or ex-
tinct writing systems—occasionally ones not yet
fully encoded in Unicode—demanding the recog-
nition andmanipulation of unfamiliar glyphs (Shih
et al., 2025). Others rely on International Pho-
netic Alphabet (IPA) representations, tone contour
symbols, or constructed orthographies that encode
morphophonemic information. A subset of tasks
also includes pictographic cues, spatial arrange-
ments, or logical diagrams (see Appendix A.2),
which are essential to its decipherment. While re-
cent vision-language models have made progress
in visual and text input jointly, their ability to inte-
grate these modalities with complex reasoning re-
mains limited.

Another distinctive aspect of IOL problems
lies in their cross-cultural and semantic depth.
Beyond the structural reasoning over phonology,
morphology, and syntax, many problems explic-
itly involve semantic inference, cultural concep-
tualization, or sociolinguistic reasoning—for in-
stance, deciphering kinship terms, numeral sys-
tems, metaphorical extensions, or culturally situ-
ated deixes. These tasks compel both human and
AI solvers to imagine how meaning might be con-
structed in unfamiliar cultural worlds, often requir-
ing cross-linguistic abstraction or anthropological
imagination. For LLMs, this poses a profound
challenge: it tests their ability to generalize across
not only linguistic structures but also cognitive and
cultural domains. IOL problems, therefore, serve
not only as puzzles of language form but as tests
of situated meaning-making and cultural flexibil-
ity, offering a rigorous probe into the limits of
LLMs’ representational and interpretive capacity
across diverse human experiences.

These complex challenges expose the limita-
tions of current LLMs and existing evaluation
methods, which often prioritize final-answer accu-
racy over the reasoning process.

2 Review of Past Studies

Reasoning models and reason-enhancing
paradigms enable LLMs to actively explore

solutions, rather than just passively generate text.
Their efficiency is frequently evaluated through
human-level reasoning benchmarks like the Inter-
national Linguistics Olympiad (IOL) (Şahin et al.,
2020; Chi et al., 2024), where success requires
inferring linguistic structures from constrained
datasets, mirroring real-world challenges in rule
abstraction, cross-linguistic generalization, and
constraint satisfaction.

2.1 Reasoning on Linguistic Structures
Reasoning on linguistic structures presents unique
challenges, when compared to other reasoning do-
mains such as math or coding. Unlike purely sym-
bolic systems, understanding human languages re-
quires world knowledge, cultural context, and com-
mon sense. For example, the word for “five” and
“hand” is the same in some languages because
there are five fingers on a hand. This requires the
model to also infer of a semantical link between
the two senses; it is inconceivable from a symbolic
inductive logical perspective.

For the classic Rosetta Stone problems,2 the in-
ference task is in a sense a more complex variant
of the “infer one form of a word/phrase/sentence
to another” task.

The induction task has long been of interest to
linguists (Durham and Rogers, 1969), as it mirrors
what linguists do in a field study. This induction
task has been framed in at least two ways. One
perspective treats it as a program synthesis prob-
lem, where the goal is to generate a “program”—a
set of formal rules—that transforms inputs to out-
puts (Naik et al., 2024). This has led to the devel-
opment of domain-specific languages for express-
ing such string transformations (Vaduguru et al.,
2021). Alternatively, the task can be viewed as
constrained text generation, where specialized ar-
chitectures are designed to model linguistic phe-
nomena (Lu et al., 2024).

A complementary line of research explores aug-
menting LLMs with explicit linguistic knowledge.
Rather than relying solely on induction from ex-
amples, this approach provides models with re-
sources like dictionaries, morphological analyz-
ers, or grammar books, mimicking how a human
linguist might consult reference materials (Zhang
et al., 2024). While the ability to leverage such

2Given a set of sentences in an unknown language and
their corresponding translations, the agent should infer the
underlying rules, such as grammar, meaning of each word,
or spelling changes in the unknown language.
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grammatical descriptions can be systematically
evaluated (Tanzer et al., 2024), their utility is
task-dependent: for translation, performance gains
stem from parallel examples rather than gram-
matical explanations, which are better suited for
targeted linguistic analysis tasks (Aycock et al.,
2025). Such nuances call for more research on the
intersection of LLMs and linguistics expertise.

2.2 Relevant Benchmarks from Linguistics
Olympiads

To evaluate the capabilities of LLMs on complex
reasoning tasks, researchers have developed vari-
ous benchmarks. The following are some bench-
marks relevant to Linguistics Olympiad problems:

• LingOly (Bean et al., 2024):3 With 1,133
linguistic puzzles from the UK Linguistics
Olympiad (UKLO),4 it excludes image-based
puzzles, non-Latin scripts, and open-ended
questions to ensure machine-scorability. The
evaluation is exact-matched, excluding fuzzy
matches and normalizing Unicode variations,
to ensure linguistic precision. Less strict met-
rics like ROUGE and BLEU were analyzed,
but the primary focus remains on context-
dependent reasoning.

• Linguini (Sánchez et al., 2024):5 This bench-
mark also extracted data from IOL problems,
covering low-resource languages and three
core task types: sequence transduction , fill-
in-the-blanks, and number transliteration (i.e.
digit-to-text conversion). The evaluation uses
exact match accuracy and the softer chrF met-
ric to assess performance on structured lin-
guistic inference.

• IOLBENCH (Goyal and Dan, 2025):6 90 of
the IOL Problems were digitalized into text
or structured representation through LLM-
based document recognition, including some
multimodal components. While it take cares
of free-response answers through different
grading metrics, the LLM-based unverified
data construction made most of the problem
in the dataset ill-formed.

3Relevant resources for LingOly can be found on GitHub:
https://github.com/am-bean/lingOly.

4https://www.uklo.org/
5Relevant resources for Linguini can be found on GitHub:

https://github.com/facebookresearch/linguini
6Relevant resources for IOLBENCH can be found on

GitHub: https://github.com/Satgoy152/ling_llm

Existing benchmarks for IOL-style tasks have
demonstrated the promising capabilities of LLMs
in handling complex linguistic reasoning. How-
ever, several critical limitations remain that con-
strain both fine-grained evaluation and meaningful
model improvement.

First, most current evaluations rely predomi-
nantly on exact-match accuracy of the final an-
swers, without considering the plausibility, inter-
nal consistency, rules used to explain the answers,
or are logical coherence of intermediate reasoning
steps. This narrow focus obscures whether mod-
els are genuinely applying linguistic principles or
merely relying on pattern recognition and heuris-
tic guessing. Such a limitation hampers our ability
to diagnose reasoning failures and systematically
improve model understanding.

Specifically, these methods often (i) lack rig-
orous alignment with linguistic knowledge bases,
(ii) fail to capture the reflective, iterative, and self-
corrective nature of human linguistic reasoning,
and (iii) inadequately represent the hierarchical
and multi-layered reasoning structures characteris-
tic of IOL challenges. As a result, existing evalu-
ation paradigms are insufficient for capturing the
depth, correctness, and explanatory richness of
linguistic problem-solving processes. This high-
lights the need for more sophisticated evaluation
methodologies specifically tailored for linguistic
reasoning contexts.

3 Motivation: Probing the Limits of
LLMs

As Joshi et al. (2020) highlight, the vastmajority of
the world’s languages are low-resource, and their
unique linguistic features are underrepresented in
pre-training corpora. This skew towards high-
resource languages like English hinders model per-
formance and the potential for cross-lingual trans-
fer, even for typologically similar languages (Pires
et al., 2019).

To empirically ground the need for a more nu-
anced evaluation benchmark, we assessed a state-
of-the-art model, Gemini-2.5-flash, on a multi-
lingual translation task using the FLORES-200
dataset (NLLB Team et al., 2022). Our experi-
ment, which covered 204 languages, revealed criti-
cal limitations (see Appendix I for full details). We
found that:

1. Performance is strongly correlated with re-
source availability. The model frequently

195

https://github.com/am-bean/lingOly
https://github.com/facebookresearch/linguini
https://github.com/Satgoy152/ling_llm


failed to generate any output for the lowest-
resource languages (Class 0).

2. A significant performance asymmetry exists
based on translation direction. The model
performed substantially worse when translat-
ing from English to a target language (E →
T ) than in the reverse direction (T → E), es-
pecially for low-resource languages.

3. Statistical analysis confirmed that language
family and resource class are highly signif-
icant predictors of translation quality, while
script was not.

These findings demonstrate that even powerful
models struggle with genuine multilingual tasks,
often failing at the basic level of text generation
for a large portion of the world’s languages. This
underscores the inadequacy of benchmarks that fo-
cus only on high-resource languages or overlook
reasoning failures, motivating our development of
LOBSTER .

4 LOBSTER : Linguistics Olympiad
Benchmark for Structured Evaluation
on Reasoning

The IOL problems exhibits a wide range of typo-
logical diversity, an essential step in understand-
ing the nature of such a benchmark in profiling the
distribution of languages, for which existing LLM
benchmarks rarely account. Regarding language
family, the most common language families are
North American, Austronesian, Indo-European,
and African (see Appendix D for the language fam-
ily distribution). However, There remains a gap in
understanding how models perform across differ-
ent language families and typological features.

LOBSTER is built on a curated selection of
past IOL problems. Unlike prior datasets, it in-
cludes enriched metadata that allows for deeper
linguistic diagnostics and reasoning trace compar-
ison. Our benchmark is intended to support: (i) ac-
curate transcription of contents of IOL problems;
(ii) typologically grounded performance analysis;
and (iii) assessment of models’ cross-cultural and
cross-linguistic inference abilities.

4.1 Data Construction
Our benchmark consists of 96 problems (225 sub-
problems) sourced from the IOL archive (2003–

2024). For kinship problems7 involving family
trees, we convert the graphical representations into
textual relationship descriptions (see Appendix
A.3 for an example of a kinship problem). We ex-
clude problems that fully rely on image-based in-
formation or untranscribable symbols.

Since most IOL problems provide only the fi-
nal solutions along with some grammatical rules,
without including detailed reasoning steps, we use
Gemini-2.5-pro to generate structured step-by-step
solutions as gold-standard references in the bench-
mark. The LLM is prompted to act as a linguis-
tics expert, producing logical deductions, linguis-
tic rules, and problem-solving strategies that lead
to the official solutions (see Appendix B for the
prompt template). To ensure reliability, seven hu-
man experts and three IOL contestants manually
verify and refine these reasoning chains, resolving
any inconsistencies to ensure alignment with the
official IOL solutions.

In summary, for each IOL problem in our bench-
mark, we include the transcribed problem text, the
official solution, and the expert-verified, refined,
LLM-generated reasoning. The latter is not used
for grading but serves as a qualitative reference for
human-understandable reasoning processes.

4.2 Typological Annotation
In addition, each problem within LOBSTER is
annotated along multiple linguistic dimensions to
facilitate a structured analysis of model perfor-
mance. The current typological and problem-
oriented schema is an adaptation of the UKLO
classification framework8 with the annotation be-
ing carried out by seven linguistic experts. We
annotate three categories for each problem: Sub-
ject, Type, and Theme; the respective tags are de-
tailed below, while the descriptions of each tag are
shown inAppendix C.1. Also, theGlottocode is in-
cluded (Hammarström et al., 2024) for each prob-
lem. Table 2 shows an example of annotations for
one problem.

The distribution charts of each typological cate-
gory in our benchmark are shown in Appendix D.
Key findings include:

Subject and Type Distribution: Referring to
Appendix E, the data suggests that Syntax and

7Kinship problems focus on understanding how different
languages and cultures describe family relationships and nam-
ing systems.

8https://www.uklo.org/
technical-information/
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Morphology are the most prominent subjects in
IOL problems, with Rosetta type problems being
heavily focused in these areas (i.e., 17.4% and
16.5%). Semantics are distributed across multiple
problem types (0.9%, 6.4%, 3.7%, 0.9%, 7.3%)
compared to others. Overall, the uneven distribu-
tion implies that certin problem types are strongly
associated with particular subjects (e.g., Phonol-
ogy has a spike (13.8%) in Pattern type problems),
while others are more diffuse.

Subject and Language Family Distribution:
North American languages have the highest num-
ber of problems (14), followed by Austronesian
(11), Indo-European (10), and African (10). As
shown in Appendix F, Syntax is the most widely
represented subject, appearing in 7 out of the top
10 language families, with the highest concentra-
tion (6.2%) in African. Morphology is the second
most frequent, appearing in 9 out of the top 10 fam-
ilies, withmultiplemid-range values (2.5%–5.0%).
While Phonology stands out in Indo-European and
North American, Semantics is more broadly dis-
tributed, with Austronesian, African, Australian,
and Niger-Congo all having moderate percentages
(around 2.5%). In summary, Syntax, Morphol-
ogy, and Phonology dominate the subject distri-
bution, with North American, Austronesian, Indo-
European, andAfrican languages showing the rich-
est variety of subjects. More details are shown in
Figures (a) and (d) in Appendix D.

Type and Language Family Distribution: Re-
garding Appendix G, Match-up problems are more
common in Austronesian and North American lan-
guage families. Pattern problems are particularly
prevalent in Indo-European languages. Rosetta
problems are the most common overall (44 prob-
lems), appearing across various language fami-
lies, with especially high occurrences in African
and North American languages. More details are
shown in Figure 8 (b) and (d) in Appendix D.

These findings reinforce the relevance of typo-
logical and reasoning-aware annotations. They
also highlight the inadequacy of answer-only met-
rics in capturing the richness of linguistic cogni-
tion demanded by IOL problems.

4.3 Evaluation Protocol and Metrics
Existing IOL-styled benchmarks (Bean et al.,
2024; Sánchez et al., 2024; Goyal and Dan, 2025)
tend to rely on exact string matching for accu-

racy, which fails to award partial credit for com-
plex problems. Grading IOL solutions is rather
complex and flexible. Generally, the final answer
is not the sole contributor to the final score; the ex-
planation of grammatical rules is just as important.
We hence evaluate the final solution generated by
the model with respect to the rules provided in of-
ficial solutions.

4.3.1 Evaluation of the Final Solution
First, we assess the model-generated final solution
based on two distinct components: the answer and
the explanation of rules.

The answer refers to all the questions inside the
problem, which the contestant would be asked to
answer. For example, the sample problem in Ap-
pendix A.1 contains 9 questions (1 in subproblem
(a), 3 in (b), and 5 in (c)). Most of the questions,
such as short sentence translations, can be graded
with simple string matching, but an exact match
metric would be unsatisfactory in many cases. Ex-
amples include semantics problemswhere any syn-
onym should be counted as correct if the term
is inferred, but not copied from the problem; or
questions that ask for an explanation to a certain
linguistic phenomenon (not to be confused with
the “explanation” part of the solution below). In
these cases, various metrics can be applied (e.g.,
BLEU, sentence embedding) depending on the
preferences of the user of our benchmark.

On the other hand, the explanation requires the
model to write down the linguistic rules it inferred
from the problem data. The official IOL problem
sheet explicitly states, “Your answers must be well-
supported by argument. Even a perfectly correct
answer will be given a low score unless accompa-
nied by an explanation”, but the official grading
rubrics are not publicly available, thus evaluating
the quality of these free-text explanations poses a
significant challenge unaddressed by past works.
We address it with a two-stage procedure: Through
rule composition, we convert the official solution
into a discrete set of key linguistic rules, creating
a gold-standard “rule checklist.” We then employ
an LLM grader, specifically Gemini-2.5-flash-lite,
in the process for checklist grading. The grader is
prompted to compare the model’s generated expla-
nation against our rule checklist and determine the
number of gold-standard rules that were correctly
described. By grading with a checklist rather than
the official, free-form solution, we reduce subjec-
tivity in the grading criteria, and minimize poten-
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tial biases (e.g., self-preference) from the LLM
grader.

This approach enables a stable, fine-grained,
and quantitative assessment of the explanation’s
quality. The total score for the final solution
is a weighted combination of the scores of “an-
swer” and “explanation of rules.” By default, we
assign equal weight (50/50) to each component,
with points distributed evenly across all subprob-
lems for the answer and all identified rules for
the explanation. With additional scores granted
to the explanation, the benchmark we propose can
show whether the model answers through reason-
ing within the problem data or through other exter-
nal confounders.

5 Testing LOBSTER on Different
Systems

In the previous sections, the multilingual abilities
of LLMs are shown to be inadequate. Therefore,
when attempting to solve an IOL problem, LLMs
may not solely rely on prior knowledge about the
target language or typology. To pinpoint the abil-
ity of state-of-the-art models on IOL problems, we
examined a range of models on LOBSTER , and
verified that IOL problems pose a challenge even
for state-of-the-art reasoning models.

5.1 Setup
A set of experiments was conducted using themost
powerful models within budget. In addition to di-
rectly prompting the models, we also tested with
various settings for the same model. To ensure
numerical stability, for each problem in each set-
ting, we obtained 5 samples and averaged over the
scores. The settings include:

• Vanilla baseline: A direct, single-pass call
to an LLM to solve the problem, following
the required output format. We used OpenAI-
o4-mini, Gemini-2.5-pro, and GPT-5 for the
experiments, with temperature set to 0.75.

• Guided prompt: A major drawback of the
vanilla prompting is that, usually the LLM
is not familiar with the underlying assump-
tions of Linguistics Puzzles (e.g., “All the
questions are self-contained”, “The final so-
lution should be able to explain 100% of the
examples, not just 90%”). To inform the
model about such nuances, we include the
Introduction chapter of the book Linguistics

Olympiad: Training guide (Neacșu, 2024)
in the system prompt. As an introductory
text about linguistics problem, the chapter de-
scribes the format and classification of a lin-
guistics problem, guidelines for solution writ-
ing, and some toy examples.

• Grammar agent: Past work has shown that
the model performs better when given ex-
plicit knowledge (Tanzer et al., 2024). In this
setting, the model was provided with a ref-
erence grammar book of the target language.
To do so, we constructed a database contain-
ing reference grammar books from publicly
available resources, and manually labeled the
language, with its Glottocode as metadata to
facilitate search.

• Mixture-of-Agents: Following Mixture-of-
Agents (MoA) (Wang et al., 2025), a multi-
round framework is used, as depicted in Fig-
ure 1. The system consists of a customiz-
able number of Solver Agents and Aggrega-
tor Agents. The idea is that iteratively collect-
ing multiple proposed solutions may improve
performance. In our setup, we used 2 agents
for each layer (N=2 following the notations in
the figure)—Gemini-2.5-pro and OpenAI-o4-
mini. The solutions are iterated for at most 6
rounds (i.e., M=2, R ∈ {0, 1, 2, 3, 4}), with
the last round being the “final aggregator” in
the figure.

• Single agent, multi-rounds: Equivalent to
the Mixture-of-Agent setting with N=M=1,
the solution of a solver is fed into itself for
multiple rounds. This setting disentangles the
effect of parallel generation from iterative re-
finement.

5.2 Results and Analysis
5.2.1 Comparison between Models
The results are summarized in Figure 2. Based on
the evaluation methods detailed in Section 4.3.1,
the answer and the explanation scores are cal-
culated separately, and a combined score (“to-
tal score”) is also provided. An overview shows
that the scores for the “answer” and the “explana-
tion” are positively correlated (r=0.501). (See Ap-
pendix O)

Regarding the base models, our experiments are
mainly comparing models based on Gemini-2.5-
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Figure 1: Multi-Agent Framework for Solving Linguistics Olympiad Problems

Figure 2: Scores on LOBSTER of Different Models. Statistical significance was examined using paired Student’s
t-test. For simplicity, we only plot the significance between baseline vs. other models. {*,**,***} denotes p <
{0.05, 0.005, 0.0005}, respectively. The model name in MoA denotes the final aggregator and R is the number of
intermediate rounds.

pro and OpenAI-o4-mini. The former consider-
ably outperforms the latter, and is marginally bet-
ter than GPT-5.

The trends between different settings are less
clear: we found no statistically significant differ-
ence in the grammar agents scores compared to
the baseline, nor in guided prompts vs. baseline.
These results contradicts our expectation of an im-
provement; for discussions on possible reasons,
see Section 5.3.

On the other hand, Mixture-of-Agents gives
steadily increasing scores as the number of rounds
increases, which are significantly better (p < 0.05)
than the baseline as long as there is more than one

round. Interestingly, the final aggregator plays an
important role in the performance—if the final ag-
gregator is weak (in this case, OpenAI-o4-mini),
even though it has seen the (better) solutions gen-
erated by other models (in this case, Gemini-2.5-
pro), the output scores far lower than the stronger
model.

A natural question arises as to whether the ef-
fectiveness of MoA comes from multi-round from
multi-agent. We introduced the single-agent multi-
round setting to isolate their effects. Results show
that additional rounds consistently improve perfor-
mance, confirming the benefit of iterative reason-
ing. The multi-agent effect, however, is less pro-
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nounced for Gemini-2.5-pro—likely because it is
already a stronger model, and a weaker collabo-
rator offers limited help (p = 0.105 for 6-round
MoA vs. single-agent multi-round with Gemini-
2.5-pro). In contrast, OpenAI-o4-mini benefits
greatly when paired with Gemini-2.5-pro (p <
0.0001).

The exact scores can be found in Appendix M.

5.2.2 Performance regarding Language
Family and Problem Type

To gain a more nuanced breakdown of the model’s
performance, we analyzed the Gemini-2.5-Pro
statistics by categorizing the problems based on
language family, linguistics subject (e.g., phonol-
ogy, syntax), and problem type (e.g., Pattern,
Match-up). The detailed scores are plotted in the
Appendix N.

Typologically, the model performs best on lan-
guage isolates (mean = 0.70), Turkic (0.64), and
Indo-European (0.55) languages, but struggles
with Papuan (0.29), South American (0.25), and
Australian (0.34) ones. The trend may be partially
attributed to the resource-level of the languages.

By problem type, the model achieves its high-
est scores on Monolingual problems and lowest
on Match-up. Across linguistic domains, it per-
forms worst on syntax and best on semantics. The
“Others” category has a score surpassing all others,
possibly due to intrinsic differences in problem de-
sign.

Overall, the model shows strong performance in
certain areas but inconsistent reasoning across lan-
guages, subjects, and problem types.

5.3 Discussions and Limitations
Exposure to the target language during pre-
training. Even though the languages are low-
resourced, models may still have some prior expo-
sure that gives them an advantage in problem solv-
ing, meaning scores may not reflect pure reasoning
ability. Additionally, the Internet presence of IOL
problems increased the possibility of being in the
pretraining data for some models. One approach
to mitigate this is to systematically adjust the or-
thography, making it harder for models to recog-
nize the language while preserving the problem’s
content (Khouja et al., 2025). Our work provides
a solid foundation well-suited for future use.

Unimodality. Currently, the benchmark is de-
signed to handle only text, in order to be applica-

ble to a wider range of models. However, linguis-
tics problems may involve other modalities (e.g.,
visual data), as seen in problems involving writing
systems, kinship trees, and even maps. Such prob-
lems could be transcribed into text if possible but
are usually excluded from the benchmark.

The exact content of the Grammar Agent.
Contrary to our expectation, we found nomajor im-
provement when a model was equipped with a ref-
erence book. Dissecting the reason for this obser-
vation is a non-trivial task because the content and
format of reference grammar books vary greatly,
creating many confounding variables. For exam-
ple, as Aycock et al. (2025) have discovered, the
example sentences may be more useful than long
paragraphs of grammar descriptions.

Another possible reason lies in the complexity
of language itself. Reference grammar books are
not a unified or accurate reflection of language
but rather artifacts that attempt to summarize the
real-world language use. Consequently, for the
same language, it is not uncommon for different
sources to have different orthographical conven-
tions for transcription, variations from the data
(e.g., speaker/dialect variations), and conflicting
theories about grammar, where later works may
disagree with the past literature. In Tanzer et al.
(2024), these inconsistencies did not emerge, and
we hypothesize that this is because their work used
the same, consistent source for benchmarking and
knowledge provision.

In any case, investigating the nature of exter-
nal knowledge is necessary to continue the study.
Such studies may require high-quality classifica-
tion and annotation of books broken down into
meaningful units, which we anticipate will de-
mand considerable manual effort.

Reasoning traces. While our benchmark is a
leap forward from previous linguistic reasoning
benchmarks (in particular, ours is able to evalu-
ate partially correct solutions meticulously, and is
rich inmetadata), the “thought process” of amodel
is not taken into consideration when grading. To
our knowledge, evaluating the reasoning steps of
LLMs remains an open problem.

To help advance this line of research, we pro-
vide a dataset of the gold-standard reasoning traces
alongside the quantitative grading part of the
benchmark, and ensure that their formats are fully
compatible. One possible quantitative use of the
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reasoning trace data is as a “rule checklist,” simi-
lar to the explanation grading in Section 4.3. This
dataset, for which direct applications are yet to be
explored, invites future researchers interested in
reasoning and human cognition.

6 Conclusion

In this work, we introduced LOBSTER , a
linguistically-informed benchmark designed to
move beyond final-answer accuracy and enable a
granular assessment of an LLM’s reasoning on
complex linguistic structures. Our typological
analysis of IOL problems provides a structured
lens for this evaluation, while our empirical study
of a state-of-the-art model on the FLORES-200
dataset underscored the critical need for improved
cross-linguistic generalization, particularly in low-
resource settings. We call on the community to
build on this foundation to look inward at the
nascent logic of LLMs, and outward at the bound-
less diversity of language that inspires them.
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A IOL Problem Examples
A.1 Elements of an IOL Problem

Figure 3: An IOL Problem with the four parts: Introduction provides information about the language(s) featured
in the problem; Corpus contains the examples based on which the tasks should be solved. Tasks follows the
corpus and typically includes translation between the target language and English, correspondences of randomly
arranged items, among other types of tasks; Notes provide data about the language featured in the problem, relevant
phonetic/orthographic information, and details about specific words. Any additional information crucial to solving
the problem will be included in the introduction and notes sections.

+

A.2 More Examples on Diversity in Problem

Figure 4: Problem 1 (IOL 2017)
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Figure 5: Problem 2 (IOL 2017)

Figure 6: Problem 4 (IOL 2017)
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A.3 Example on Kinship Problem&Graph Transcription

Figure 7: Original Problem 3 in 2024.
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Transcription of the Family Tree
• Man 1 and Woman 1 are married. Their child is Woman 2.

• Man 2 and Woman 2 are married. Their child is Man 3.

• Man 3 and Woman 3 are married. Their child is Man 4.

• Woman 3 is Toko.

• Man 5 and Woman 4 are married. Their children are Woman 3, Man 6 and Woman 5, from oldest
to youngest.

• Man 5 and Woman 6 are siblings. The former is older.

• Woman 4 and Man 7 are siblings. The former is older.

• Man 7 and Woman 6 are married. Their child is Man 8.

• Man 8 and Woman 7 are married.

• Woman 7 and Woman 8 are siblings. The former is older.
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B Prompt Template for Reasoning Process Generation
The following Python template was used to generate reasoning chains for IOL problems:

1 ## Prompt:
2 As an expert in linguistics solve the following problem. Given the following IOL

problem and its answer, generate a detailed , step-by-step chain of thoughts that
could specifically and reasonably lead to the answer. Focus on the reasoning

process, essential linguistic rules, logical deductions , and the final solution.
Make your whole output into a markdown file.

3
4 ## Problem:
5 {problem_text}
6
7 ## Solution:
8 {solution_text}
9

10 ## Your response:

C The Classification Framework for Problems

Category Tag
Subject Compounding, Morphology, Numbers, Phonology and Phonetics, Semantics, Syn-

tax, Writing System
Type Rosetta, Match-up, Monolingual, Pattern, Computational, Text
Theme Classical, Comparative, Encrypted, Kinship, Maps, Mystery, MFL1, Senses and Feel-

ings, Stories, Poetry, No Theme
1 MFL: These questions involve languages commonly taught in secondary school MFL departments, or those closely
related (e.g., Romance and Germanic languages).

Table 1: Typological Annotation Category

Sub-problems Subject Type Language Speakers glottocode Language Family

2 Numbers Pattern Egyptian Arabic 68,000,000 egyp1253 Semitic

Table 2: Example of Typological Annotation: Problem 2 in 2003

C.1 Classification Criteria
The following categories and the classification criteria are modified from those of UKLO9.

• Subjects –For a given subject to appear in the classification, at least two rules in the solution must
be of that type.

– Compounding: The problems mainly focus on deducing the dictionary meanings of words by
analyzing how the meaning changes when different word components are combined.

– Morphology: The problems primarily require understanding how morphemes (the smallest
units of meaning) combine to form grammatical words.

– Numbers: The problems are centered on understanding the structure and formation of numer-
als and numeral expressions.

– Phonology and Phonetics: The problems focus on the sounds of a language and how they
are organized. Phonology deals with sound systems within specific languages and in general,
while phonetics studies the nature, production, and perception of speech sounds, independent
of any particular language.

9https://www.uklo.org/technical-information/
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– Semantics: The problems emphasize understanding how meaning influences language, espe-
cially how meaning shapes grammar and how different languages express the same concepts
with different words.

– Syntax: The problems focus on understanding how words combine to form phrases and sen-
tences.

– Writing System: The problems involve analyzing writing systems, including both the use of
the Latin alphabet in various languages and other scripts.

• Problem Type

– Rosetta: The problems consist of sets of corresponding words or phrases across different lan-
guages or writing systems, with most pairings provided. Some elements may be missing, cre-
ating gaps that need to be filled. Solving the task requires generating new correspondences,
typically translations.

– Match-up: The problems consist of sets of corresponding words or phrases across multiple
languages or writing systems, with only a few pairings given. Some words may not belong to
any set, but it still qualifies as a match-up. The task involves identifying new correspondences,
usually translations.

– Monolingual: The problems are texts in an unfamiliar language (or equivalent writing system),
generally without direct translations or transliterations, except perhaps for one or two words.
To solve the task, you must translate the text from the unknown language.

– Pattern: The problems consist of words or groups of word forms or cognates that follow a
certain pattern, though there may be exceptions. To solve the task, you must either generate
other examples that fit the pattern or identify exceptions, without relying on translation as in
Rosetta tasks.

– Computational: The problems include a description of a computational or logical system.
Solving the problem involves analyzing and implementing the system according to the given
rules.

– Text: The problems consist of full texts in different languages or scripts, without being broken
down into smaller parts. To solve the task, you must infer linguistic rules using context and
other cues.

• Theme

– Classical: These problems feature languages that were primarily spoken around a thousand
years ago or earlier.

– Comparative:These problems involve comparing either related languages or different histori-
cal stages of a single language.

– Encrypted: These problems involve deciphering an encoded message in English.
– Kinship: These problems focus on understanding how different languages and cultures de-

scribe family relationships and naming systems.
– Maps: These problems explore how various languages express and conceptualize directions

and spatial orientation.
– Mystery: These problems include amystery element that draws on general or world knowledge,

often involving content beyond linguistics.
– MFL: These problems involve languages commonly taught in secondary school modern for-

eign language (MFL) departments, or closely related languages (e.g., those from the Romance
or Germanic families).

– Senses and Feelings: These problems examine linguistic expressions related to emotions or
sensory experiences (e.g., smells, sounds).
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– Stories: These problems either contain a narrative storyline or feature one or more fictional
characters. They use storytelling to create engaging contexts for linguistic analysis, often draw-
ing from literary traditions.

– Poetry: These problems revolve around the structure and features of poetic language.
– No Theme (N/A): These problems focus on core linguistic topics without any specific thematic

context.
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D Preliminary Analysis of IOL Problems.

(a) Subject Distribution (b) Type Distribution

(c) Theme Distribution (d) Language Family Distribution

Figure 8: Statistical distributions of various features in the IOL problems dataset.
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E Heatmap: Subject vs Type Distribution

Figure 9: Subject vs Type Distribution

F Heatmap: Subject vs Language Family Distribution

Figure 10: Subject vs Top 10 Language Family Distribution
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G Heatmap: Type vs Language Family Distribution

Figure 11: Type vs Top 10 Language Family Distribution
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H System Prompt for Model Reasoning Evaluation

1 system_prompt = """Given the evaluation rules and metrics for model reasoning of
IOL problems , consider the golden reasoning reference , and evaluate the target
model reasoning with the metrics of five dimensions.

2 evaluation rules and metrics (5-score):
3 {metrics}
4
5 scoring_:
6 {scoring}
7
8 golden reasoning reference:
9 {golden_reasoning_reference}

10
11 target model reasoning:
12 {model_reasoning}
13 """
14
15 metrics = """
16 ### Metrics and Descriptions (Bullet Points)
17 (i) 3.1 Information Extraction & Structuring
18 * **Stepwise Logical Validity Score (SLVS)**: Measures whether each reasoning

step is logically valid and aligned with the golden reasoning reference (GRR).
19 * **Information Structuring Completeness (ISC)**: Measures completeness of

extracted key information and its structure compared to GRR.
20 ... [TRUNCATED FOR BREVITY IN PAPER]
21 """
22
23 scoring = """
24 ## Reasoning Quality Evaluation -- Scoring Rubric (5 Points per Metric)
25
26 | **Dimension** | **Metric** | **Score 5 (Excellent)** | **Score 3 (Acceptable)** |

**Score 1 (Poor)** |
27 | ----- | ----- | ----- | ----- | ----- |
28 | **(i) 3.1 Information Extraction & Structuring** | **SLVS** | All reasoning

steps are logically valid and follow GRR structure | Minor logical flaws or
omissions; generally coherent | Major logical errors, incoherent or illogical
steps | | | **ISC** | Extracts and structures all key information as per GRR
| Extracts partial or incomplete key information | Fails to extract/structure

key information |
29 ... [TRUNCATED FOR BREVITY IN PAPER]
30 """
31
32 golden_reasoning_reference = """
33 # Your response:
34
35 # Chain of Thought: Solving the Swift News Linguistics Problem
36
37 ... [TRUNCATED FOR BREVITY IN PAPER]
38 """
39
40 target_model_reasoning = """
41 **Solving the Linguistic Puzzle**
42
43 ... [TRUNCATED FOR BREVITY IN PAPER]
44 """

I FLORES-200 Multilingual Evaluation Details
Dataset preparation and experimental design. We combine the dev and devtest splits for a total
of 2009 sentences that are available in 204 languages. We then use the ISO 639-3 language code and
the ISO 15924 script code to identify the Glottocode and the script used for each language, respectively.
For example, the column name for Bashkir translations written in Cyrillic is sentence_bak_Cyrl. To
align the dataset with the Glottolog taxonomy, we mapped all language identifiers to their corresponding
Glottolog codes. We noted that five ISO 639-3 codes from the dataset (i.e., srd, est, kon, zho, grn)
were not directly linked to a Glottolog entry. We identified suitable entries manually. How we mapped
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these languages can be found in Table 6. In total, we have 204 languages and script combinations.10
Next, we take the first 10 English sentences and their translations for a total of 2030 English-to-Target
Language pairs.

We evaluate Gemini-2.5-flash with temperature=0.1 and thinking budget=0 by translating from
two directions: English-to-Target (E → T ) and Target-to-English (T → E). We use the following
E → T prompt when eliciting a response from the model:

Translate the following sentence from English to {target_lang} using
the {script} script:
Input: {input_sentence}

We use the following T → E prompt:

Translate the following sentence {target_lang} to English:
Input: {input_sentence}

Language Glottocode Class Missing
(E → T )

Missing
(T → E)

Total
Missing

Tamasheq tama1365 0 7 1 8
Nuer nuer1246 0 6 2 8
Kabiyé kabi1261 0 7 0 7
Southwestern Dinka sout2832 — 6 1 7
Central Kanuri cent2050 0 4 2 6
Fon fonn1241 0 5 0 5
Chokwe chok1245 — 2 1 3
Umbundu umbu1257 0 3 0 3
Kamba (Kenya) kamb1297 0 2 0 2
Sango sang1328 1 2 0 2
South-Central Koongo koon1244 1 2 0 2
Kimbundu kimb1241 0 2 0 2
Bambara bamb1269 1 2 0 2
Dyula dyul1238 0 2 0 2
Mossi moss1236 0 4 0 4
Southern Jinghpaw kach1280 0 4 0 4
Shan shan1277 0 4 0 4
Acehnese achi1257 1 1 0 1
Ewe ewee1241 1 1 0 1
Dzongkha dzon1239 1 1 0 1
Central Aymara cent2142 — 1 0 1
Ayacucho Quechua ayac1239 — 1 0 1
Luba-Lulua luba1249 0 1 0 1
Kabyle kaby1243 1 1 0 1
Guarani east2555 1 1 0 1
Wolof nucl1347 2 1 0 1

Grand Total 73 7 80

Table 3: Counts of missing LLM Outputs by language and direction. Class refers to the taxonomy introduced in
Joshi et al. (2020) in which 0 indicates extremely limited resources and 5 indicates an abundance of resources. “–”
means that the language was not found in the taxonomy.

10196 unique languages while Acehnese, Minangkabau, Banjar, Central Kanuri, Tamasheq, Standard Arabic, Kashmiri, and
Mandarin each have two scripts.
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With the LLM translating in two directions, we obtain 3800 responses; however, 80 responses are
empty with the majority of them originating from the E → T task. We will first examine these failures.

The LLM often fails to output any text for low resource languages. From the results in Table 3 we
can see that the data strongly suggests that the model’s failure to generate output is directly linked to
data resource scarcity. The Class column refers to the taxonomy introduced in Joshi et al. (2020) where
Class 0 languages have a dearth of resources while the Class 5 languages are at the opposite end of the
spectrum.11 The vast majority of missing outputs are concentrated in languages designated as Class 0
(e.g., Tamasheq, Nuer, Kabiyé), which represents the lowest-resource tier in our dataset. “–” means that
the language was not found in the taxonomy.

Furthermore, the model fails far more frequently in the English-to-Target direction (73 instances) than
in the Target-to-English direction (7 instances). This indicates that the primary challenge is not the
model’s ability to process or analyze the target languages (i.e., T → E), but rather its capacity to reliably
generate text in them (i.e., E → T ). This strongly suggests limited training data in the target language.
This conclusion is reinforced by the performance on higher-resourced languages. We will now examine
the overall translation quality of the outputs.

LLM performance is heavily influenced by translation direction, language family, and resource
availability. We use CHRF (Popović, 2015) instead of CHRF+ or CHRF++ (Popović, 2017) because the
former is language independent and tokenization independent, which is needed when many languages
found in FLORES-200may not have a robust tokenizer or even have one readily available. CHRFmeasures
translation quality by calculating character-level n-gram overlap F-score between the machine translation
and the human translation. The latter two introduces word unigram and bigram overlap into the equa-
tion. We use the implementation provided by Hugging Face with default parameters,12 which adopts the
implementation from sacreBLEU (Post, 2018)13 but with a slightly different input format.

Direction Mean CHRF Score Correlation with Class (ρ)
E → T 43.92 0.598
T → E 64.27 0.466

Table 4: Mean CHRF scores and their Spearman’s correlation (ρ) with resource class for each translation direction.

Worth noting is the direction where the model is worse on average (E → T ) is also the direction where
performance is more strongly influenced by resource availability (higher correlation, ρ = 0.598). This
suggests that while translating into English has a relatively high performance floor, the model’s ability to
generate text in other languages is both lower on average and more vulnerable to data scarcity. Figure 12
paints a similar picture in which lower resource classes predictably have worse performance compared to
languages withmore resources. We also see that translating fromEnglish to another language exacerbates
the problem.

To also see how language family and script influence translation quality we used three separate one-
way ANOVAs for each translation direction (E → T and T → E). The results, summarized in Table 5,
indicate that both family and class have a large and highly significant effect on performance in both
directions (all p < .001). In contrast, script was not found to be a statistically significant predictor of
CHRF score in either analysis.

The analysis reveals an important asymmetry in the influence of resource class. While significant in
both cases, class accounts for a larger portion of the variance in E → T scores (η2p = .412) than in
T → E scores (η2p = .381).

11Because the language name to class list from Joshi et al. does not use an ISO 639-3 or Glottocode, we can only use the
name to identify which language is paired with which Glottocode. We only assign classes for unambiguous language names. For
example, while “khmer” is found in the language to class list, we do not join it with “Central Khmer.” There are 30 languages
without an assigned Resource Class.

12https://huggingface.co/spaces/evaluate-metric/chrf
13https://github.com/mjpost/sacreBLEU#chrf--chrf
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Figure 12: Comparison of CHRF score distributions for English-to-Target (E → T ) and Target-to-English (T → E)
translations, grouped by resource class. The plot shows a clear positive trend where quality increases with resource
availability, with the T → E direction consistently outperforming the E → T direction. Boxes represent the
interquartile range, and points show individual languages that fall beyond the lower fence.

E → T T → E

Factor Effect Size (η2p) p-value Effect Size (η2p) p-value
Family 0.409 < .001 0.515 < .001
Class 0.412 < .001 0.381 < .001
Script 0.174 .265 0.125 .740

Table 5: Summary of One-Way ANOVA results showing the influence of each factor on CHRF scores. Effect sizes
are given as partial eta-squared (η2p).
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This illustrates that processing low-resource languages still proves to be a challenge for even the most
powerful of models. FLORES-200 only covers a small fraction of the world’s languages and were chosen
carefully based on several considerations, such as having a presence on Wikipedia. This limitation with
processing low-resource languages will only be more pronounced when we examine other languages with
even fewer resources. The results for each language can be found in Table 7 as well as additional figures
for script and language family-level scores in Section L of the Appendix.

Given that these results stem from a single experimental iteration, they should be interpreted as prelim-
inary. Nevertheless, they provide strong evidence of the lopsided distribution of data resources among
the world’s languages and imbalanced performance across languages for today’s SOTA LLMs, which
warrants further investigation.
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J Resolution of Ambiguous ISO 639-3 to Glottocode Mappings

Table 6: Resolution of ambiguous source ISO 639-3 codes to specific language varieties and their corresponding
Glottocode.

Language Mapping Details

srd
Language: Sardinian
ISO → Glottocode: None → sard1257
Justification: Top-level family node.

est
Language: Estonian
ISO → Glottocode: ekk → esto1258
Justification: Primary language entry.

kon
Language: South-Central Kongo
ISO → Glottocode: kng → koon1244
Justification: Known as Kongo in World Atlas of Language Structures (WALS).

zho
Language: Mandarin
ISO → Glottocode: cmn → mand1415
Justification: Most populous variety.

grn
Language: Eastern Bolivian Guaraní
ISO → Glottocode: gui → east2555
Justification: Guaraní categorized as Class 1 in Joshi et al. (2020), which aligns more with
Ethnologue’s Digital Language Support classification of “Ascending” for the language.
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K Language-Level CHRF Translation Scores for Gemini-2.5-Flash on FLORES-200

Table 7: Performance results by language, including CHRF scores, sample counts, and resource class.

Language
(glottocode_Script)

E → T
CHRF

T → E
CHRF Family Class Samples

(E → T / T → E)
Acehnese (achi1257_Arabic) 6.05 49.46 Austronesian 1 9 / 10
Acehnese (achi1257_Latin) 46.42 71.11 Austronesian 1 10 / 10
Afrikaans (afri1274_Latin) 73.91 83.15 Indo-European 3 10 / 10
Akan (akan1250_Latin) 37.78 49.00 Atlantic-Congo 1 10 / 10
Amharic (amha1245_Ethiopic (Ge‘ez)) 35.85 70.71 Afro-Asiatic 2 10 / 10
Assamese (assa1263_Bengali) 48.08 67.72 Indo-European 1 10 / 10
Asturian-Leonese-Cantabrian (astu1245_Latin) 69.93 73.94 Indo-European 1 10 / 10
Awadhi (awad1243_Devanagari (Nagari)) 41.45 67.04 Indo-European 0 10 / 10
Ayacucho Quechua (ayac1239_Latin) 37.25 53.34 Quechuan – 9 / 10
Balinese (bali1278_Latin) 44.79 61.53 Austronesian 0 10 / 10
Bambara (bamb1269_Latin) 2.12 41.72 Mande 1 8 / 10
Banjar (banj1239_Arabic) 4.46 53.69 Austronesian 1 10 / 10
Banjar (banj1239_Latin) 51.99 60.64 Austronesian 1 10 / 10
Bashkir (bash1264_Cyrillic) 56.01 68.67 Turkic 1 10 / 10
Basque (basq1248_Latin) 64.81 67.00 Unknown 4 10 / 10
Belarusian (bela1254_Cyrillic) 52.41 60.98 Indo-European 3 10 / 10
Bemba (Zambia) (bemb1257_Latin) 43.05 60.86 Atlantic-Congo 0 10 / 10
Bengali (beng1280_Bengali) 59.45 68.50 Indo-European 3 10 / 10
Bhojpuri (bhoj1244_Devanagari (Nagari)) 44.14 62.46 Indo-European 1 10 / 10
Bosnian Standard (bosn1245_Latin) 67.72 70.89 Indo-European 3 10 / 10
Buginese (bugi1244_Latin) 35.98 48.74 Austronesian 1 10 / 10
Bulgarian (bulg1262_Cyrillic) 76.45 76.70 Indo-European 3 10 / 10
Burmese (nucl1310_Myanmar (Burmese)) 53.93 68.35 Sino-Tibetan 1 10 / 10
Catalan (stan1289_Latin) 67.90 72.33 Indo-European 4 10 / 10
Cebuano (cebu1242_Latin) 65.84 80.13 Austronesian 3 10 / 10
Central Aymara (cent2142_Latin) 31.09 44.91 Aymaran – 9 / 10
Central Kanuri (cent2050_Arabic) 2.31 15.26 Saharan 0 10 / 8
Central Kanuri (cent2050_Latin) 8.76 32.46 Saharan 0 6 / 10
Central Khmer (cent1989_Khmer) 43.45 73.44 Austroasiatic – 10 / 10
Central Kurdish (cent1972_Arabic) 51.29 67.85 Indo-European – 10 / 10
Central Moroccan Berber (cent2194_Tifinagh
(Berber))

26.34 45.68 Afro-Asiatic 0 10 / 10

Chhattisgarhi (chha1249_Devanagari (Nagari)) 50.58 70.19 Indo-European – 10 / 10
Chokwe (chok1245_Latin) 19.24 28.74 Atlantic-Congo – 8 / 9
Crimean Tatar (crim1257_Latin) 45.90 70.46 Turkic 1 10 / 10
Croatian Standard (croa1245_Latin) 62.14 69.88 Indo-European 4 10 / 10
Czech (czec1258_Latin) 63.42 73.96 Indo-European 4 10 / 10
Danish (dani1285_Latin) 77.23 75.40 Indo-European 3 10 / 10
Dari (dari1249_Arabic) 42.70 65.11 Indo-European 4 10 / 10
Dutch (dutc1256_Latin) 66.63 68.29 Indo-European 4 10 / 10
Dyula (dyul1238_Latin) 16.31 33.30 Mande 0 8 / 10
Dzongkha (dzon1239_Tibetan) 33.37 50.97 Sino-Tibetan 1 9 / 10
East Latvian (east2282_Latin) 45.29 73.02 Indo-European – 10 / 10
Eastern Armenian (nucl1235_Armenian) 61.44 71.83 Indo-European 1 10 / 10
Eastern Panjabi (panj1256_Gurmukhi) 56.52 73.75 Indo-European – 10 / 10
Eastern Yiddish (east2295_Hebrew) 42.70 83.12 Indo-European – 10 / 10
Egyptian Arabic (egyp1253_Arabic) 52.11 65.85 Afro-Asiatic 3 10 / 10
Esperanto (espe1235_Latin) 66.90 76.29 Artificial Language 1 10 / 10
Estonian (esto1258_Latin) 61.18 67.24 Uralic 3 10 / 10
Ewe (ewee1241_Latin) 36.73 49.73 Atlantic-Congo 1 9 / 10
Faroese (faro1244_Latin) 64.14 77.47 Indo-European 1 10 / 10
Fijian (fiji1243_Latin) 50.32 55.60 Austronesian 1 10 / 10
Finnish (finn1318_Latin) 66.57 68.23 Uralic 4 10 / 10
Fon (fonn1241_Latin) 7.64 23.20 Atlantic-Congo 0 5 / 10
French (stan1290_Latin) 73.10 70.06 Indo-European 5 10 / 10
Friulian (friu1240_Latin) 61.78 67.92 Indo-European 1 10 / 10
Galician (gali1258_Latin) 65.03 70.14 Indo-European 3 10 / 10
Ganda (gand1255_Latin) 42.86 56.15 Atlantic-Congo 1 10 / 10
Georgian (nucl1302_Georgian (Mkhedruli)) 56.55 63.11 Kartvelian 3 10 / 10
German (stan1295_Latin) 71.48 72.08 Indo-European 5 10 / 10

Continued on next page
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Table 7 – continued from previous page
Language

(glottocode_Script)
E → T
CHRF

T → E
CHRF Family Class Samples

(E → T / T → E)
Gilit Mesopotamian Arabic
(meso1252_Arabic)

51.31 66.27 Afro-Asiatic – 10 / 10

Guarani (east2555_Latin) 30.45 60.51 Tupian 1 9 / 10
Gujarati (guja1252_Gujarati) 49.30 70.17 Indo-European 1 10 / 10
Haitian (hait1244_Latin) 62.81 69.51 Indo-European 2 10 / 10
Halh Mongolian (halh1238_Cyrillic) 54.87 71.44 Mongolic-Khitan 0 10 / 10
Hausa (haus1257_Latin) 61.93 67.27 Afro-Asiatic 2 10 / 10
Hausa States Fulfulde (nige1253_Latin) 23.36 34.24 Atlantic-Congo – 10 / 10
Hindi (hind1269_Devanagari (Nagari)) 64.11 69.33 Indo-European 4 10 / 10
Hungarian (hung1274_Latin) 69.67 71.54 Uralic 4 10 / 10
Icelandic (icel1247_Latin) 65.36 69.58 Indo-European 2 10 / 10
Igbo (nucl1417_Latin) 50.62 64.71 Atlantic-Congo 1 10 / 10
Iloko (ilok1237_Latin) 56.05 69.03 Austronesian 1 10 / 10
Irish (iris1253_Latin) 64.73 77.31 Indo-European 2 10 / 10
Italian (ital1282_Latin) 62.85 64.59 Indo-European 4 10 / 10
Japanese (nucl1643_Japanese) 53.92 72.73 Japonic 5 10 / 10
Javanese (java1254_Latin) 64.70 71.11 Austronesian 1 10 / 10
Kabiyé (kabi1261_Latin) 0.44 39.03 Atlantic-Congo 0 3 / 10
Kabuverdianu (kabu1256_Latin) 58.01 75.68 Indo-European – 10 / 10
Kabyle (kaby1243_Latin) 32.01 58.15 Afro-Asiatic 1 9 / 10
Kamba (Kenya) (kamb1297_Latin) 24.93 47.68 Atlantic-Congo 0 8 / 10
Kannada (nucl1305_Kannada) 55.88 63.90 Dravidian 1 10 / 10
Kashmiri (kash1277_Arabic) 26.62 62.82 Indo-European 1 10 / 10
Kashmiri (kash1277_Devanagari (Nagari)) 22.55 57.73 Indo-European 1 10 / 10
Kazakh (kaza1248_Cyrillic) 64.98 72.01 Turkic 3 10 / 10
Kikuyu (kiku1240_Latin) 5.62 53.15 Atlantic-Congo 1 10 / 10
Kimbundu (kimb1241_Latin) 21.37 41.79 Atlantic-Congo 0 8 / 10
Kinshasa Lingala (ling1263_Latin) 48.36 53.12 Atlantic-Congo 1 10 / 10
Kinyarwanda (kiny1244_Latin) 59.06 65.75 Atlantic-Congo 1 10 / 10
Kirghiz (kirg1245_Cyrillic) 54.92 59.06 Turkic 1 10 / 10
Korean (kore1280_Hangul (Hangŭl, Hangeul)) 38.21 62.31 Koreanic 4 10 / 10
Lao (laoo1244_Lao) 58.59 70.02 Tai-Kadai 2 10 / 10
Levantine Arabic (nort3139_Arabic) 67.19 74.01 Afro-Asiatic – 10 / 10
Ligurian (ligu1248_Latin) 48.14 76.98 Indo-European 1 10 / 10
Limburgan (limb1263_Latin) 56.83 76.72 Indo-European – 10 / 10
Lithuanian (lith1251_Latin) 65.99 71.04 Indo-European 3 10 / 10
Lombard (lomb1257_Latin) 40.32 67.99 Indo-European 1 10 / 10
Luba-Lulua (luba1249_Latin) 29.97 52.74 Atlantic-Congo 0 9 / 10
Luo (Kenya and Tanzania) (luok1236_Latin) 37.90 47.98 Nilotic – 10 / 10
Macedonian (mace1250_Cyrillic) 64.95 70.12 Indo-European 1 10 / 10
Magahi (maga1260_Devanagari (Nagari)) 57.93 73.59 Indo-European 0 10 / 10
Maithili (mait1250_Devanagari (Nagari)) 50.43 66.99 Indo-European 1 10 / 10
Malayalam (mala1464_Malayalam) 59.07 69.10 Dravidian 1 10 / 10
Maltese (malt1254_Latin) 76.21 82.70 Afro-Asiatic 2 10 / 10
Mandarin (mand1415_Han (Simplified)) 40.77 66.44 Sino-Tibetan 5 10 / 10
Mandarin (mand1415_Han (Traditional)) 34.25 68.81 Sino-Tibetan 5 10 / 10
Manipuri (mani1292_Bengali) 19.06 64.31 Sino-Tibetan 0 10 / 10
Maori (maor1246_Latin) 47.45 64.97 Austronesian 1 10 / 10
Marathi (mara1378_Devanagari (Nagari)) 52.66 66.06 Indo-European 2 10 / 10
Minangkabau (mina1268_Arabic) 8.12 61.44 Austronesian 1 10 / 10
Minangkabau (mina1268_Latin) 62.69 71.41 Austronesian 1 10 / 10
Mizo (lush1249_Latin) 50.39 59.40 Sino-Tibetan 0 10 / 10
Modern Greek (mode1248_Greek) 59.10 73.07 Indo-European 3 10 / 10
Modern Hebrew (hebr1245_Hebrew) 69.28 74.57 Afro-Asiatic 3 10 / 10
Moroccan Arabic (moro1292_Arabic) 45.14 60.62 Afro-Asiatic 5 10 / 10
Moselle Franconian (luxe1241_Latin) 59.83 75.58 Indo-European 1 10 / 10
Mossi (moss1236_Latin) 15.53 40.71 Atlantic-Congo 0 6 / 10
Najdi Arabic (najd1235_Arabic) 65.27 72.14 Afro-Asiatic – 10 / 10
Nepali (nepa1254_Devanagari (Nagari)) 52.28 70.34 Indo-European 1 10 / 10
North Azerbaijani (nort2697_Latin) 46.62 61.61 Turkic – 10 / 10
Northern Kurdish (nort2641_Latin) 46.16 64.78 Indo-European 0 10 / 10
Northern Tosk Albanian (tosk1239_Latin) 64.32 74.24 Indo-European – 10 / 10
Northern Uzbek (nort2690_Latin) 64.70 70.08 Turkic – 10 / 10
Norwegian Bokmål (norw1259_Latin) 67.89 70.38 Indo-European – 10 / 10
Norwegian Nynorsk (norw1262_Latin) 68.94 77.57 Indo-European – 10 / 10

Continued on next page
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Table 7 – continued from previous page
Language

(glottocode_Script)
E → T
CHRF

T → E
CHRF Family Class Samples

(E → T / T → E)
Nuer (nuer1246_Latin) 6.65 21.75 Nilotic 0 4 / 8
Nyanja (nyan1308_Latin) 57.28 64.36 Atlantic-Congo 1 10 / 10
Occitan (occi1239_Latin) 64.46 75.99 Indo-European 1 10 / 10
Odia (oriy1255_Oriya) 57.08 70.09 Indo-European 1 10 / 10
Pangasinan (pang1290_Latin) 50.29 67.22 Austronesian 1 10 / 10
Papiamento (papi1253_Latin) 59.40 77.99 Indo-European 1 10 / 10
Pedi (pedi1238_Latin) 58.90 72.17 Atlantic-Congo – 10 / 10
Plateau Malagasy (plat1254_Latin) 54.33 66.30 Austronesian 1 10 / 10
Polish (poli1260_Latin) 63.24 68.08 Indo-European 4 10 / 10
Portuguese (port1283_Latin) 74.12 72.46 Indo-European 4 10 / 10
Romanian (roma1327_Latin) 72.24 73.24 Indo-European 3 10 / 10
Rundi (rund1242_Latin) 46.17 59.44 Atlantic-Congo 1 10 / 10
Russian (russ1263_Cyrillic) 70.87 69.89 Indo-European 4 10 / 10
Samoan (samo1305_Latin) 52.34 70.75 Austronesian 1 10 / 10
Sango (sang1328_Latin) 18.31 41.16 Atlantic-Congo 1 8 / 10
Sanskrit (sans1269_Devanagari (Nagari)) 38.77 53.26 Indo-European 2 10 / 10
Santali (sant1410_Ol Chiki (Ol Cemet’, Ol,
Santali))

28.85 57.77 Austroasiatic 1 10 / 10

Sardinian (sard1257_Latin) 63.26 76.16 Indo-European 1 10 / 10
Scottish Gaelic (scot1245_Latin) 56.12 68.45 Indo-European 1 10 / 10
Serbian Standard (serb1264_Cyrillic) 63.79 74.85 Indo-European 4 10 / 10
Shan (shan1277_Myanmar (Burmese)) 18.45 65.01 Tai-Kadai 0 6 / 10
Shona (shon1251_Latin) 50.02 53.16 Atlantic-Congo 1 10 / 10
Sicilian (sici1248_Latin) 50.63 68.78 Indo-European 1 10 / 10
Silesian (sile1253_Latin) 52.44 75.23 Indo-European 1 10 / 10
Sindhi (sind1272_Arabic) 56.57 71.45 Indo-European 1 10 / 10
Sinhala (sinh1246_Sinhala) 54.76 65.09 Indo-European 1 10 / 10
Slovak (slov1269_Latin) 59.60 68.26 Indo-European 3 10 / 10
Slovenian (slov1268_Latin) 70.90 72.76 Indo-European 3 10 / 10
Somali (soma1255_Latin) 48.80 62.48 Afro-Asiatic 1 10 / 10
South Azerbaijani (sout2697_Arabic) 37.49 63.69 Turkic – 10 / 10
South Levantine Arabic (sout3123_Arabic) 53.99 70.58 Afro-Asiatic – 10 / 10
South-Central Koongo (koon1244_Latin) 24.58 49.15 Atlantic-Congo 1 8 / 10
Southern Jinghpaw (kach1280_Latin) 21.18 45.03 Sino-Tibetan 0 6 / 10
Southern Pashto (sout2649_Arabic) 33.63 64.12 Indo-European – 10 / 10
Southern Sotho (sout2807_Latin) 55.44 75.96 Atlantic-Congo 1 10 / 10
Southwestern Dinka (sout2832_Latin) 1.38 24.26 Nilotic – 4 / 9
Spanish (stan1288_Latin) 63.33 66.93 Indo-European 5 10 / 10
Standard Arabic (stan1318_Arabic) 67.19 71.83 Afro-Asiatic 5 10 / 10
Standard Arabic (stan1318_Latin) 19.46 68.76 Afro-Asiatic 5 10 / 10
Standard Indonesian (indo1316_Latin) 74.66 69.53 Austronesian 3 10 / 10
Standard Latvian (stan1325_Latin) 63.66 73.36 Indo-European 3 10 / 10
Standard Malay (stan1306_Latin) 73.67 74.33 Austronesian 3 10 / 10
Sundanese (sund1252_Latin) 53.08 60.76 Austronesian 1 10 / 10
Swahili (swah1253_Latin) 75.19 77.87 Atlantic-Congo 2 10 / 10
Swati (swat1243_Latin) 47.46 59.26 Atlantic-Congo 1 10 / 10
Swedish (swed1254_Latin) 75.76 73.53 Indo-European 4 10 / 10
Ta’izzi-Adeni Arabic (taiz1242_Arabic) 57.90 68.61 Afro-Asiatic – 10 / 10
Tagalog (taga1270_Latin) 65.38 79.03 Austronesian 3 10 / 10
Tajik (taji1245_Cyrillic) 57.78 65.02 Indo-European 1 10 / 10
Tamasheq (tama1365_Latin) 12.08 35.07 Afro-Asiatic 0 6 / 10
Tamasheq (tama1365_Tifinagh (Berber)) 12.61 28.51 Afro-Asiatic 0 7 / 9
Tamil (tami1289_Tamil) 66.37 67.33 Dravidian 3 10 / 10
Tatar (tata1255_Cyrillic) 63.39 65.85 Turkic 1 10 / 10
Telugu (telu1262_Telugu) 58.70 74.29 Dravidian 1 10 / 10
Thai (thai1261_Thai) 64.09 74.75 Tai-Kadai 3 10 / 10
Tibetan (tibe1272_Tibetan) 46.95 58.32 Sino-Tibetan 1 10 / 10
Tigrinya (tigr1271_Ethiopic (Ge‘ez)) 26.43 61.36 Afro-Asiatic 2 10 / 10
Tok Pisin (tokp1240_Latin) 46.00 58.89 Indo-European 1 10 / 10
Tsonga (tson1249_Latin) 53.82 66.83 Atlantic-Congo 1 10 / 10
Tswana (tswa1253_Latin) 45.34 62.99 Atlantic-Congo 2 10 / 10
Tumbuka (tumb1250_Latin) 48.32 58.45 Atlantic-Congo 1 10 / 10
Tunisian Arabic (tuni1259_Arabic) 43.91 67.20 Afro-Asiatic – 10 / 10
Turkish (nucl1301_Latin) 69.30 78.82 Turkic 4 10 / 10
Turkmen (turk1304_Latin) 54.86 67.57 Turkic 1 10 / 10

Continued on next page
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Table 7 – continued from previous page
Language

(glottocode_Script)
E → T
CHRF

T → E
CHRF Family Class Samples

(E → T / T → E)
Twi (twii1234_Latin) 40.08 54.68 Atlantic-Congo 1 10 / 10
Uighur (uigh1240_Arabic) 57.10 63.85 Turkic 1 10 / 10
Ukrainian (ukra1253_Cyrillic) 67.63 73.64 Indo-European 3 10 / 10
Umbundu (umbu1257_Latin) 19.95 44.89 Atlantic-Congo 0 7 / 10
Urdu (urdu1245_Arabic) 56.80 69.39 Indo-European 3 10 / 10
Venetian (vene1258_Latin) 53.60 72.88 Indo-European 1 10 / 10
Vietnamese (viet1252_Latin) 68.50 67.29 Austroasiatic 4 10 / 10
Waray (Philippines) (wara1300_Latin) 61.97 80.62 Austronesian 1 10 / 10
Welsh (wels1247_Latin) 76.84 80.79 Indo-European 1 10 / 10
West Central Oromo (west2721_Latin) 43.92 58.33 Afro-Asiatic – 10 / 10
Western Farsi (west2369_Arabic) 51.22 69.55 Indo-European – 10 / 10
Wolof (nucl1347_Latin) 27.23 52.05 Atlantic-Congo 2 9 / 10
Xhosa (xhos1239_Latin) 51.60 64.15 Atlantic-Congo 2 10 / 10
Yoruba (yoru1245_Latin) 25.90 50.06 Atlantic-Congo 2 10 / 10
Yue Chinese (yuec1235_Han (Traditional)) 30.09 68.45 Sino-Tibetan 1 10 / 10
Zulu (zulu1248_Latin) 58.61 74.58 Atlantic-Congo 2 10 / 10
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Figure 13: Translation Score Distribution by Language Family. This plot compares the distribution of CHRF
scores for English-to-Target (E → T ) and Target-to-English (T → E) directions across language families. A
consistent performance gap is evident, with T → E scores being almost universally higher and often less variable
than E → T scores. Families such as Saharan and Mande show particularly low performance in the E → T
direction, whereas families like Indo-European show a wider range of performance with generally higher scores.
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Figure 14: Translation Score Distribution by Script. This plot compares CHRF score distributions across different
writing systems. Aswith the family-based plot, theT → E direction consistently outperforms theE → T direction.
Performance for languages using Latin andCyrillic scripts is relatively high but shows awide distribution, reflecting
the diverse range of languages using them. Scripts associated with lower-resource languages, such as Ethiopic and
Tifinagh, exhibit lower median scores, particularly in the E → T direction.
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Figure 15: Score vs. Class Distribution within each Language Family. This faceted plot details the relationship
between resource class and CHRF score for each language family individually. A positive trend, where higher scores
are associated with higher resource classes, is visible within several major families like Indo-European and Afro-
Asiatic. The plot also highlights data sparsity, as many families (e.g., Mande, Saharan, Nilotic) contain languages
in only one or two resource classes. The performance gap between the two translation directions persists even when
controlling for class within a family.
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Figure 16: Score vs. Class Distribution within each Script. This faceted plot shows the relationship between
resource class and CHRF score for each writing system. The Latin script subplot contains the most data across all
resource classes and most clearly demonstrates the positive correlation between class and score. For many other
scripts, such as Arabic and Devanagari, the data is concentrated in the lower resource classes. This visualization
confirms that the relationship between script and score is highly confounded with resource availability.
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M Full Table of Model Performances

Run ID Avg Score (Answer) Avg Score (Explanation) Avg Score (Total) p-value (Total)
Gemini-2.5-pro (baseline) 0.385 0.520 0.443 N/A
OpenAI-o4-mini (baseline) 0.193 0.332 0.256 N/A
GPT-5 (baseline) 0.332 0.532 0.420 6.75× 10−19

Gemini-2.5-pro (guided) 0.392 0.537 0.454 2.11× 10−1

OpenAI-o4-mini (guided) 0.181 0.339 0.250 4.04× 10−1

Gemini-2.5-pro (w/ grammar agent) 0.383 0.533 0.448 5.50× 10−1

Gemini-2.5-pro (Single agent, 1st round)† 0.383 0.522 0.444 N/A
Gemini-2.5-pro (Single agent, 2 rounds) 0.392 0.554 0.463 1.31× 10−2

Gemini-2.5-pro (Single agent, 3 rounds) 0.397 0.553 0.465 7.37× 10−3

Gemini-2.5-pro (Single agent, 4 rounds) 0.404 0.563 0.473 4.48× 10−4

Gemini-2.5-pro (Single agent, 5 rounds) 0.407 0.569 0.478 7.08× 10−5

Gemini-2.5-pro (Single agent, 6 rounds) 0.409 0.567 0.478 1.02× 10−4

OpenAI-o4-mini (Single agent, 1st round)† 0.180 0.344 0.253 N/A
OpenAI-o4-mini (Single agent, 2 rounds) 0.191 0.357 0.264 2.40× 10−1

OpenAI-o4-mini (Single agent, 3 rounds) 0.192 0.367 0.269 6.69× 10−2

OpenAI-o4-mini (Single agent, 4 rounds) 0.197 0.357 0.267 1.30× 10−1

OpenAI-o4-mini (Single agent, 5 rounds) 0.199 0.371 0.274 1.20× 10−2

OpenAI-o4-mini (Single agent, 6 rounds) 0.198 0.378 0.276 4.29× 10−3

Gemini-2.5-pro (MoA, 1st round)† 0.389 0.540 0.453 N/A
Gemini-2.5-pro (MoA, R=0, (2 rounds)) 0.398 0.556 0.466 1.49× 10−2

Gemini-2.5-pro (MoA, R=1, (3 rounds)) 0.410 0.573 0.480 7.74× 10−5

Gemini-2.5-pro (MoA, R=2, (4 rounds)) 0.417 0.569 0.481 1.08× 10−4

Gemini-2.5-pro (MoA, R=3, (5 rounds)) 0.418 0.581 0.488 1.06× 10−5

Gemini-2.5-pro (MoA, R=4, (6 rounds)) 0.421 0.579 0.489 1.50× 10−5

OpenAI-o4-mini (MoA, first round)† 0.187 0.344 0.257 N/A
OpenAI-o4-mini (MoA, R=0 (2 rounds)) 0.325 0.491 0.397 2.70× 10−16

OpenAI-o4-mini (MoA, R=1 (3 rounds)) 0.359 0.513 0.427 2.83× 10−18

OpenAI-o4-mini (MoA, R=2 (4 rounds)) 0.366 0.531 0.438 2.12× 10−20

OpenAI-o4-mini (MoA, R=3 (5 rounds)) 0.384 0.537 0.451 1.83× 10−20

OpenAI-o4-mini (MoA, R=4 (6 rounds)) 0.392 0.543 0.457 1.07× 10−20

Table 8: Summary of agent performance, showing average scores of “answer”, “explanation” and the combined
total score. Each row represents a unique experimental setting. For the results with multiple rounds, the name
denotes the model used in the final layer (i.e, the final solution is generated by it). The p-value is calculated with
paired Student’s t-test, comparing the model with the baseline model of the same family. The rows marked with
a dagger (†) means that its setting is equivalent to the baseline, and therefore the score differences demonstrate
model stochasticity.

N Scores Categorized by Language Family and Problem Type
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Figure 17: Distribution of Scores by Language Family.

Figure 18: Distribution of Scores by Subject.

Figure 19: Distribution of Scores by Problem Type.
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O Correlation between Answer Scores and Explanation Scores

Figure 20: Correlation between Answer Scores and Explanation Scores.
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