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Abstract

Multi-behavior recommendation leverages
auxiliary behaviors to effectively alleviate
the sparsity of target behaviors. Fxist-
ing approaches can be broadly categorized
into two paradigms: sequential models
that capture individual temporal dynamics
but often omit cross-user information, and
graph-based models that mine collabora-
tive patterns yet lack temporal dependency
modeling. To address these limitations,
this paper proposes an integrated approach
that combines sequential and graph model-
ing: the former focuses on learning tempo-
ral dependencies within user behavior se-
quences, while the latter captures cross-
user behavior paths. By fusing the predic-
tions from both components, the method
achieves more accurate recommendations.
Experiments on two e-commerce datasets,
Taobao and RetailRocket, show that the
integrated model outperforms the strong
baseline MB-STR. by about 1% in both
HR@10 and NDCG@10. These results in-
dicate that incorporating cross-user collab-
orative information consistently improves
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performance, even on top of strong sequen-
tial models.
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48,749 39,493 1,952,931 {View, Cart, Buy}
RetailRocket 147,894 99,037 2,756,101 {View, Cart, Buy}
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Light GCN 0.039 0.021 0.041 0.024
MBGCN 0.309 0.143 0.369 0.222
MB-GMN 0.319 0.154 0.491 0.300
BPMR 0.403 0.223 0.363 0.201
%415 /771 (Multi-behavior Sequential Models)
MBHT 0.745 0.559 0.361 0.239
MB-STR 0.775 0.635 0.777 0.653
Ours 0.790* 0.689* 0.792* 0.702*
Improv. 1.02% 1.08% 1.02% 1.07%
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