Language Modeling Using Entanglement Enhanced Tensor
Trains

Ellis Reyes!

Yi-Shin Chen'?

nstitute of Information Systems and Applications,
2Department of Computer Science,
National Tsing Hua University, Hsinchu, Taiwan

ellisreyesm@gmail.com

Abstract

Tensor Train Language Models (TTLMs)
offer significant memory savings by rep-
resenting text sequences as tensor net-
works, but naive implementations strug-
gle with long-range dependencies and lim-
ited flexibility. = We introduce a modu-
lar TTLM framework that combine local
and non-local context modules to achieve
scalable language modeling. Our non-
local modules, inspired by entanglement
in quantum information theory, enable
efficient modeling of long-range interac-
tions between hidden states. Experiments
on Penn Treebank and Wikitext datasets
show that our modular TTLM, including
entanglement-augmented variants, outper-
form naive baselines. These results high-
light TTLMs as a promising, memory-
efficient alternatives for modern language
modeling.

Keywords: Tensor Train Language Mod-
els, Entanglement-Inspired Modules

1 Introduction

Language modeling is a fundamental prob-
lem in natural language processing (Ben-
gio et al., 2003), requiring models to cap-
ture local and global correlations across se-
quences of tokens. Recurrent neural networks
(RNNs) (Bengio et al., 1994) and their vari-
ants (e.g., LSTMs) (Hochreiter and Schmid-
huber, 1997) have been previously used, but
they often fail to model long-range dependen-
cies due to vanishing gradients. Transform-
ers (Vaswani et al., 2017), leveraging the atten-
tion mechanism, have established new perfor-
mance benchmarks and are widely used. How-
ever, their quadratic time and memory com-
plexity in sequence length remains a bottle-
neck (Tay et al., 2022) (Zaheer et al., 2020).

258

yishin@gmail.com

Previous approaches of Transformer vari-
ants have been explored to tackle this issue.
Linformer (Wang et al., 2020), which com-
putes a projection of the key and value ma-
trices to lower ranks and Longformer (Beltagy
et al., 2020), which uses sparse attention pat-
terns instead of a full dense self-attention.

Tensor Train Language Models (Su et al.,
2024) have recently emerged as a theoretically
memory-efficient alternative, decomposing the
input sequence into a chain of low-rank ten-
sors. These tensor networks were originally in-
troduced in quantum many-body physics (Eis-
ert, 2013) as efficient representations of inter-
actions in a highly dimensional space. In con-
trast with Transformer variants as Linformer
and Longformer, Tensor Train Language Mod-
els provide an orthogonal approach: Instead
of attention sparsification, they decompose
the sequential weights into a chain of low-
rank tensor cores, generating a combinatorial
space where each token is represented by a
core G®¥) | constructing a global representation
GWiy]---GD[ig] (Equation 1). The main
idea is that tensor decompositions can cap-
ture hidden correlation patterns while keeping
the model scalable and interpretable, a prop-
erty that has been exploited in tasks ranging
from Bayesian network discovery to hierarchi-
cal clustering of real-world data (Akamatsu
et al., 2025).

This property provides an analogy with lan-
guage, where long-range dependencies must be
captured within memory constraints. Hence,
our framework adopts an interdisciplinary
view. We use entanglement-inspired mod-
ules to allow TTLMs to capture dependencies,
following the observation that entanglement
arises from local-interactions (Eisert, 2013).
Nevertheless, current naive TTLM implemen-

Proceedings of the 37th Conference on Computational Linguistics and Speech Processing (ROCLING 2025), pages 258-265
November 20-22, 2025 ©2025 Association for Computational Linguistics

tations face two main limitations: (1) diffi-
culty in modeling global, non-local dependen-
cies, and (2) inflexibility in their core archi-
tecture, which can constrain the expressive-
ness of the model. To our knowledge, this is
the first work that explores TTLMs beyond
theory, systematically enhancing their archi-
tecture and integrating entanglement-inspired
non-local modules for practical large-scale lan-
guage modeling

In short, we make the following contribu-
tion:

We propose a hybrid language model ar-
chitecture that combines a TTLM that cap-
tures local context via sequence processing,
with causal Entanglement modules to capture
non-local context (such as attention and outer
product mechanisms) that allow hidden states
to interact beyond local context. As a founda-
tion for our hybrid model, we introduce stan-
dard architectural improvements such as resid-
ual connections, biases, controlled initializa-
tion and weight tying into the baseline TTLM,
allowing for a stronger base model where the
entanglement modules operate. Ablation stud-
ies confirm the utility of these foundational en-
hancements.

Experiments on the Penn Treebank and
WikiText-2 datasets show that our modular
TTLM, and the entanglement-augmented vari-
ants, outperform naive TTLMs. For instance,
on PTB at rank 60, our best variant achieves
a perplexity of 83.70 compared to 92.79 for
the naive Large TTLM, a ~ 9.8% reduction.
A similar trend is observed on the WikiText-
2, where our hybrid approach consistently
outperform across most tested ranks, validat-
ing the scalability and robustness of our ap-
proach. These results suggest that TTLMs are
a promising direction for scalable and memory-
efficient alternatives to attention-based archi-
tectures.

2 Related Work

Beyond computational motivations, tensor
networks originate from quantum many-body
physics, where entanglement and entropy laws
explain why high-dimensional systems can still
be represented efficiently (Eisert, 2013). Re-
cent work has begun to explore these ideas
in machine learning to capture hidden correla-

259

tion structures, showing tensor networks as an
alternative paradigm for interpretable genera-
tive modeling (Akamatsu et al., 2025). These
insights suggest that entanglement-inspired
mechanisms may become a viable approach
to align tensor-based architectures to capture
long-range dependencies. Earlier work (Zhang
et al., 2020) has explored tensor decomposition
techniques as an alternative approach for lan-
guage modeling to mitigate the quadratic com-
plexity O(n?) of self-attention. These methods
factorize the exponential space of weight ma-
trices into smaller tensor representations, en-
abling a more efficient memory scaling and in-
ference on resource constrained hardware.

Tensor Decomposition for Language
Modeling Early work (Su et al,
2024) (Zhang et al.,, 2020) demonstrated
that tensor based representations, such as
matrix product states (MPS) and tensor
train (TT) approaches, can model sequences
with significantly fewer parameters than
Recurrent Neural Networks and Transformers.
Moreover, these representations can efficiently
compress LLMs components (Tomut et al.,
2024) (Xu et al., 2023). The Tensorized
Transformer (Ma et al., 2019) explore this
representations using Block Term Tensor
Decomposition (BTD) to achieve comparable
perplexity to Transformers-XL with 2-5x
fewer parameters. However, only the atten-
tion layer is compressed, the feed-forward,
embedding and softmax matrices remain full
size which makes the computation quadratic
in complexity.

The Tensor Train Language Model (Su
et al., 2024) introduced a fully Tensor Train
architecture for language modeling as a proof-
of-concept work, outperforming vanilla Recur-
rent Neural Networks and matching Trans-
former perplexity performance on limited con-
text windows and small datasets. However,
existing tensor-based approaches mainly focus
on compression without providing modular ar-
chitectures capable of capturing non-local de-
pendencies. In contrast, our modular TTLM
framework augmented with entanglement-
inspired modules seeks to bridge the theoreti-
cal efficiency of tensor networks in quantum
information with the practical requirements
for language modeling. To the best of our

knowledge, this entangled dynamics of local
and non-local context for TLLMs has not been
explored.

3 Preliminaries: Tensor Train
Decomposition

The Tensor Train (TT) decomposition (Os-
eledets, 2011), factorizes a high-order tensor
into a contracted sequence (or train) of low-
order cores. Let W € R™*X" he an
order-d tensor. In TT format, each element

W (i1, ...,iq) is expressed as a chain of matrix
products:
W(in, ... ig) = GVi] GPlig) --- G D[ig).

(1)
where G(%) € R™—1%7:X7k ig the k-th T'T-core,
G [ix) € R =1%Tk corresponds the ig-th slice
along the k-th mode, and (rg,r1,...,74) are
the TT-ranks with r9 = r4 = 1. The total pa-
rameter count scales as Zzzl Th_1MgTE, which
grows linearly with d, in contrast to the expo-
nential [[, nj parameters of a dense tensor.

3.1 Tensor Train Language Models

Tensor Train Language Models use the princi-
ples of TT decomposition introduced in Sec-
tion 3 to generate a parameter-efficient ap-
proach for sequence modeling. Following a
standard RNN update rule hy = f(x¢, hi—1),
where h; € R is the hidden state of dimension
R (TT-rank or rank), z; is the input token at
time ¢, and f is the cell function implemented
using the tensor contractions.

The input token x; is first mapped to an
embedding vector Fj. For example, in small
variants like TTLM-Tiny (Su et al., 2024) The
hidden state h;_q is transformed by an input-
to-hidden learnable weight matrix W;;,, and
the result computes a matrix-vector product
with Fj, followed by an activation function:

he = (he—1Wip, + bin) - E} (2)

Larger variants like TTLM-Large (Su et al.,
2024) first process the input embedding E; by
an additional hidden-to-hidden weight matrix
Whn before reshaping it into the embedding
E}:

hi = (he—1Wip + bip) - reshape(E:Whp) (3)

This allows for a more detailed input depen-
dent state transition.

4 Methodology

We propose a Tensor Train Language Model
that converges (i) a recurrent TTLM for local
context and (ii) non-local entanglement mod-
ules that enable hidden states interaction to
capture long-range dependencies.

Figure 1 illustrates the overall architec-
ture: The TTLM processes the input sequence
(z1,...,zn) recurrently (left), where the state
at each time h; depends on the previous state
hi—1 and the current input (z;). The resulting
sequence of hidden states, hi,...,hy, where
N represents the total length of the input se-
quence, is then aggregated by causal entangle-
ment modules (right) to capture non-local de-
pendencies before making a final prediction.

Local context

{ o
; .

Non-local context

-
I { |- o

Figure 1: Modular TTLM with Entanglement.

Our key assumption here is that by entan-
gle the local and non-local modules the ex-
pressiveness of the model increases. Our in-
tuition is by allowing the hidden states to in-
teract globally with non-local past context, we
expect to capture long-range dependencies by
the connection of the current state and its his-
tory. Moreover, the modularity could enable
ablation studies to compare different behav-
iors among the entanglement variants to an-
alyze outcomes for specific types of data and
tasks.

4.1 Modular TTLM (Local Context)

Our hybrid architecture introduces an en-
hanced Tensor Train Language Model based
on the TTLM-Large implementation from Sec-
tion 3.1 and equation 3. The hidden state
h: € RE is updated from h;—; and the current
embedding E; € RE? as follows:

260

vg = (he—1 Win + bin)
E} = Reshape(E;Whp, + ban) (4)
h; = Activation (vt . E,g +a-hi_1+ bcell)

In Equation 4, the previous state is trans-
formed by a linear computation (W;p,bin)
where W, is a learnable weight matrix that
connects input and hidden states, this matrix
determines which past memory slices are rele-
vant for the current position. The transition
matrix Fj is computed by reshaping the cur-
rent embedding F; by another linear compu-
tation (Wpp,bpy). Here, Wy, is a learnable
weight matrix that determines how the cur-
rent input should influence the update. The
reshaping flatten the transition matrix Ej into
R x R. Conceptually, Ej represents a flattened
TT-core slice G*)[ix] from the decomposition
chain seen in Eq. 1.

With this approach, we separate the rele-
vant past memory slices into the transformed
state v; and the current state influence into the
transition matrix Ej. Hence the core interac-
tion involves the matrix-vector product vy - ;.
The flow of the gradient is improved with a
residual connection to preserve information by
adding the previous state back scaled by a hy-
perparameter «. In this implementation the
biases (b;p, bpn) modify the inputs in the core
tensor contraction computation and the bias
beeyp 18 used as an extra learnable parameter
to shift the overall output independently of
the internal linear transformations before it
passes through an activation function such as
tanh. This activation introduces non-linearity,
though omitting it (using a linear activation)
aligns with baseline configurations (Su et al.,
2024).

We employ weight tying for efficiency to
share the weights between FE; and the out-
put projection layer. All learnable parameters
within the cell (the entire computational unit)
(Win, bi, Whi, ban, beenl] are initialized using a
scaled uniform distribution [—0.1/R,0.1/R)]
for smooth initialization and stability, espe-
cially at higher ranks.

The Modular TTLM processes the input se-
quence X = (x1,...,znN) sequentially. The
resulting sequence of hidden states

H = [hl,hQ,...,hN] GRNXR

261

captures the local context and serves as the
input to the causal Entanglement Blocks de-
scribed in the next section.

4.2 Entanglement Modules (Non-local
Context)

While the Modular TTLM introduced in Sec-
tion 4.1 processes local dependencies, because
of the recurrent nature potential information
from the distant positions could be lost. To
tackle this limitation and capture non-local
dependencies, we introduce the Entanglement
modules. From information theory perspec-
tive, Shannon entropy measures the expected
information gain before observing the out-
come (Baez, 2024), hence our intuition for the
entanglement modules is to reduce this un-
certainty by allowing hidden previous states
to share information. These modules are de-
signed to be causal, hence the computation of
the output feature for time ¢ only depends on
the input hidden states up to that time step.

Chunked Low-Rank Attention. Given
the hidden states H € RV*% we divide each
sequence of length N into M = [N/C]| non-
overlapping chunks of size C. This summaries
are linearly projected to obtain the keys and
values. The chunked attention update is given
by:

~ QKT .

H=H + softmax(ﬁ + C)Vproj, (5)
where C is the causal mask. For each hidden
state at time ¢t belonging to chunk j all en-
tries with m >j are masked, hence each query
can attend only to summaries of earlier chunks
conserving causality.

This implementation reduces the complex-
ity from O(N2?R) to O(NMR). Like Lin-
former (Wang et al., 2020), the method is low-
rank in sequence length, but instead of learned
projection matrices, it uses a pooling compres-
sion where each chunk summary is the mean
of the TTLM hidden states within that win-
dow. These pooled representations provide a
compact and non-local summary of the past
context.

Causal Hadamard Pooling. Given hidden
states H e RN*E_ we use an Exponential Mov-
ing Average (EMA) vector e; for each sequence

in the batch:

et =ae_1+ (1 —a)hy, a=oc(N),
where) is a learnable scalar shared across lay-
ers and o denotes the sigmoid function. In this
implementation, the EMA is a summary of all
past hidden states, hence each new update de-
pends only on the previous average and the
current input. Each output state is updated by
a Hadamard interaction with its EMA given
by:

(6)

where gent is a learnable gating parameter and
1 /\/E normalizes the interaction. A light feed-
forward network finalizes the representation to
get the output H. This computation scales
linearly O(NR), since the EMA is computed
once per step and reused. Conceptually, the
module performs a causal outer-product inter-
action between the current state and a low-
rank summary of the past, allowing each posi-
tion to integrate non-local information.

iLt = ht + Gent (ht © ﬁet%

4.3 Prediction and Training

We obtain an enriched hidden sequence H =
[h1;...;hy] which integrates both local and
non-local context as described in Sections 4.2
and 4.1. Each state is projected to the vocab-
ulary space with a linear decoder:

by = Wiec ht"'bdeca
(7)
Here, Wyee € RV and bge. € RV are the
parameters of the output projection, where V'
is the vocabulary size. The linear transforma-
tion maps the hidden state ht to the logits £,
which are then converted into a probability dis-
tribution over the vocabulary using a softmax
function. The model is trained using standard
cross-entropy loss over all time steps:

N
1
Lcg = — N E logp(yt ‘ $<t)- (8)
t=1

This training objective optimizes the condi-
tional probability of the next token.

5 Experimental Setup

We implemented our models in Py-
Torch (Paszke et al., 2019) using the PyTorch

262

p(yt | x<¢) = softmax ().

Lightning framework (Falcon and The Py-
Torch Lightning team, 2019). We evaluated
our approach on a classic word-level and open
domain language modeling task using (1)
the Penn Treebank (PTB) dataset (Marcus
et al., 1994), which contains 929k tokens
for training, 73k for validation, and 82k for
testing, with a vocabulary size of 10k unique
words. PTB is suitable to evaluate compact
language models with short context length.
And (2) The WikiText-2 (WT2) (Merity
et al.,, 2016), which contains 2.1M tokens
for training, 218k for validation, and 246k
for testing, with a vocabulary size of about
33k words. WT2 provides a larger and more
natural vocabulary than PTB which makes it
suitable to evalute language models for longer
dependencies. The main evaluation metric is
perplexity (PPL) on the test set, where lower
perplexity indicates better language modeling
performance. Specifically, we compare the
following models:

1. TTLM Baselines variants: TTLM-small
and TTLM-large (Su et al., 2024).

2. Modular TTLM (Ours): Modular TTLM-
small and Modular TTLM-large.

3. Modular TTLM + Entanglement (Ours):
Chunked Low-Rank Attention and
Hadamard Pooling.

4. Transformer Baseline: Transformer with
L blocks, multi head self-attention, pre-
norm, learned positional embeddings.
Configured to match the parameter
count of the corresponding TTLM vari-
ant (Vaswani et al., 2017).

All models were trained under identical op-
timization settings for fairness. To compare
TTLM baselines and our Modular TTLM, we
used a learning rate of 0.001, dropout rate of
0.25, batch size of 32 and Adam optimizer. For
our Modular TTLM variants, additional archi-
tectural hyperparameters were set to ues =
0.5 and use__tanh = False.

For the Modular TTLM + Entangle-
ment aditional parameters were used such
as AdamW optimizer with weight decay 0.2,
dropout rate of 0.5, a 1000 steps warm up, a
chunk size of 10 and entanglement gate init
at 0.0.

To ensure a fair comparison, the Trans-
former baseline is sized to match the total pa-
rameter count of the corresponding Modular
TTLM-Large variant. We choose the embed-
ding dimension, number of layers, Heads and
feed-forward width such that the amount of
parameters closely matching the TTLM run
at rank R. For example, at rank 60 we choose
a (1024,7,8,2048) transformer run. For the
matching at rank R the embedding dimension
and number of layers were modified, Heads
and feed-fordward width stayed constant at 8
and 2048.

All experiments were performed for up to 50
epochs with early stopping, gradient clipping
at 0.25, a batch size of 32, sequence length
(bptt) of 35, embedding size of 400 and a fixed
random seed of 42 was used for all runs to
ensure reproducibility. All experiments were
conducted on one NVIDIA A100-SXM4-80GB
GPU.

5.1 Scaling Law Evaluation

To analyse the scaling properties of the pro-
posed Modular TTLM variants, we train each
model with increasing TT-rank values (R €
{5,10,15,20}) and report the corresponding
test perplexity for a fair comparison with
the baseline. This experiment highlights how
the expressiveness of the Modular TTLM im-
proves with rank, in analogy to scaling laws
observed in large scale language models.

6 Results

6.1 Scaling with TT-Rank

We first study the effect of increasing TT-rank
on language modeling performance. Table 1
reports test perplexity on PTB for the base-
lines variants (Su et al., 2024): Large TTLM-
L, Small TTLM-S and our variants: Modular
Large M-TTLM-L, Modular Small M-TTLM-
S. Both modular models consistently outper-
form their corresponding baselines across sev-
erall ranks, with the largest improvements ob-
served at higher ranks. This shows that the
proposed architectural enhancements improve
the expresiveness capabilities of the model.
Table 2 shows the results on WikiText-2,
where the same trend is observed: increas-
ing rank lowers perplexity, Modular TTLM
outperform the baselines. This shows the ro-

263

Rank TTLM-L TTLM-S M-TTLM-L M-TTLM-S

5 156.0 161.7 151.7 169.8

10 119.9 127.5 116.4 127.8

15 106.7 117.1 103.3 116.2

20 102.1 111.2 96.7 109.2
Table 1: Perplexity on PTB test set across TT-

ranks.

Rank TTLM-L TTLM-S M-TTLM-L M-TTLM-S

5 129.1 132.9 127.8 140.0
10 100.4 109.4 100.0 109.3
15 89.4 100.9 88.1 100.8
20 85.5 96.7 82.0 95.5

Table 2: Perplexity on WikiText-2 test set across
TT-ranks.

bustness of the models indicating that model-
ing global interactions is helpful for the larger
WT2 vocabulary.

6.2 Effect of Entanglement Modules at
Higher Ranks

We next compare our Modular TTLM-
Large baseline (M-TTLM-L) against its
entanglement-augmented variants: M-TTLM-
A (chunked low-rank attention) and M-TTLM-
H (Hadamard pooling) for higher ranks (R €
{40,60,70}). The scaling experiments in Sec-
tion 6.1 showed that performance generally im-
proves with rank, motivating our expectation
that entanglement modules could further en-
hance expressiveness by capturing non-local
context. Tables 3 and 4 show results on PTB
and WikiText-2.

Both entanglement modules yield modest
yet consistent improvements over our Modu-
lar TTLLM-Large, with M-TTLM-A perform-
ing best on PTB and WikiText-2. All our
variants outperform the baseline TTLM-Large
and Transformer on PTB. We attribute the
poor improvement on WikiText-2 at higher
ranks to the short context window used in our
experiments (bptt = 35).

WikiText-2 contains longer sequences and
a more diverse vocabulary than PTB, which
likely makes it more sensitive to context win-
dows. This could also explains why Trans-
former models perform better on this dataset.
While improvements are modest, the results
hint that causal non-local interactions might
offer a way toward increasing the expressive-
ness of recurrent language modeling.

Rank M-TTLM-L M-TTLM-A M-TTLM-H Trans TTLM-L

40 87.2 86.1 85.9 87.8 95.7
60 85.1 83.7 84.0 83.6 92.8
70 85.2 84.4 84.6 86.2 93.5

Table 3: Perplexity on PTB across higher ranks for
Modular TTLM-Large (M-TTLM-L) and entangle-
ment variants.

Rank M-TTLM-L M-TTLM-A M-TTLM-H Trans TTLM-L

40 75.1 74.0 74.2 70.2 77.8
60 74.2 73.5 73.6 73.7 79.7
70 74.9 74.5 73.6 69.4 81.5

Table 4: Perplexity on WikiText-2 across higher
ranks for Modular TTLM-Large (M-TTLM-L) and
entanglement variants.

6.3 Efficiency Analysis

To evaluate computational requirements, we
measure training wall time and GPU memory
usage at TT-rank 60 for PTB and WikiText-2
(Table 5). We observe that the introduction of
entanglement modules does not significantly
increase training or inference GPU memory
consumption which suggests that the proposed
modules can be integrated with minimal com-
putational cost while maintaining scalability
as introduced in the formulation of the entan-
glement modules in the method section 4.

Our Rank 60 model demonstrates perfor-
mance on PTB (Table 3) and WikiText-2
(Table 4) that is comparable to the Trans-
former baseline. Table 5 highlights the ef-
ficiency advantages, showing lower inference
memory usage and similar or lower training
memory usage compared to the Transformer.
It is important to note that while parame-
ter counts are comparable, the Transformer
hyperparameters (embedding dimension, lay-
ers, heads) were chosen to match our TTLM
model size. Performance may vary with dif-
ferent Transformer configurations, as Trans-
former performance is sensitive to these archi-
tectural choices.

6.4 Scaling Context Length on
WikiText-2

To explore how our model performs and
scales on a larger and diverse dataset like
the Wlkitext-2, we investigated the output
of increasing the context length available to
the model during training. We run separate
instances of our Modular TTLM, with rank
R = 60 a sequence lengths bptt of 128 and

264

Model Params Train (MB) Infer (MB)
PTB (rank = 60)
M-TTLM-L 49.3M 1047.7 281.7
M-TTLM-A 49.3M 1048.2 281.7
M-TTLM-H 49.3M 1048.0 281.7
Transformer 51.2M 1423.5 888.9
WikiText-2 (rank = 60)
M-TTLM-L 117.4M 2600.4 696.7
M-TTLM-A 117.4M 2600.9 696.7
M-TTLM-H 117.4M 2600.7 696.7
Transformer 118.0M 2414.9 2051.8

Table 5: GPU memory usage for Modular TTLM-
Large and its entanglement variants at TT-rank
60.

Model Params PPL Train (MB) Infer (MB)
WikiText-2 (bptt=128)

-TTLM-L 117.3M 67.20 2887.9 1353.4
M-TTLM-A 117.3M 66.42 2905.6 1353.3
M-TTLM-H 117.3M 66.58 2897.3 1353.4

WikiText-2 (bptt=256)
M-TTLM-L 117.5M 66.49 4429.6 2258.3
M-TTLM-A 117.5M 65.38 4591.3 2258.9

-TTLM-H 117.5M 65.95 4448.7 2258.9

Table 6: WikiText-2 perplexity, number of pa-

rameters, and GPU memory usage as a function of
context length.

256. For these runs, the chunk size for the
low-rank attention entanglement was set to 16
and 32, respectively to investigates if there
are increments on memory usage. Table 6
presents the peak GPU memory usage during
training and inference as we increase the se-
quence length. When doubling the context
length from 128 to 256, the peak memory us-
age for all models increases by a factor of
approximately 1.5 — 1.7. This observed scal-
ing is substantially less than the quadratic in-
crease expected from standard self-attention
mechanisms and is consistent with the the-
oretically linear (O(L)) in our hybrid archi-
tecture for both M-TTLM-A and M-TTLM-
H and the M-TTLM-L. The trend observed
between bptt = 128 and bptt = 256 provides
strong empirical evidence supporting the lin-
ear memory complexity claim for our proposed
models.

7 Conclusion

Our preliminary results indicate that our Hy-
brid approach for language modeling improves
the expressiveness capabilities of TTLM

based architectures improving perplexity on
the Penn Treebank and WikiText-2 Dataset.
These gains come with little to no increase in
GPU memory or wall time, consistent with our
theoretical complexity analysis. This suggest
that TTLMs could incorporate non-local con-
text while retaining their quasi-linear memory
scaling advantages over non recurrent models.

For future work, we plan to extend our eval-
uation to larger and diverse datasets. Addi-
tionally, we aim to explore a different range
of entropy-based modules to study the impli-
cations of entanglement principles in modeling
language structure.

References

Katsuya O Akamatsu, Kenji Harada, Tsuyoshi
Okubo, and Naoki Kawashima. 2025. Plas-
tic tensor networks for interpretable generative
modeling. arXiv preprint arXiv:2504.06722.

John C Baez. 2024. What is entropy?
preprint arXiv:2409.09232.

arXiv

Iz Beltagy, Matthew E Peters, and Arman Cohan.
2020. Longformer: The long-document trans-
former. arXiv preprint arXiv:2004.05150.

Yoshua Bengio, Réjean Ducharme, Pascal Vincent,
and Christian Jauvin. 2003. A neural probabilis-
tic language model. Journal of Machine Learn-
ing Research, 3(Feb):1137-1155.

Yoshua Bengio, Patrice Simard, and Paolo Fras-
coni. 1994. Learning long-term dependencies
with gradient descent is difficult. IEEE Trans-
actions on Neural Networks, 5(2):157-166.

Jens Eisert. 2013. Entanglement and tensor net-
work states. arXiv preprint arXiv:1308.3318.

William Falcon and The PyTorch Lightning team.
2019. PyTorch Lightning.

Sepp Hochreiter and Jirgen Schmidhuber. 1997.
Long short-term memory. Neural computation,
9(8):1735-1780.

Xueyun Ma, Peng Zhang, Sheng Zhang, Nan Duan,
Yue Hou, Ming Zhou, and Daxin Song. 2019.
A tensorized transformer for language modeling.
In Advances in Neural Information Processing
Systems, volume 32.

Mitch Marcus, Grace Kim, Mary Ann
Marcinkiewicz, Robert MacIntyre, Ann Bies,
Mark Ferguson, Karen Katz, and Britta Schas-
berger. 1994. The penn treebank: Annotating
predicate argument structure. In Human Lan-
guage Technology: Proceedings of a Workshop
held at Plainsboro, New Jersey, March 8-11,
1994.

265

Stephen Merity, Caiming Xiong, James Bradbury,
and Richard Socher. 2016. Pointer sentinel mix-
ture models. arXiv preprint arXiv:1609.07843.

Ivan V Oseledets. 2011. Tensor-train decomposi-
tion. SIAM Journal on Scientific Computing,
33(5):2295-2317.

Adam Paszke, Sam Gross, Francisco Massa,
Adam Lerer, James Bradbury, Gregory Chanan,
Trevor Killeen, Zeming Lin, Natalia Gimelshein,
Luca Antiga, et al. 2019. Pytorch: An imper-
ative style, high-performance deep learning li-
brary. Advances in neural information process-
ing systems, 32.

Zhenning Su, Yunlong Zhou, Fengwei Mo, and
Jakob G. Simonsen. 2024. Language mod-
eling using tensor trains. arXiv preprint
arXiv:2405.04590.

Yi Tay, Mostafa Dehghani, Dara Bahri, and Don-
ald Metzler. 2022. Efficient transformers: A sur-
vey. ACM Computing Surveys, 55(6):1-28.

Andrei Tomut, Seyed Saeed Jahromi, Abhinaba
Sarkar, Ugur Kurt, Suraj Singh, Faraz Ishtiaq,
Carlos Muiioz, Prateek S. Bajaj, Ahmed Elb-
orady, Alberto Del Bimbo, et al. 2024. Com-
pactifai: extreme compression of large language
models using quantum-inspired tensor networks.
arXiv preprint arXiv:2401.14109.

Ashish Vaswani, Noam Shazeer, Niki Parmar,
Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
Fukasz Kaiser, and Illia Polosukhin. 2017. At-
tention is all you need. In Advances in Neu-
ral Information Processing Systems, volume 30,
pages 5998-6008.

Sinong Wang, Belinda Z Li, Madian Khabsa, Han
Fang, and Hao Ma. 2020. Linformer: Self-
attention with linear complexity. arXiv preprint
arXiv:2006.04768.

Mengyuan Xu, Yulan Lin Xu, and Danilo P.
Mandic. 2023. Tensorgpt: Efficient com-
pression of large language models based on
tensor-train decomposition. arXiv preprint
arXiv:2307.00526.

Manzil Zaheer, Guru Guruganesh, Kumar Avinava
Dubey, Joshua Ainslie, Chris Alberti, Santiago
Ontanon, Philip Pham, Anirudh Ravula, Qifan
Wang, Li Yang, et al. 2020. Big bird: Transform-
ers for longer sequences. Advances in neural in-
formation processing systems, 33:17283-17297.

Shuai Zhang, Peng Zhang, Xindian Ma, Junqiu
Wei, Ningning Wang, and Qun Liu. 2020. Ten-
sorcoder: Dimension-wise attention via tensor
representation for natural language modeling.
arXiv preprint arXiv:2008.01547.

https://doi.org/10.5281/zenodo.3828935

