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Abstract

We present a courtroom cross-examination
Al simulation system centered on
Behavioral Fidelity, with speech interaction
included as a design feature to enhance
immersion. For standardization and
reproducibility, the present pilot evaluation
uses transcripts. The system integrates
pragmatic—psychological ~ rules  with
Taiwanese criminal case files to simulate
witness behavior under cross-examination
pressure. Using an optimized Expert Turing
Test framework with four dimensions—
professional accuracy, situational
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adaptability, human-likeness, and logical
consistency—we conduct a pilot study.
Under identical prompts and knowledge
sources, the customized GPT condition
received higher ratings than GPT-Vanilla
on adaptability and human-likeness.
Applying the same framework to another
mainstream model (Gemini 2.5 Flash)
yielded comparable performance, while
differences remain inconclusive at this
sample size. Overall, the results provide
preliminary evidence that Behavioral
Fidelity is a feasible evaluation target and
indicate the scalability of generative Al for
legal training; speech-condition evaluation
and multi-case, multi-role extensions are

left for future work.
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