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Abstract

We present CWSMN, a graph neural
network for early fake-news detection that
foregrounds writing style to address the
fragility of purely semantic- or
propagation-based approaches under label
scarcity and domain shift. CWSMN fuses
stylistic cues with semantics through a
multi-graph design: Bi-GRU initializes
contextual token representations; GAT
performs attention-driven aggregation over
style- and relation-aware graphs; LDA
induces a topic graph, and a lightweight
feed-forward head produces predictions.
Across multiple datasets, CWSMN
consistently surpasses strong Dbaselines
(BERT, ALBERT, GraphSAINT), with the
largest margins under source-level cross-
validation (Source-CV) on unseen sources.
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These  results demonstrate  robust
generalization in low-resource, cross-
domain scenarios and support propagation-
agnostic early decisions, underscoring
practical value for timely mitigation across
platforms and domains.
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1 Introduction

'EEAFN R AR T O mﬁ;s‘*’f
FRPBEE RS RBRARE L - KA o
FROTAREF P L BATE m'}—«? #%fv:a%‘i
o] L*oxhﬁ?@“#a";&“mé PE2 He
FoRBROERELE T ENELE > (T
REREAEA B OE T 2B Jég*(Yang &
Pan, 2021) ¢ &iT & chE <~ F ¢ o dogk fi
ﬁ§$$@’ﬁ%@#§$ﬁ%i§%ﬁ&
gRF o k- B T F ATRIE S e
H B g enit *» 2 £(Shahid et al., 2022) o
BRDBERTE R ZIET A LA H
- RELP ’5 ® e 2 % (Przybyla, 2020) »
43@5 FRIT T RIDF S B AT
SAp s Ao G @R % S 3 (Cheng et
al., 2024) > F1* AL T B LR
B RPEE BT BRI S 2 e B R
- A g AR (1) BAR
FRTREA T AF A RE AR T
FEHGE S WAE e sL it (Abdali &
Krlshnamacharl 2022) 5 (2) #3rFden
B Ag T FEREA D R
il ‘i’% (Deng & Wang, 2022; Gao et al.,
2023) 5 (3) g BAFRITOHANT F BB
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ARAE O BZBRELBEATE TSP R, 7
F(Deng & Wang, 2022; Shahid et al.,
2022) - EEAR PE > BRARBATHE AN F €
FAEBAERA G AR HRITR BT
AEF - R bloFEamd g 5
SRR F B RS2 B 0 FM > FaK
AR R IR TR RAiCA] o TV A
HRFFTADRE DAL F AT
7R E T WREE AR DIRAT R PR
prdk o AP AP TR - S WEBIER
¥4 BB (Capture Writing Style Multi-
Graph Network, CWSMN) » H w4 4
SRR S SR S LA R N
LR L O SR
B FRTFReT D LRDBIER
B Zhds AT GURIFEIE 0 A VRPN R
BB s Ay BTN D #
P RS ARl A4 - 2.3 5 W
g s Rk 1 4 GRU - GAT # LDA #
SRR N R S SR SO Rl N
GRS R 0 OB S SR R
oo QEREEAES LI N R REEY
7 » CWSMN &4 L8 %k ¢ & % E3
%0 B A SRR AL o
A AR R ITR RGPS R BATH
ORI 0 A R ] A TR 2 s
HESR T O o {EFFARY G E
W oA B W BEATRE AT

=

2 Literature Review

AEWHE AT ERAPM 20 HhE 2 ¢
4% Graph Neural Networks »* A7 8 [ ehig * ~
FRCRERENUPERES S BITR RE T8
Mo AT Bp] o 3T E k> GNNs G 2 i
FHM RE SRR 4 o EH S S EATR
BlenE & B R B¢ BLR A R
( Graph Attention Network, GAT ) (Veli¢kovi¢ et
al., 2017) ~ GraphSAINT(Zeng et al., 2019) 7 i
2 #57 (LDA) (Blei et al., 2003) % 3] » & &
THGPRR AR 2 RS R D ERPER
Een 2 > AL UBITR At

RIFEIE K A A
21 WA ERETBEITE R ARSI R

RlA S B L @R & AR i 0 W
B SR EAILY A A KRS R
FMedd o GAT v 8y chia 34 g ¢

A ARSI LRV EL R RABE
TeBHL AR D BE ELiAFEfRE
KT R RS ERE A R TR R
BRRI - RPFAFEEE 2P o F RIEE
C e i NI - R IR LA B = & - A R A
Kt g A o BFEREEEr L E2
7% (Chen et al., 2018; Chiang et al., 2019; Dhawan
et al., 2024; Goldani et al., 2021; Golovin et al.,
2025) i Ho4] L reEsa 4 hle A AR R
R g LA pRAT R I ORI R ARk
(Alghamdi et al., 2024; Chang et al., 2024; Phan et
al., 2023; Y. Zhang et al., 2024)

RO Al L 2 A~ ARE B
B R AR RIS EE LR S
R3S A4 BERT & ALBERT 4% &% 3% &,
Zo7 0 EABAIEAB R ¥ 5 TR B
AL e BIPREFREY 7 AR
BB 5 oot R T MR gL S 'ﬁ‘f
AV %2 B2 Y (Alghamdi et al., 2022; Galli
etal., 2022; Mahmoudi et al., 2024; H. Zhang et al.,
2024).

23 AWBITR BB F HHOBATR R
MECTIAR F o B TR A RATE R {2
AP IolFE R~ BFEF -2 EE
B g bR o i7#E 1 7% & CoreNLP
POS/NER ¥ General Inquirer (GI) 2.~ 2% &,
WA fe BB RGBT AR 2R
e 38 b o R KR A SR T a4
(Horne & Adali, 2018; Potthast et al., 2018; Lima
et al., 2020; Stone et al., 1966; Gehrmann et al.,
2019) oA BiTh R ES T R 0 WikiEF
LN F R BRERT PBHATE KR A 4R
B GATR K2 By It R AT
BELAFREFRE T A R
HLRELAR BT REEEARI T RIERX
R R e g (Przybyla, 2020; Shu et
al., 2018; Galli et al., 2022) - 4 %5z - (4r
LDA) it fe % & s tiF L 24 i &
# 3tz + Topic node 22 2 R v~ vk 5 &
WA Ee o I‘f Doc-CV ¢t > Topic-CV #2
Source-CV { it F P2 F 3N F kg » H ¢
Source-CV ##g A swkihend it s 4 » F L3
RESHR LI Ak RESRRE T
b+ ersaig (Masciari et al., 2020; Nadeem et al.,

22 SHCRE 2R &N ERTR R 2
T
A

287



2023; Nan et al., 2024; Sharma et al., 2023; Tsai,
2023; Wu et al., 2024; Yang et al., 2024)

3 Methodology

30 fRABAEATE WIR 2B R R A 1 H
BB F RV A ] A - B2
PAMHFRB TR # 7 BIA SRR OBERTR
@W(OWMMJﬁﬁfﬁﬂoﬁﬁﬁiﬂ
SRA SRR B TR o B g
* R PR RIS EATE
Wl e AT 2 FE AL B TR -

REEF o REFAEFEERY F DR
BEAOERT o TT e E SR
CWSMN ¢ 7w i &FFE D R 447 > g}'}\;\\

&%ﬁfr«ﬁﬁﬁbﬁ/’a\wo w1

Bl 1: CWSMN z

% 4 ]

3.1 Stylistic analysis
BB ITR RAITOEMAER S G o AP
iR M e T BILR S I R
%i%)}v}%oij\gﬂi‘ﬂ e L
NER(Named Entity Recognition), POS tagging,
and Unigram ¥ 2 General Inquirer dictionaries %
a VR 5 ELARENRENET
&k {m«f*‘,{{( ’
A P H P (unigrams) o A @ * B
3 (bigrams) fr= 3@ (trigrams) e 5 L #
* Stanford CoreNLP(Manning et al., 2014) }"ﬂ‘&%]

» 2 SR AR RJL 0 RJLH B ¢ 45 tokenization

NER 2 %2 POS tagging ° ‘f gtz ek s Ay g
* General Inquirer dictionaries(Stone et al., 1962)
LR TP BT word ﬁf?f/\ 182 #g %] o
General Inquirer dictionaries ¥ — fag¥sd 1 & >
R A AR E E IR T i w](Potthast et al.,
2017) > 3£ - £ ¢ 7 8640 B © 3 Vvl]%:“%:
70 i T 7 (Przybyla, 2020) » SV T A & * 30w

f N-gram s pcfge-¢ o

£ b4 Word2Vec k4 L GL 0% » F] 5 288 4%
RF g M FER L R o
3.2 Embedding and Multi-Graph

Construction

A eiegt ~ EAZE & Bi-GRU ~ GAT v

LDA » v B T 2 & fo § B G R o

g},\)\mﬁﬁ_u B LA 1[%.-)1}% ?A)‘Wﬁr-l“fr'
5 Bl - Step 1. Embedding Initialization: ¢

*+ Stylistic analysis &4 unigram 2 % NER 2 {$

7 token s NP H-H AL E - BEATH R B

* @ Bi-GRU {34550 (6 2 anff k3-8 5 B

word vector 1% 3 #7 node 1 initialization vector.

;%%%‘Lﬁﬂ%}%@{‘* MERA B B node § § A fs 2

el oo L S B ITR 2} chgF it o Step 2:

Multl-Graph Construction: Z 7 ff#i_ % kit h

BFR HRM % AP iEe 50 GAT 5 4 e

Bl 5S4

»  Topic-based Graphs : %12 LDA #-7] 5 &
- B token 3* B A KEAF o G L A KR
2+ 1 45 5 2k (topic nodes) - I = B
token & H ¥ i AL B 5 o Fid i
43 RE gk o 4P e 2 4R e0 tokens LR
B H -2 APRT R
i Tﬁﬁ%? B3] = % B > & % 5 Unigram
Bl - NER B]£ POS B -

»  Gl-based Graphs : ¥ Gl F & #7 T 9
AN 22 182 Bagu &8 VR
k- Gl 2w d o 5B

A EEGL il  0 JA T R REE
VR e i o

RS B AR ORI > VR

* GAT S qf 1% i h 4 ¥ R 58 4 2 B4k

GAT 7R Y & BFAREM » 3l » 771

FARR S VIR ;a%ﬁ%i‘m‘%éﬁﬂwn‘t r}

FREEY L2 FEEPEL c BELL A

WA AR BRI R B R R A

Mone R & B 5 e VA AR

Ak Fa- RMERD A o Fpt o AP e

%% Bi-GRU # #F|% (&% B 7 £ 0

* LDAmodel & GI 2 4 % I+ %145 graph »

pse (YA AR~ BAR R ek FR - RMEH 4

3.3 Multi-graph Fusion
P IEE KRR REBHEOTA > APERY

ST EE SO
3.3.1 Token-level Fusion
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= &4 25K B (global graph) <
ENL - - 1[% token AL 7 & 2 i»
document = = — & document node ; 3%~ & p
2_#7% token-nodes £ # document node if i§ °
FERSHARER L 0 RS ARF o AP
*~ GraphSAINT ;F &z &7+ Btk » %=
wa"‘l F e F B v P E 4 o GraphSAINT i

AT B AR AT B R B

F%I&Fﬁg /‘"g]

[V
T F >

@“ﬁwr B¢ Epna S B R
% i@fuﬁ_—ﬁ\%%,xﬂﬁ*“éﬁl‘ NENIN
4o B AT o

m{q',qDGDQD ]

B 2: Token-level g & =+ X B °
GraphSAINT #_- fé FH4 S RPCRIAY S ek
Boarde A eng a3 Bl 2 2 o GraphSAINT
g@§%7%\§éﬁﬁwmm+%ﬁﬁﬁm
K RAss BlP EBIA T ERREFVR R
gjiﬁﬁéﬁ?ﬂ’*ﬁ‘“ﬂ EEEE)
&2 H % mini-batch 2" 3R 3 & A % >
GraphSAINT & % F Bl.% Jf)%i.?fu?:}%'b‘_'% B A
L& Ta e Rt RS ET > S g
WAL F o F| gt 5 o ASF 5k e tokens Ok E L
A A '—] AN AT GraphSAINT T4 A e
23R schpg & HCA] o 55 d GraphSAINT 6 >
AfpEw L EERE - B docurnent e embedding °
3.3.2 Document-level Fusion
¥ b - fig £ 2 34 5 Documentlevel fusion - 2
L = 2 i@a@% 0

® Embedding aggregation : ¥+w 3% 3 ] 73
g FE L EE g E SR AT

('subgraph representation )

® GAT-based fusion: # * GAT #7327
fusion = ' if* £] = - # document node °
#k 14 document node £ = % 3 [ node if £
«En&.”zwb-*%-moGArdi@i
AR R TS e S E ) Y e
Ta gz BFaEE (AR A#8) o
AT A BFBE TR :—%\,71-.:'1'1-9‘
}gkoﬁ»f?ﬁ»‘i%fr?‘ EH gk o ek
pow i+ ?]ﬁ?#%Wx » A58 B “'Ué] s (Local

Graph)en® i & 57 o 4oF #7157

’

/.

] 3: Document-level g & 7 & 8] -
d %% document-level fusion ¥ # * 5 i node °
s AR GAT $3] > WL 34 54
ffad SR DEELA T bR E o A 3
BEBT Y RfrE R 12 o &t o A 'F“?ﬁl«

- i document node 7 embedding ¥ 3 f & §
document 3 e £ o

Doc Graph presentation=

]

¢

3.4 Classification
EER S (graph fusion » # * GAT b
BFRIDET o AR FERRIE BN e )
;,%Hu’éﬁéiﬁxﬁ—%ﬁﬁmW%
¥ (feed-forward neural network, FNN )
AR ] % BT AR HUTHTH B (real)

B E i (fake) - Pseudo-code 4 F :

LAlgOrithln 1 Training CWSMN

Require: corpus D, graphs {G@}, parameters §

Ensure: trained parameters ¢
1: D« PreprrocessWitnCoreNLP(D)

PR

& tokenize, GI/POS/NER; LDA
with K=100
2 Eyaa  +  INiTWORDEMBEDDINGSWITHGRU(D);
INITLEARNABLENONWORDVECTORS(
. {69} + BuipGrarus(D,{TW, CO,SP,EN, GI, DW})

FBoonward  +

u

4: for epoch =1 to F do > Word-level path on DW with GrapHSAINT
5 for sampled Giup C G'°W) via GraPuSAINT do
6 H(”“) + GNN_FORWARD(Gayp)
7 ")« READOUT(H™W); center = d)
& end for
& Graph-level path on {TW, CO,SP, EN, GI}
8. for g € {TW,CO,SP,EN,GI} do
10 H@ « GAT_2uAvers(GW)
11 ’“’) + ArrenrionAve({ S | w € W(d) })
12 end fDl
B {2}, + SormuaxGare({z},) & gated cross-graph fusion
11 24+ ProJ( CoNCAT 1[1 ’) “”))

16: P« Sorrmax(FFN(z4))

16: L ¢ Las(p.ya) + @ Latign + A Loparse
17 8« ApamW__Urpare(d, VoL)

18: end for

4  Experiment

4.1 Dataset description

A * — B o B ehdataset X
CWSMN #-7] -

4.1.1 TR E&

F % * hF AL B ok p (Przybyla, 2020)%
@%ﬁ—%%#&vﬁgézﬂﬂm%m&ﬁ
E&EE’ 50,429  enE %‘ra‘? ’ 103219 % ~ &

~AZiE 1.17 BB~ (tokens) » — £
205 B4 ¥ fg.s":&»lfi’ 18 BV fpexbits Tk
IS S Ll Sl ok R S R
PR T 3R (70 15 B gy Ao R IR
v AEG ERFLRA c APRETAERE

EAN AR U=k

2L
RN

289



C BATHE RIREE R hA e 1
%\*ﬁ*?% BISREHE R
l—,tirgﬁ

BRIy & E i 3R 5 T

= R

< U

1 ] L,pf AW FFETOER T %
®3H = AR 17 2R %# Document-based
CV » Topic-based CV {r Source-based CV -

>  Document-based CV: #-+#75 103,219
2 EEEH e = 5 B fold > /e iF# B fold
égig%kiﬁﬁ e & oo H
P2 E R e wkihfre ra kg
mﬁm’waﬁﬁ?%o
Topic-based CV: & * etk J] 5 F & fie
4 = 100-topic LDA #-3] » & #-& g <
o pe 3 e B OB B BosE e BE o B
O KR s & 5 B fold mEE B
fold & § g4 1AM iig < i
Pend 50 BRI 7 E hame i
PIRF ALY K R 3 DR 0 P
FRHCAI AT R LT 4 o B i
B R R R R TR A AL A
LN S S R SR e 3
NE BT AR
Source-based CV: #-#75 223 & KihA
= 5 1% fold > Frif® Bd7e 7 kp
kiR 2 2 o &R fold fhiplid &
¢ FRPIRFTHY A LB KD
Eoo PR HRE TR R BATH &

B 23R R (GlAedT@ATH k) D
Fi o RIFHCA AT R R L1 G 4

FHROTHBEHL R0 5 HRRT LR B
AT B iR PP B 0 u] BT A ATA0RT KR I
oo ESER S R HIA L ATA A kA H
FEFERRA A W o AR R
wo i PR AR e

™

<

4.2 Implementation Details

GAT 3] 7 47 7 ﬁﬁz’ Kﬁ #& Graph Attention
Networks # < #2572k %_° Number of Attention
Heads 5 8. Number of Layers 5 2. jfris o $ca
uwl & LeakyReLU ; ﬁ%l IR
GraphSAINT 1“1#‘57}5 e R HE R
& 1% node & B 3% % 100 o Activation function
#* LeakyReLU o i * Adam i* 5 §it B o &
Bl Ay > NP g sA PR

softmax

o

o

J—*‘?,

(random walk sampling) = /% o A #g4p £ ¢
* cross-entropy loss. & 7 ff A B RTE KIREF
AR A R o NP BAKTI T ARV
- & 7 100 2 RF ] o B i > #E B
ﬁﬁ%—t—lﬁ’»‘—'—&irﬁg%f:{ «‘fp/ S o/ Sz i)

4.3 Comparison of Methods

A A BRSO R
i Hons 0 TR PFRIEE S BT PR

>  BERT(Devlin et al., 2019): BERT & - fa A&
** Transformer e 333 #73] > B2
B R R E AR 0 £ U A4 B A
LR ALY > R 2 2am 512
# token °

ALBERT(Lan et al., 2019): #_— f&4p >t
BERT %-#& { “enficd] » ¥ 2 &30 @
Rl R EALE TR S8 ok o L Ll
a’:g» 33 BﬂL_ %F,‘:f;‘ug ,,a(‘Jf“‘ﬂl],‘,. s e
2= S - A A T B S SR A | MU =g
Transformer $-7] > ﬁﬁ#ﬁ%v ES N
BT

Word2Vec +GraphSAINT: % i Word2Vec
5 4 word embeddlng (& Jpbe BT
$21% 5 Document 119 8 o FR18 iRyp @3
B aE BB (7 4 HE o
ALBERT+GraphSAINT: 4 i i ALBERT
38 21973 token 0 embedding {8 4P v B~
I 321t 5 Document 1% & o fR{5 ik i@
ThEL L R AR .

GI+GraphSAINT: & * Gl F & 42 chF
¥ 1P 4 BT 31% 5 Document 7w £ 5K {8
Ry BFRCZEREFAS o M2
S SRE Yy AR TR T ORATR R
B R e o

Stylometric: Stylometric 4 #f % £ - f& &
3 B AT 0 BN R A
R R E TR TR
Mo 3> 2 iBHDP-~ RAp M B i@
R A A .

B1LSTMAvg A - gEe L whiR
P SRR WEHY 2P A7
’JE MIF i aRFLE 4 82 &y
SPIER] o FEHCAl g B R F e T
fo W * N BEITE KR G A
17 o
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Bag-of-Words: € - &/ ¥ chfl s o 25 %
AN aFiar i ¥ NEIFHK
Bl e rA b = fE R FUEUBATR GRE
LR TR

PRI RE T E M4 o

4.4 Evaluation metric

d 3 e ATH odicg ~ RTF F]pt AR
Fi¢ * By (accuracy) T 5 i pth o s
o R RS B RR e L ALY LY
BIEE o g * 5-fold cross-validation o

4.5 Experimental Results

AEERT AP ABATRKRRERY D RS
50RO SR A B RBFRT D
IR BB RE S AHEIR RFER
MBEIR T - FoRESA0T 4
Model Doc-CV Topic-CV Source-CV Average
CWSMN_GAT 0.9870 0.9760 0.9784 0.9805
CWSMN_GraphSAINT 0.9930 0.9910 0.9746 0.9862
ALBERT 0.9815 0.9754 0.7165 0.8911
ALBERT+GraphSAINT 0.9985 0.9961 0.7385 0.9110
Word2Vec+GraphSAINT 0.9993 0.9853 0.9095 0.9647
Gl+GraphSAINT 0.9983 0.9995 0.7096 0.9025
Stylometric 0.9274 0.9173 0.8097 0.8848
BiLSTMAvg 0.8994 0.8921 0.8250 0.8722
Bag-of-Words 0.9913 0.9886 0.7078 0.8959
BERT 0.9976 0.9965 0.7960 0.9300
% 1 2 Az B35 T almsF o

Document CV scenario: Document cv ficg & v
Kifra 3 o PliEaie ® kg 2 kiR
foi 4% o B 5% & o Word2Vect+GraphSAINT
% A 0 i3] 0.9993 m—EEE-t ViR T AR
FADBATE ORIHCA-% EF A e R iR
© 3 Big TRy o @ AR ‘ﬁﬁ: 3] BERT 4r
ALBERT+GraphSAINT GI+GraphSAINT £ 3
0.9993 #rx s » ITH LS F 5 o e R
L PR ¢ A IS B
BAFenficd] o & 8] 5 0.0115 52 0.0063 » e F 4
% 1 0987 22 0.993 > {25 EIT B b £ o
g ke 2 ¢ Stylometric 4+ BILSTMAvg % 7

~? "lb

tREEE 0 T i ARG v MR P H
7 A e e F L gk oo Topic CV
scenario: Topic-CV ###7% E H F > BliE=
Model Doc-CV Topic-CV Source-CV Average
BERT 0 0 0 0
ALBERT fine-tune -0.0161 -0.0211 -0.0795 -0.0389
CWSMN_GAT -0.0106 -0.0205 0.1824 0.0504
CWSMN_GraphSAINT -0.0046 -0.0055 0.1786 0.0562

’
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g A LB (&3 LDA A ficéh 100
#14E) o %% 7 @ GIH+GraphSAINT if ¥
bR ALK 0.9995 0 AF 7 B AT AL 58 b
e Eﬁ?ﬁ Gl L R ¥ ffe GraphSAINT
R A PR S RCA A B T
0.9910 & 0.9760 % ﬁ?]fx% 107 0.0085 §2
0.0235 - &% — & «4_ Bag-of-Words (0.9886)
T 0.27% (4p#3Y Doc-CV 9 0.9913)
SR R R R SR R SR
%k A TRE L AP v REARACH A BRI
«E};@s‘ﬂb 4 ﬁir«r * B_o

Source CV scenario: Source-CV #7378 4T
BageshB o PlE2 2R A LiBenkiR o £

B Bi e T IRGE o R BT LA PR e
B OBHCA A A E 0 A 55 0978459 0.9746
EHA LB TR R R SRR 2

B3 HARL R4 o Aiz i scenario AL > AP
G EAT AT AT RRRIT B R O R
Word2Vec+GraphSAINT (0.9095)4 %] %
0.0689 £ 0.0651.7 4g L pretrained Transformer
models such as BERT (0.7960) ~ ALBERT
(0.7165)~ w|iE 3 0.2619 £ 0.1824.:2F P 7 1t
A R EERIET] A S 5 TR
| et B R 4k o ptoh o APRR
F] » BILSTMAvg (0.8250) f= Stylometric (0.8097)
v WA Y AREE 0 B AP

B B ITh RITEFROE (B EEF

E:Al
2

~

ER L SR AR ] el
ToRFES: THORRFEE R A f;é_

BB T R o AR aha 2
T i e (0.9862 & 0.9805) » 5 4
fe scenario T ch¥EfTA IR 0 PG B R A o
5 lit,« 77| Word2Vec+GraphSAINT (0.9647)
E 3 W lﬁ'ﬁs?J &P et A] 0.0751 pretrained
Transformer models 4 %] % {5 24 7 0.056 £ 0.095 >
% Source-CV Mz F i i1 el 58 o &Z{”&Ef’ ’
EE R N e Il CWSMNﬁf A
gy ﬁm?‘fi s 'F‘f“"f R ml?)ﬁ‘r@ o
Blag 4 e 7R U?”L HIFRT o 4
7R .'mmu ’ }fﬁ Ve AR R B AR S
PR APOT IR ES A o BB T i
0.9862 » i&— #HEM 7 AHCE| hp & AT o

1 3R
= phad
A

m

5 Evaluation and Analysis



51 HHEIJUAERFLHI R

20 BV BUTVER T LA ot i %

BERT ¥ ALBERT fine-tune JF’TS R e
Transformer 4% % cn3g 2R > 24 7 fine-
tune 2_ 8 & {7 3E R 0 BRI 2 BERT 5 A%
Z @ 4 7 4p %> BERT eh# x84 o Doc-
CV #% ™ » ALBERT fine-tune #p $#*> BERT
T % 0.01606 > ¥ &y &_d >t %:iﬁﬁz‘{ﬁ/)é\‘ (12M-
235M #p 3> BERT 7 110M-340M ) %23;33 3R
Al esziy o CWSMN_GAT P ™ "3 0.0106 » 4
PR A & i d] e Ae R L &2 BERT
FeiT o @ rtag g o CWSMN_GraphSAINT +
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5.2 Comparison of Graph Models with
Different Edge Construction Methods

Model Doc-CV Topic-CV. Source-CV Average
Word2Vec_GraphSAINT 0 0 0 0
ALBERT+GraphSAINT -0.0008 0.0108 -0.171 -0.0537
Gl_GraphSAINT -0.001 0.0142 -0.1999 -0.0622
CWSMN_GAT -0.0123 -0.0093 0.0689 0.0158
CWSMN_GraphSAINT -0.0063 0.0057 0.0651 0.0215
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5.3 27 Baseline efnt fi

Model Doc-CV Topic-CV Source-CV
Stylometric 0 0 0
BiLSTMAvg -0.028 -0.0252 0.0153
Bag-of-Words 0.0639 0.0713 -0.1019
BERT 0.0702 0.0792 -0.0137
CWSMN_GAT 0.0596 0.0587 0.1687
CWSMN_GraphSAINT 0.0656 0.0737 0.1649

2= 4 : Baseline [fyLL#sE 5
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5.4 Ablation Study

LT A gE s Wi BT 2 GAT &7
% & : Unigram > NER > POS > GI - & ¥ jp|z&
bt i FHcpE & T 0 £ e GraphSAINT
KR o H R heT £ o

Model Doc-CV | Topic-CV | Source-CV
Gl 0.9728 0.9671 0.7179
POS+GI 0.9733 0.966 0.7449
NER+GI 0.9726 0.9645 0.7317
Unigram+NER 0.9864 0.98 0.9456
Unigram+GI+POS 0.9862 0.986 0.9624
Unigram+NER+POS 0.9872 0.984 0.958
Unigram+NER+POS+GI (Average) 0.987 0.976 0.9784
Unigram+NER+POS+GI+GraphSAINT 0.993 0.991 0.9746
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6 Conclusion
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