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Abstract 

Corporate sustainability reports often contain vague or 

unverifiable statements, increasing the risk of 

greenwashing. As global expectations for the credibility 

of ESG disclosures continue to rise, developing 

automated systems capable of verifying corporate 

sustainability commitments has become an important 

research direction. However, current analytical 

approaches still face limitations in multilingual ESG 

promise verification, particularly in non-English 

language contexts. 

    This study investigates the performance of a large 

language model (GPT-5) in cross-lingual ESG promise 

verification tasks by evaluating corporate reports in 

Chinese, Japanese, and English, with the goal of 

establishing a multilingual evaluation benchmark. Four 

core subtasks are examined, including promise 

identification, evidence status assessment, evidence 

quality evaluation, and verification timeline prediction. 

Multiple prompting strategies—from zero-shot to few-

shot learning, including Chain-of-Thought reasoning—

are systematically compared to analyze the 

effectiveness of different design choices.  

    Results show that few-shot prompting generally 

yields more stable verification performance, while 

evidence quality evaluation remains the most 

challenging task across languages. Theoretically, this 

study proposes a cross-lingual prompting framework 

that clarifies how task complexity and annotation 

imbalance influence LLM reasoning performance in 

ESG verification. Practically, the findings provide 

actionable implications for regulators, investors, and 

corporate decision-makers by supporting the 

deployment of AI-based monitoring systems to enhance 

disclosure credibility, strengthen governance resilience, 

and enable more informed sustainable finance decisions. 

Keywords: PromiseEval, Multilingual Dataset, Promise 

Verification, Greenwashing, Large Language Model 

1 Introduction 

This study aims to develop an advanced 

framework leveraging Large Language Model 

(LLM) to automatically verify whether corporate 

ESG reports contain explicit promises and to 

evaluate their credibility. Environmental, Social, 

and Governance (ESG) reporting has become a 

cornerstone of corporate accountability, with 

stakeholders increasingly relying on sustainability 

disclosures to inform investment decisions and 

assess corporate responsibility. However, the 

proliferation of ESG reporting has been 

accompanied by a concerning rise in greenwashing 

practices, where corporations overstate their 

environmental and social commitments while 

obscuring less favorable activities (Delmas & 

Burbano, 2011; Lyon & Montgomery, 2015). This 

phenomenon not only misleads stakeholders but 

also weakens the credibility of sustainability 

reporting.  

    Recent research emphasizes that greenwashing 

is both common and difficult to measure, as textual 

claims often lack clear evidence or measurable 

outcomes (Testa et al., 2018; Wang et al., 2025). To 

address this issue, computational approaches have 

been developed to automatically detect 

sustainability-related commitments and assess 

their validity. The PromiseEval shared task (Chen 

et al., 2025) introduced the first multilingual 
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benchmark for corporate promise verification, 

defining four subtasks: 

1. Promise Identification (PI): determine 

whether a segment expresses  promising 

contents. 

2. Supporting Evidence Assessment: assess 

whether promises contain concrete evidence. 

3. Clarity of the Promise–Evidence Pair 

(CPEP): evaluate the clarity and relevance of 

evidence in relation to the promise. 

4. Timing for Verification (TV): indicate when 

a promise should be revisited for verification 

(e.g., within_two_years, two_to_five_years, 

more_than_5_years, others). 

    Building upon this foundation, the ML-Promise 

dataset (Seki et al., 2024) expanded multilingual 

coverage to five languages and incorporated 

retrieval-augmented generation techniques, 

demonstrating the feasibility of cross-lingual 

promise verification.  

    Despite progress in ESG analysis, significant 

analytical gaps persist. A systematic review by 

Lublóy et al. (2025) underscores the fragmented 

nature of current greenwashing quantification 

methods, a problem reflected in several key areas, 

like cultural and linguistic disparities, lack of 

integrated pipelines, insufficient verification 

baseline. Our study directly addresses these gaps 

by pioneering a multilingual framework that 

leverages Large Language Models (LLMs). 

    This study addresses these persistent analytical 

gaps, particularly concerning Chinese and 

Japanese reports, through three key contributions: 

(1) examining the feasibility of promise 

verification across multiple languages, (2) 

establishing baseline methods using state-of-the-

art large language models for comparative analysis, 

and (3) providing methodological foundations for 

automated multilingual ESG verification systems. 

2 Literature Review 

2.1 ESG Reporting and Greenwashing 

Greenwashing has been widely studied in 

sustainability communication research. Delmas 

and Burbano (2011) provide a conceptual 

framework for understanding the drivers of 

greenwashing, while Lyon and Montgomery (2015) 

emphasize its prevalence and regulatory 

implications. Empirical studies confirm that 

sustainability reports often contain misleading or 

unverifiable claims (Testa et al., 2018), reinforcing 

the need for computational tools. More recently, 

Wang, Gao, Wang et al. (2025) developed a 

greenwashing index using deep learning, 

providing quantitative evidence of discrepancies 

between corporate claims and substantiating 

evidence. 

2.2 Computational Approaches to Detect 

Greenwashing 

Recent advances in text mining and natural 

language processing (NLP) have been applied to 

analyze corporate sustainability disclosures and 

detect potentially misleading claims. For example, 

Wang Wang et al., (2025) proposed automated 

greenwashing indices derived from textual features 

of corporate reports, demonstrating how linguistic 

signals can indicate discrepancies between 

promises and actual practices. Beyond domain-

specific applications, shared tasks such as 

SemEval-2022 Task 8 on Multilingual News 

Article Similarity (Chen et al., 2022) illustrates 

how NLP benchmarks can evaluate semantic 

consistency across texts in multiple languages. 

These computational approaches highlight the 

potential of AI-driven methods for large-scale 

monitoring of sustainability communication and 

for identifying unverifiable or vague ESG-related 

claims. 

 

2.3 Corporate Promise Verification Tasks 

The PromiseEval shared task, introduced at 

SemEval-2025 (Chen et al., 2025), formally 

established promise verification as a natural 

language processing (NLP) challenge. It defined 

tasks that align closely with the detection of vague 

or unverifiable claims in sustainability disclosures, 

focusing not only on promises but also on 

supporting evidence, clarity, and timeline. Its 

design highlights the complexity of promise 

verification and its close relationship to 

greenwashing detection 

 

2.4 Multilingual NLP Datasets and 

Benchmarks 

Multilingual benchmarks such as ML-Promise 

(Seki et al., 2024) have extended promise 

verification to multiple languages, addressing the 

gap in non-English corporate reporting. Other 

multilingual resources in NLP, such as XNLI 

(Conneau et al., 2018), show the value of 

multilingual evaluation, but ML-Promise is the 

first domain-specific dataset focused on corporate 

promises. 
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2.5 Annotation Quality and Inter-Annotator 

Agreement 

Annotation quality is critical for promise 

verification tasks. Artstein and Poesio (2008) 

emphasize the role of inter-annotator agreement 

(IAA) metrics such as Cohen’s Kappa and 

Krippendorff’s Alpha to ensure annotation 

reliability. Both PromiseEval (Chen et al., 

2025)and ML-Promise (Seki et al., 2024) adopted 

these metrics, reporting substantial agreement 

levels (κ > 0.6), which supports the validity of the 

datasets and subsequent analyses. 

3 Experimental Setup 

3.1 System Architecture 

This study investigates multilingual promise 

evaluation using large language models as the 

foundational architecture. Promise evaluation 

encompasses the identification and verification of 

commitments within textual content, representing 

a critical component for assessing corporate 

statements in Environmental, Social, and 

Governance (ESG) reporting. Our research 

examines three linguistically diverse languages 

(Chinese, Japanese, and English), evaluating 

model performance across four distinct subtasks: 

Promise Identification (PI), Evidence Status 

Assessment (ESA), Evidence Quality Evaluation 

(EQE), and Verification Timeline Prediction (VTP). 

   To systematically assess model capabilities, we 

implement five prompting strategies: zero-shot, 

one-shot, three-shot, and five-shot learning, as well 

as an additional five-shot variant enhanced with 

Chain-of-Thought (CoT) prompting. Referencing 

the study by (Wei et al., 2022), we believe that 

Chain-of-Thought (CoT) requires sufficient 

examples to guide reasoning. Therefore, our 

analysis focuses on the 5-shot setting, as this 

configuration is not only our best-performing one, 

but also because the 5 examples provide sufficient 

context to allow us to isolate the effect of explicit 

reasoning. Within this specific setup, we 

systematically evaluate the marginal benefits of 

CoT. Building on this setup, the comprehensive 

evaluation framework enables controlled 

comparison of how demonstration quantity and 

reasoning instructions influence classification 

performance across different languages and 

verification tasks.(Figure 1 illustrates the overall 

research framework.) 

3.2 Dataset 

The study uses the PromiseEval dataset (Seki et al., 

2024), which provides multilingual samples 

annotated for ESG-related promise verification. 

For each of the three languages (Chinese, Japanese, 

and English), the dataset is divided into 400 

training samples and 400 test samples. 

• Promise Status: classification of whether a 

concrete or organizational-level 

commitment is present. 

• Evidence Status: detection of whether 

verifiable supporting evidence is provided. 

• Evidence Quality: evaluation of evidence 

clarity (Clear, Not Clear, Misleading, N/A). 

• Verification Timeline: identification of the 

expected timeline of promise fulfillment 

(Already, Within 2 years, Between 2–5 years, 

More than 5 years, N/A). 

    During the preliminary stage, samples were 

uniformly formatted for input to GPT-5. For few-

shot conditions, demonstration examples were 

randomly sampled from the training set to prevent 

test data leakage and to simulate realistic 

evaluation scenarios. 

    In addition, to provide a clearer understanding of 

dataset composition, we analyzed the label 

distributions across the three languages. Table 1 

and Table 2 present the distributions of the Chinese, 

Japanese, and English subsets. Although each 

training and test set contains the same number of 

samples (400 each), the label proportions across 

subtasks remain imbalanced, such as differences 

between positive and negative samples. These 

distributional characteristics may influence model 

classification performance.
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Figure 1: Proposed research workflow for ESG promise verification 

Task Label Chinese Japanese English 

Promise Status 
Yes 146 (36.50%) 356 (89.00%) 313 (78.25%) 

No 254 (63.50%) 44 (11.00%) 87 (21.75%) 

Evidence Status 

Yes 78 (19.50%) 279 (69.75%) 221 (55.25%) 

No 322 (80.50) 77 (19.25%) 179 (44.75%) 

N/A - 44(11.00%) - 

Evidence Quality 

Clear 50(12.50%) 161(40.25%) 132(33.00%) 

Not Clear 16 (4.00%) 106 (26.50%) 85 (21.25%) 

Misleading 1 (0.25%) 12 (3.00%0 4 (1.00%) 

N/A 333 (83.25%) 121 (30.25%) 179 (44.75%) 

Verification 

Timeline 

Already - 282 (70.50%) 155 (38.75%) 

Within 2 years 55 (13.75%) 18 (4.50%) 36 (9.00%) 

Between 2 to 5 years 7 (1.75%) 22 (5.50%) 75 (18.75%) 

More than 5 years 29 (7.25%) 34 (8.50%) 47 (11.75%) 

N/A 309 (77.25%) 44 (11.00%) 87 (21.75%) 

 

Table 1: Label distribution of the PromiseEval training datasets (Chinese, Japanese, and English) 
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3.3 Model and Strategies 

We adopted GPT-5 as the unified Large Language 

Model (LLM) architecture across all languages and 

subtasks, focusing on evaluating the impact of 

prompt-based inference on classification 

performance. We designed five distinct prompting 

strategies. 

    First, regarding Prompting Strategies, we 

evaluated the following five settings: 

• 0-shot: Consisted only of the task definition 

and system instructions in the prompt. 

• 1-shot: The prompt was supplemented with 

one demonstration example. 

• 3-shot: The prompt was supplemented with 

three demonstration examples. 

• 5-shot: The prompt was supplemented with 

five demonstration examples. 

• 5-shot + CoT (Chain-of-Thought): The 

prompt was supplemented with five 

demonstrations, along with an additional 

Chain-of-Thought instruction to encourage 

step-by-step logical reasoning before the 

final answer. However, the model was 

strictly required to output only the final 

structured label. 

    Second, concerning the Demonstration Source 

and Sampling for Few-Shot learning, all 

demonstration examples were selected from the 

training subset of the PromiseEval dataset to 

strictly prevent test data leakage and simulate 

realistic In-Context Learning evaluation scenarios. 

Given the significant class imbalance in our dataset 

(particularly for the Evidence Quality and 

Verification Timeline tasks), we employed a 

Stratified Random Sampling mechanism to select 

demonstrations. This ensured that the class label 

distribution in each Few-shot prompt (e.g., 

'Yes'/'No' for Promise Status) maintained an 

approximate balance relative to the overall training 

set. This method aims to provide the LLM with a 

representative and stable context, thereby 

mitigating the class bias that pure random 

sampling might introduce. 

    This design enables a controlled comparison of 

how the number of demonstrations (from 0 to 5) 

and reasoning instructions (CoT) affect 

classification performance across languages and 

subtasks. 

Task Label Chinese Japanese English 

Promise Status 
Yes 237 (48.47%) 372 (93.00%) 273 (68.25%) 

No 252 (51.53%) 28 (7.00%) 127 (31.75%) 

Evidence Status 

Yes 148 (30.27%) 232 (58.00%) 206 (51.50%) 

No 341 (69.73%) 140 (35.00%) 194 (48.50%) 

N/A - 28 (7.00%) - 

Evidence Quality 

Clear 73 (14.93%) 142 (35.50%) 134 (33.50%) 

Not Clear 46 (9.41%) 84 (21.00%) 71 (17.75%) 

Misleading - 6 (1.50%) 1 (0.25%) 

N/A 370 (75.66%) 168 (42.00%) 194 (48.50%) 

Verification Timeline 

Already - 295 (73.75%) 143 (35.75%) 

Within 2 years 101 (20.65%) 19 (4.75%) 36 (9.00%) 

Between 2 to 5 years 11 (2.25%) 17 (4.25%) 50 (12.50%) 

More than 5 years 39 (7.98%) 41 (10.25%) 44 (11.00%) 

N/A 338 (69.12%) 28 (7.00%) 127 (31.75%) 

 

Table 2: Label distribution of the PromiseEval test datasets (Chinese, Japanese, and English) 
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3.4 Evaluation Metrics 

Model predictions on the test sets were compared 

against gold-standard annotations. Performance 

was measured using: 

• Accuracy: Calculates the proportion of 

correctly predicted samples over the total 

number of samples, reflecting overall 

correctness at the instance level. 

• Micro-F1: Aggregates true positives, false 

positives, and false negatives across all 

classes, reflecting overall predictive 

accuracy. 

• Macro-F1: Computes F1-scores for each 

class independently, then averages them, 

ensuring fair evaluation of minority 

classes. 

Together, these metrics provide a comprehensive 

assessment of both global accuracy and class-

level robustness across multilingual promise 

evaluation tasks. 

4 Experiment Results and Analysis 

This section presents the performance evaluation 

of the GPT-5 model across the PromiseEval 

subtasks and provides an interpretative analysis 

within the context of the SemEval-2025 Task 6 

shared task results. Our analysis covers 

performance metrics across three languages 

(Chinese, Japanese, and English) and five distinct 

prompting strategies, aiming to establish robust 

benchmarks for multilingual promise verification. 

4.1 Overall Performance Analysis  

Our results confirm that few-shot prompting 

consistently outperformed the zero-shot baseline, 

aligning with the principles of effective in-context 

learning. Table 3 shows that the 5-shot 

configuration is optimal, yielding the highest mean 

Accuracy (71.12%) and Macro-F1 (51.92%) 

across all tasks and languages. Conversely, the 

incorporation of Chain-of-Thought (CoT) 

reasoning led to a marginal and statistically non-

significant decrease in aggregate performance 

(Accuracy 70.58%; Macro-F1 51.04%). However, 

a consistent downward trend was observed across 

multiple subtasks, suggesting that explicit 

reasoning did not consistently benefit pattern-

based classification. A more detailed analysis of 

this phenomenon is provided in Section 4.4. 

4.2 Task-Specific Performance 

4.2.1 Promise Status Identification 

Promise Status Identification emerged as the most 

tractable subtask among those evaluated. Table 4 

shows high performance across all languages, with 

the zero-shot setting in Japanese reaching 92.25% 

accuracy. 

    However, this high accuracy is a misleading 

artifact of severe class imbalance, where Table 1 

shows the "Yes" class constitutes 89.8% of the 

Japanese dataset. This imbalance allows the model 

to achieve an inflated score by simply defaulting to 

the majority prediction. Consequently, the 

accuracy metric fails to penalize the model for its 

poor performance on the minority "No" class, a 

well-documented issue known as the Accuracy 

Paradox. 

    In contrast, the Macro F1 score provides a more 

robust evaluation by mitigating this bias. It 

achieves this by calculating the F1 score (which 

balances Precision and Recall) for each class 

independently before computing an unweighted 

Strategy Accuracy Macro-F1 Micro-F1 

0 shot 69.54% 47.66% 69.54% 

1 shot 70.46% 49.95% 70.46% 

3 shot 70.81% 51.37% 70.81% 

5 shot 71.12% 51.92% 71.12% 

5 

shot_COT 
70.58% 51.04% 70.58% 

 

Table 3: Overall Performance Across All Tasks and 

Languages (Mean Values).  

 

Figure 2: Overall Performance Across All Tasks and 

Languages (Mean Values). 
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average, thus giving equal importance to both 

majority and minority classes. Under this more 

reliable metric, the 5-shot setting emerges as the 

top performer for Japanese with a Macro F1 score 

of 73.12%, outperforming the zero-shot setting’s 

score of 71.64%. This trend, where multi-shot 

configurations yield superior Macro F1 scores, 

holds true across all languages, as Table 4 shows, 

confirming their ability to provide a more faithful 

assessment of true classification capabilities.

 

 

 
  

Language Strategy Accuracy Macro-F1 Micro-F1 

Chinese 

0 shot 87.50% 85.39% 87.50% 

1 shot 91.00% 89.78% 91.00% 

3 shot 91.50% 90.39% 91.50% 

5 shot 91.00% 89.78% 91.00% 

5 shot_COT 91.00% 89.74% 91.00% 

Japanese 

0 shot 92.25% 71.64% 92.25% 

1 shot 89.00% 69.44% 89.00% 

3 shot 80.75% 63.01% 80.75% 

5 shot 91.75% 73.12% 91.75% 

5 shot_COT 89.50% 68.73% 89.50% 

English 

0 shot 75.50% 69.78% 75.50% 

1 shot 75.00% 68.83% 75.00% 

3 shot 77.25% 71.23% 77.25% 

5 shot 78.00% 72.26% 78.00% 

5 shot_COT 75.75% 71.84% 75.75% 

 

Table 4: Promise Status Identification Performance by Language and Strategy. 

Language Strategy Accuracy Macro-F1 Micro-F1 

Chinese 

0 shot 82.25% 55.98% 82.25% 

1 shot 87.00% 73.79% 87.00% 

3 shot 87.75% 75.81% 87.75% 

5 shot 88.00% 76.14% 88.00% 

5 shot_COT 84.75% 69.89% 84.75% 

 

Japanese 

0 shot 69.75% 43.80% 69.75% 

1 shot 69.25% 44.60% 69.25% 

3 shot 69.00% 45.43% 69.00% 

5 shot 69.25% 44.94% 69.25% 

5 shot_COT 68.50% 44.61% 68.50% 

English 

0 shot 73.50% 72.80% 73.50% 

1 shot 74.75% 74.33% 74.75% 

3 shot 75.25% 75.01% 75.25% 

5 shot 72.75% 72.22% 72.75% 

5 shot_COT 73.50% 72.56% 73.50% 

 

Table 5: Evidence Status Assessment Performance by Language and Strategy. 
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4.2.2 Evidence Status Assessment 

Assessing Actionable Evidence requires relational 

reasoning and is substantially more complex than 

PI. Table 5 shows Chinese performance scaling 

with context, improving from 82.25% in the zero-

shot setting to a peak of 88.00% in the 5-shot 

setting. In contrast, Table 5 also shows Japanese 

performance plateauing at 69.75% in the zero-shot 

setting and failing to improve with demonstrations. 

This stagnation suggests a high sensitivity to 

linguistic nuance that general LLM prompts 

struggle to capture. This observation is supported 

by the SemEval findings (Chen et al., 2025), where 

the WC Team achieved strong performance in 

Japanese evidence identification by utilizing the 

language-specific Tohoku-BERT model, 

suggesting that capturing language-specific 

writing styles is critical for evidence evaluation. 

4.2.3 Evidence Quality Evaluation 

Table 6 presents Evidence Quality Evaluation as 

the most challenging subtask, yielding the lowest 

and most variable Macro-F1 scores. Table 6 further 

shows the highest Macro-F1 in Chinese (40.98%) 

under the 5-shot + CoT strategy. This result 

confirms that explicit reasoning provides a 

marginal benefit in this fine-grained judgment task. 

The inferential difficulty of EQE is directly related 

to the assessment of misalignment. Table 1 

indicates that misleading cases are rare in the full 

dataset—1 in Chinese and 23 in Japanese—yet 

they pose a significant risk and often involve 

superficial evidence or the linking of unrelated past 

data to future policies. 

4.2.4 Verification Timeline Prediction 

Verification Timeline Prediction yielded highly 

language-dependent outcomes. Table 7 indicates 

Chinese performance peaking at 83.00% Accuracy 

in the 5-shot setting, aligning with the distribution 

in which Chinese samples skew toward short-term 

verification. By contrast, Table 7 reports that few-

shot learning did not improve English performance, 

with the zero-shot baseline remaining highest at 

49.25%. Table 1 documents a large share of 

English samples labeled “Other” (245), suggesting 

indefinite timelines or non-temporal constraints 

that are underrepresented in the demonstrations. 

The task is further complicated by large 

corporations balancing short-term verification with 

long-term goals extending beyond five years, as 

Table 4 highlights. 

4.3 Best-Case Performance by Language 

Aggregating the optimal configurations reveals a 

marked cross-lingual disparity. Table 8 reports 

Chinese with the highest average Accuracy at 

85.12%, substantially exceeding Japanese at 

68.94% and English at 63.62%. This apparent 

Chinese advantage chiefly reflects dataset 

characteristics and severe class imbalance: 

SemEval analyses (Chen et al., 2025) note that the 

Chinese subset—owing to annotation 

methodology—contains a much lower proportion 

of positive samples. Table 1 documents this pattern 

in Actionable Evidence, where Chinese samples 

are predominantly labeled “No” (832 in the full 

dataset). As a result, Accuracy and Macro-F1 

diverge widely for Chinese—Table 6 shows 

Evidence Quality at 78.00% Accuracy versus 

40.98% Macro-F1—underscoring the need to treat 

Macro-F1 as the primary, less biased metric for fair 

cross-lingual comparison. 
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Language Strategy Accuracy Macro-F1 Micro-F1 

 

 

Chinese 

0 shot 76.25% 39.35% 76.25% 

1 shot 77.50% 41.01% 77.50% 

3 shot 77.00% 39.71% 77.00% 

5 shot 77.50% 39.97% 77.50% 

5 shot_COT 78.00% 40.98% 78.00% 

 

 

Japanese 

0 shot 32.75% 21.16% 32.75% 

1 shot 37.25% 23.17% 37.25% 

3 shot 38.50% 23.49% 38.50% 

5 shot 36.25% 23.20% 36.25% 

5 shot_COT 36.50% 22.86% 36.50% 

 

 

English 

0 shot 44.25% 32.81% 44.25% 

1 shot 43.75% 32.16% 43.75% 

3 shot 52.00% 37.15% 52.00% 

5 shot 46.50% 33.39% 46.50% 

5 shot_COT 50.25% 36.40% 50.25% 

 

Table 6: Evidence Quality Evaluation Performance by Language and Strategy. 

Language Strategy Accuracy Macro-F1 Micro-F1 

 

 

Chinese 

0 shot 76.75% 30.27% 76.75% 

1 shot 79.00% 35.83% 79.00% 

3 shot 80.75% 45.40% 80.75% 

5 shot 83.00% 48.36% 83.00% 

5 shot_COT 81.00% 43.22% 81.00% 

 

 

Japanese 

0 shot 74.50% 28.90% 74.50% 

1 shot 75.25% 27.76% 75.25% 

3 shot 74.50% 31.71% 74.50% 

5 shot 73.25% 30.64% 73.25% 

5 shot_COT 70.25% 32.22% 70.25% 

 

 

English 

0 shot 49.25% 20.04% 49.25% 

1 shot 46.75% 18.71% 46.75% 

3 shot 45.50% 18.10% 45.50% 

5 shot 46.25% 18.98% 46.25% 

5 shot_COT 48.00% 19.45% 48.00% 

 

Table 7: Verification Timeline Prediction Performance by Language and Strategy. 

Task Chinese Japanese English 

Promise Status 91.50% 92.25% 78.00% 

Evidence Status 88.00% 69.75% 75.25% 

Evidence Quality 78.00% 38.50% 52.00% 

Verification Timeline 83.00% 75.25% 49.25% 

Average 85.12% 68.94% 63.62% 

 

Table 8: Best Performance by Task and Language (Highest Accuracy Configuration). 
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4.4 Impact of Chain-of-Thought Reasoning 

Table 9 shows that the utility of CoT reasoning is 

highly task-dependent: when averaged across all 

languages and tasks, CoT yields a small but 

consistent aggregate decline—Accuracy decreases 

by 0.54 pp and Macro-F1 decreases by 0.88 pp. 

This confirms that CoT introduces unproductive 

processing overhead for tasks driven by direct 

semantic pattern matching. A phenomenon 

consistent with recent findings that step-by-step 

reasoning can actively degrade model accuracy in 

tasks resembling human overthinking scenarios 

(Liu et al., 2024). 

    However, CoT proved selectively effective, 

providing a measurable benefit in the Evidence 

Quality Evaluation subtask. This utility is 

maximized in inferentially complex scenarios 

demanding explicit, structured reasoning—such as 

assessing the likelihood of greenwashing.        

Therefore, CoT should be reserved for nuanced 

alignment tasks where multi-step judgment is 

required, rather than being applied as a default 

strategy for generalized classification.  

5 Conclusion  

This study aims to establish a multilingual 

evaluation framework for ESG promise 

verification using Large Language Models 

(LLMs) and to assess model performance across 

four verification subtasks in Chinese, Japanese, 

and English sustainability reports. 

    Our findings indicate that few-shot prompting, 

particularly the 5-shot configuration, provides 

more stable and reliable classification outcomes 

than zero-shot prompting, while the relative task 

difficulty differs significantly. Promise 

Identification is comparatively more tractable, 

whereas Evidence Quality Evaluation requires 

more complex contextual reasoning and remains 

the most challenging. Chain-of-Thought 

reasoning is not universally beneficial but 

demonstrates selective improvements in nuanced 

inference tasks.  

    In terms of academic contribution, this study 

provides a systematic benchmark for multilingual 

ESG promise verification and clarifies how task 

complexity, linguistic variation, and annotation 

imbalance jointly influence model reasoning 

behavior. It also enriches understanding of 

prompt design effects in cross-lingual 

sustainability contexts. 

    Regarding managerial implications, our results 

offer actionable guidance for ESG governance 

stakeholders. Organizations seeking to reduce 

greenwashing risks may adopt AI-driven 

verification mechanisms to enhance sustainability 

disclosure transparency and consistency, while 

regulatory bodies and investors can leverage these 

tools to improve oversight, credibility assessment, 

and accountability in sustainable finance. 

    Future work may incorporate retrieval-

augmented techniques or domain-specific model 

adaptation to improve evidence relevance, extend 

evaluation to additional languages and industries, 

and develop explainable reasoning outputs to 

support real-world audits and compliance 

processes in sustainability reporting. 
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Task With COT(Accuracy) Without COT(Accuracy) With COT(Macro-F1) Without COT(Macro-F1) 

Promise Status 85.42% 86.92% 76.77% 78.39% 

Evidence Status 66.42% 67.50% 31.63% 32.66% 

Evidence Quality 75.58% 76.67% 62.35% 64.44% 

Verification Timeline 54.92% 53.42% 33.41% 32.19% 
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