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Abstract

Corporate sustainability reports often contain vague or
unverifiable statements, increasing the risk of
greenwashing. As global expectations for the credibility
of ESG disclosures continue to rise, developing
automated systems capable of verifying corporate
sustainability commitments has become an important
research direction. However, current analytical
approaches still face limitations in multilingual ESG
promise verification, particularly in non-English
language contexts.

This study investigates the performance of a large
language model (GPT-5) in cross-lingual ESG promise
verification tasks by evaluating corporate reports in
Chinese, Japanese, and English, with the goal of
establishing a multilingual evaluation benchmark. Four
core subtasks are examined, including promise
identification, evidence status assessment, evidence
quality evaluation, and verification timeline prediction.
Multiple prompting strategies—from zero-shot to few-
shot learning, including Chain-of-Thought reasoning—
are systematically compared to analyze the
effectiveness of different design choices.

Results show that few-shot prompting generally
yields more stable verification performance, while
evidence quality evaluation remains the most
challenging task across languages. Theoretically, this
study proposes a cross-lingual prompting framework
that clarifies how task complexity and annotation
imbalance influence LLM reasoning performance in
ESG verification. Practically, the findings provide
actionable implications for regulators, investors, and
corporate  decision-makers by supporting the
deployment of Al-based monitoring systems to enhance
disclosure credibility, strengthen governance resilience,

and enable more informed sustainable finance decisions.
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1 Introduction

This study aims to develop an advanced
framework leveraging Large Language Model
(LLM) to automatically verify whether corporate
ESG reports contain explicit promises and to
evaluate their credibility. Environmental, Social,
and Governance (ESG) reporting has become a
cornerstone of corporate accountability, with
stakeholders increasingly relying on sustainability
disclosures to inform investment decisions and
assess corporate responsibility. However, the
proliferation of ESG reporting has been
accompanied by a concerning rise in greenwashing
practices, where corporations overstate their
environmental and social commitments while
obscuring less favorable activities (Delmas &
Burbano, 2011; Lyon & Montgomery, 2015). This
phenomenon not only misleads stakeholders but
also weakens the credibility of sustainability
reporting.

Recent research emphasizes that greenwashing
is both common and difficult to measure, as textual
claims often lack clear evidence or measurable
outcomes (Testa et al., 2018; Wang et al., 2025). To
address this issue, computational approaches have
been developed to automatically detect
sustainability-related commitments and assess
their validity. The PromiseEval shared task (Chen
et al,, 2025) introduced the first multilingual
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benchmark for corporate promise verification,
defining four subtasks:

1. Promise Identification (PI):
whether a segment expresses
contents.

2. Supporting Evidence Assessment: assess
whether promises contain concrete evidence.

3. Clarity of the Promise—Evidence Pair
(CPEP): evaluate the clarity and relevance of
evidence in relation to the promise.

4. Timing for Verification (TV): indicate when
a promise should be revisited for verification
(e.g., within_two_years, two_to five years,
more_than 5 years, others).

Building upon this foundation, the ML-Promise
dataset (Seki et al., 2024) expanded multilingual
coverage to five languages and incorporated
retrieval-augmented  generation  techniques,
demonstrating the feasibility of cross-lingual
promise verification.

Despite progress in ESG analysis, significant
analytical gaps persist. A systematic review by
Lubloy et al. (2025) underscores the fragmented
nature of current greenwashing quantification
methods, a problem reflected in several key areas,
like cultural and linguistic disparities, lack of
integrated pipelines, insufficient verification
baseline. Our study directly addresses these gaps
by pioneering a multilingual framework that
leverages Large Language Models (LLMs).

This study addresses these persistent analytical
gaps, particularly concerning Chinese and
Japanese reports, through three key contributions:
(1) examining the feasibility of promise
verification across multiple languages, (2)
establishing baseline methods using state-of-the-
art large language models for comparative analysis,
and (3) providing methodological foundations for
automated multilingual ESG verification systems.

determine
promising

2 Literature Review

2.1 ESG Reporting and Greenwashing

Greenwashing has been widely studied in
sustainability communication research. Delmas
and Burbano (2011) provide a conceptual
framework for understanding the drivers of
greenwashing, while Lyon and Montgomery (2015)
emphasize its prevalence and regulatory
implications. Empirical studies confirm that
sustainability reports often contain misleading or
unverifiable claims (Testa et al., 2018), reinforcing
the need for computational tools. More recently,
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Wang, Gao, Wang et al. (2025) developed a
greenwashing index wusing deep learning,
providing quantitative evidence of discrepancies
between corporate claims and substantiating
evidence.

2.2 Computational Approaches

Greenwashing

Recent advances in text mining and natural
language processing (NLP) have been applied to
analyze corporate sustainability disclosures and
detect potentially misleading claims. For example,
Wang Wang et al., (2025) proposed automated
greenwashing indices derived from textual features
of corporate reports, demonstrating how linguistic
signals can indicate discrepancies between
promises and actual practices. Beyond domain-
specific applications, shared tasks such as
SemEval-2022 Task 8 on Multilingual News
Article Similarity (Chen et al., 2022) illustrates
how NLP benchmarks can evaluate semantic
consistency across texts in multiple languages.
These computational approaches highlight the
potential of Al-driven methods for large-scale
monitoring of sustainability communication and
for identifying unverifiable or vague ESG-related
claims.

to Detect

2.3 Corporate Promise Verification Tasks
The PromiseEval shared task, introduced at
SemEval-2025 (Chen et al., 2025), formally
established promise verification as a natural
language processing (NLP) challenge. It defined
tasks that align closely with the detection of vague
or unverifiable claims in sustainability disclosures,
focusing not only on promises but also on
supporting evidence, clarity, and timeline. Its
design highlights the complexity of promise
verification and its close relationship to
greenwashing detection
2.4 Multilingual NLP  Datasets and
Benchmarks
Multilingual benchmarks such as ML-Promise
(Seki et al., 2024) have extended promise
verification to multiple languages, addressing the
gap in non-English corporate reporting. Other
multilingual resources in NLP, such as XNLI
(Conneau et al, 2018), show the value of
multilingual evaluation, but ML-Promise is the
first domain-specific dataset focused on corporate
promises.



2.5 Annotation Quality and Inter-Annotator
Agreement

Annotation quality is critical for promise
verification tasks. Artstein and Poesio (2008)
emphasize the role of inter-annotator agreement
(IAA) metrics such as Cohen’s Kappa and
Krippendorff’s Alpha to ensure annotation
reliability. Both PromiseEval (Chen et al,
2025)and ML-Promise (Seki et al., 2024) adopted
these metrics, reporting substantial agreement
levels (x > 0.6), which supports the validity of the
datasets and subsequent analyses.

3 Experimental Setup

3.1 System Architecture

This study investigates multilingual promise
evaluation using large language models as the
foundational architecture. Promise evaluation
encompasses the identification and verification of
commitments within textual content, representing
a critical component for assessing corporate
statements in Environmental, Social, and
Governance (ESG) reporting. Our research
examines three linguistically diverse languages
(Chinese, Japanese, and English), evaluating
model performance across four distinct subtasks:
Promise Identification (PI), Evidence Status
Assessment (ESA), Evidence Quality Evaluation

(EQE), and Verification Timeline Prediction (VTP).

To systematically assess model capabilities, we
implement five prompting strategies: zero-shot,
one-shot, three-shot, and five-shot learning, as well
as an additional five-shot variant enhanced with
Chain-of-Thought (CoT) prompting. Referencing
the study by (Wei et al., 2022), we believe that
Chain-of-Thought (CoT) requires sufficient
examples to guide reasoning. Therefore, our
analysis focuses on the 5-shot setting, as this
configuration is not only our best-performing one,
but also because the 5 examples provide sufficient
context to allow us to isolate the effect of explicit
reasoning. Within this specific setup, we
systematically evaluate the marginal benefits of
CoT. Building on this setup, the comprehensive
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evaluation framework enables  controlled
comparison of how demonstration quantity and
reasoning instructions influence classification
performance across different languages and
verification tasks.(Figure 1 illustrates the overall
research framework.)

3.2 Dataset

The study uses the PromiseEval dataset (Seki et al.,
2024), which provides multilingual samples
annotated for ESG-related promise verification.
For each of the three languages (Chinese, Japanese,
and English), the dataset is divided into 400
training samples and 400 test samples.

Promise Status: classification of whether a
concrete or organizational-level
commitment is present.

Evidence Status: detection of whether
verifiable supporting evidence is provided.

Evidence Quality: evaluation of evidence
clarity (Clear, Not Clear, Misleading, N/A).

Verification Timeline: identification of the
expected timeline of promise fulfillment
(Already, Within 2 years, Between 2—5 years,
More than 5 years, N/A).

During the preliminary stage, samples were
uniformly formatted for input to GPT-5. For few-
shot conditions, demonstration examples were
randomly sampled from the training set to prevent
test data leakage and to simulate realistic
evaluation scenarios.

In addition, to provide a clearer understanding of
dataset composition, we analyzed the label
distributions across the three languages. Table 1
and Table 2 present the distributions of the Chinese,
Japanese, and English subsets. Although each
training and test set contains the same number of
samples (400 each), the label proportions across
subtasks remain imbalanced, such as differences
between positive and negative samples. These
distributional characteristics may influence model
classification performance.
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Figure 1: Proposed research workflow for ESG promise verification
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Task Label Chinese Japanese English
Promise Status Yes 146 (36.50%) 356 (89.00%) 313 (78.25%)
No 254 (63.50%) 44 (11.00%) 87 (21.75%)
Yes 78 (19.50%) 279 (69.75%) 221 (55.25%)
Evidence Status No 322 (80.50) 77 (19.25%) 179 (44.75%)
N/A ; 44(11.00%) ;
Clear 50(12.50%) 161(40.25%) 132(33.00%)
. . Not Clear 16 (4.00%) 106 (26.50%) 85 (21.25%)
Evidence Quality Misleading 1(0.25%) 12 (3.00%0 4(1.00%)
N/A 333 (83.25%) 121 (30.25%) 179 (44.75%)
Already ; 282 (70.50%) 155 (38.75%)
L Within 2 years 55 (13.75%) 18 (4.50%) 36 (9.00%)
V;ﬁgﬁgzn Between 2 to 5 years 7 (1.75%) 22 (5.50%) 75 (18.75%)
More than 5 years 29 (7.25%) 34 (8.50%) 47 (11.75%)
N/A 309 (77.25%) 44 (11.00%) 87 (21.75%)

Table 1: Label distribution of the PromiseEval training datasets (Chinese, Japanese, and English)
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Task Label Chinese Japanese English
Promise Status Yes 237 (48.47%) 372 (93.00%) 273 (68.25%)
No 252 (51.53%) 28 (7.00%) 127 (31.75%)
Yes 148 (30.27%) 232 (58.00%) 206 (51.50%)
Evidence Status No 341 (69.73%) 140 (35.00%) 194 (48.50%)
N/A - 28 (7.00%) -

Clear 73 (14.93%) 142 (35.50%) 134 (33.50%)
. . Not Clear 46 (9.41%) 84 (21.00%) 71 (17.75%)

Evidence Quality Mislcading . 6 (1.50%) 1(0.25%)
N/A 370 (75.66%) 168 (42.00%) 194 (48.50%)
Already - 295 (73.75%) 143 (35.75%)

Within 2 years 101 (20.65%) 19 (4.75%) 36 (9.00%)
Verification Timeline Between 2 to 5 years 11 (2.25%) 17 (4.25%) 50 (12.50%)
More than 5 years 39 (7.98%) 41 (10.25%) 44 (11.00%)
N/A 338 (69.12%) 28 (7.00%) 127 (31.75%)

Table 2: Label distribution of the PromiseEval test datasets (Chinese, Japanese, and English)

3.3 Model and Strategies
We adopted GPT-5 as the unified Large Language
Model (LLM) architecture across all languages and
subtasks, focusing on evaluating the impact of
prompt-based  inference on  classification
performance. We designed five distinct prompting
strategies.

First, regarding Prompting Strategies, we
evaluated the following five settings:

e (-shot: Consisted only of the task definition
and system instructions in the prompt.

e 1-shot: The prompt was supplemented with
one demonstration example.

e 3-shot: The prompt was supplemented with
three demonstration examples.

e 5-shot: The prompt was supplemented with
five demonstration examples.

e 5S-shot + CoT (Chain-of-Thought): The
prompt was supplemented with five
demonstrations, along with an additional
Chain-of-Thought instruction to encourage
step-by-step logical reasoning before the
final answer. However, the model was
strictly required to output only the final
structured label.

Second, concerning the Demonstration Source
and Sampling for Few-Shot learning, all
demonstration examples were selected from the
training subset of the PromiseEval dataset to
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strictly prevent test data leakage and simulate
realistic In-Context Learning evaluation scenarios.
Given the significant class imbalance in our dataset
(particularly for the Evidence Quality and
Verification Timeline tasks), we employed a
Stratified Random Sampling mechanism to select
demonstrations. This ensured that the class label
distribution in each Few-shot prompt (e.g.,
'Yes'/'No' for Promise Status) maintained an
approximate balance relative to the overall training
set. This method aims to provide the LLM with a
representative and stable context, thereby
mitigating the class bias that pure random
sampling might introduce.

This design enables a controlled comparison of
how the number of demonstrations (from 0 to 5)
and reasoning instructions (CoT) affect
classification performance across languages and
subtasks.



3.4 Evaluation Metrics

Model predictions on the test sets were compared
against gold-standard annotations. Performance
was measured using:

e Accuracy: Calculates the proportion of
correctly predicted samples over the total
number of samples, reflecting overall

correctness at the instance level.

Micro-F1: Aggregates true positives, false
positives, and false negatives across all
classes, reflecting overall predictive
accuracy.

Macro-F1: Computes Fl-scores for each
class independently, then averages them,
ensuring fair evaluation of minority
classes.

Together, these metrics provide a comprehensive
assessment of both global accuracy and class-
level robustness across multilingual promise
evaluation tasks.

4 Experiment Results and Analysis

This section presents the performance evaluation
of the GPT-5 model across the PromiseEval
subtasks and provides an interpretative analysis
within the context of the SemEval-2025 Task 6
shared task results. Our analysis covers
performance metrics across three languages
(Chinese, Japanese, and English) and five distinct
prompting strategies, aiming to establish robust
benchmarks for multilingual promise verification.

4.1 Overall Performance Analysis

Our results confirm that few-shot prompting
consistently outperformed the zero-shot baseline,
aligning with the principles of effective in-context
learning. Table 3 shows that the 5-shot
configuration is optimal, yielding the highest mean
Accuracy (71.12%) and Macro-F1 (51.92%)
across all tasks and languages. Conversely, the
incorporation of  Chain-of-Thought (CoT)
reasoning led to a marginal and statistically non-
significant decrease in aggregate performance
(Accuracy 70.58%; Macro-F1 51.04%). However,
a consistent downward trend was observed across
multiple subtasks, suggesting that explicit
reasoning did not consistently benefit pattern-
based classification. A more detailed analysis of
this phenomenon is provided in Section 4.4.

Strategy Accuracy Macro-F1 | Micro-F1
0 shot 69.54% 47.66% 69.54%
1 shot 70.46% 49.95% 70.46%
3 shot 70.81% 51.37% 70.81%
5 shot 71.12% 51.92% 71.12%
shot_SCOT 70.58% 51.04% 70.58%

Table 3: Overall Performance Across All Tasks and
Languages (Mean Values).

80.00%

70.00%
60.00%
50.00%
40.00%
30.00%
20.00%
10.00%

0 shot 3 shot

0.00%
5 shot
shot_COT

1 shot

W Accuracy Macro-F1 Micro-F1

Figure 2: Overall Performance Across All Tasks and
Languages (Mean Values).
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4.2 Task-Specific Performance

4.2.1 Promise Status Identification

Promise Status Identification emerged as the most
tractable subtask among those evaluated. Table 4
shows high performance across all languages, with
the zero-shot setting in Japanese reaching 92.25%
accuracy.

However, this high accuracy is a misleading
artifact of severe class imbalance, where Table 1
shows the "Yes" class constitutes 89.8% of the
Japanese dataset. This imbalance allows the model
to achieve an inflated score by simply defaulting to
the majority prediction. Consequently, the
accuracy metric fails to penalize the model for its
poor performance on the minority "No" class, a
well-documented issue known as the Accuracy
Paradox.

In contrast, the Macro F1 score provides a more
robust evaluation by mitigating this bias. It
achieves this by calculating the F1 score (which
balances Precision and Recall) for each class
independently before computing an unweighted



average, thus giving equal importance to both  score of 71.64%. This trend, where multi-shot
majority and minority classes. Under this more  configurations yield superior Macro F1 scores,
reliable metric, the 5-shot setting emerges as the  holds true across all languages, as Table 4 shows,
top performer for Japanese with a Macro F1 score confirming their ability to provide a more faithful
of 73.12%, outperforming the zero-shot setting’s  assessment of true classification capabilities.

Language Strategy Accuracy Macro-F1 Micro-F1
0 shot 87.50% 85.39% 87.50%

1 shot 91.00% 89.78% 91.00%

Chinese 3 shot 91.50% 90.39% 91.50%
5 shot 91.00% 89.78% 91.00%

5 shot COT 91.00% 89.74% 91.00%

0 shot 92.25% 71.64% 92.25%

1 shot 89.00% 69.44% 89.00%

Japanese 3 shot 80.75% 63.01% 80.75%
5 shot 91.75% 73.12% 91.75%

5 shot COT 89.50% 68.73% 89.50%

0 shot 75.50% 69.78% 75.50%

1 shot 75.00% 68.83% 75.00%

English 3 shot 77.25% 71.23% 77.25%
5 shot 78.00% 72.26% 78.00%

5 shot COT 75.75% 71.84% 75.75%

Table 4: Promise Status Identification Performance by Language and Strategy.

Language Strategy Accuracy Macro-F1 Micro-F1
0 shot 82.25% 55.98% 82.25%

1 shot 87.00% 73.79% 87.00%

Chinese 3 shot 87.75% 75.81% 87.75%
5 shot 88.00% 76.14% 88.00%

5 shot COT 84.75% 69.89% 84.75%

0 shot 69.75% 43.80% 69.75%

1 shot 69.25% 44.60% 69.25%

Japanese 3 shot 69.00% 45.43% 69.00%
5 shot 69.25% 44.94% 69.25%

5 shot COT 68.50% 44.61% 68.50%

0 shot 73.50% 72.80% 73.50%

1 shot 74.75% 74.33% 74.75%

English 3 shot 75.25% 75.01% 75.25%
5 shot 72.75% 72.22% 72.75%

5 shot COT 73.50% 72.56% 73.50%

Table 5: Evidence Status Assessment Performance by Language and Strategy.
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4.2.2 Evidence Status Assessment

Assessing Actionable Evidence requires relational
reasoning and is substantially more complex than
PI. Table 5 shows Chinese performance scaling
with context, improving from 82.25% in the zero-
shot setting to a peak of 88.00% in the 5-shot
setting. In contrast, Table 5 also shows Japanese
performance plateauing at 69.75% in the zero-shot
setting and failing to improve with demonstrations.
This stagnation suggests a high sensitivity to
linguistic nuance that general LLM prompts
struggle to capture. This observation is supported
by the SemEval findings (Chen et al., 2025), where
the WC Team achieved strong performance in
Japanese evidence identification by utilizing the
language-specific Tohoku-BERT model,
suggesting that capturing language-specific
writing styles is critical for evidence evaluation.

4.2.3 Evidence Quality Evaluation

Table 6 presents Evidence Quality Evaluation as
the most challenging subtask, yielding the lowest
and most variable Macro-F1 scores. Table 6 further
shows the highest Macro-F1 in Chinese (40.98%)
under the 5-shot + CoT strategy. This result
confirms that explicit reasoning provides a
marginal benefit in this fine-grained judgment task.
The inferential difficulty of EQE is directly related
to the assessment of misalignment. Table 1
indicates that misleading cases are rare in the full
dataset—1 in Chinese and 23 in Japanese—yet
they pose a significant risk and often involve
superficial evidence or the linking of unrelated past
data to future policies.

4.2.4 Verification Timeline Prediction

Verification Timeline Prediction yielded highly
language-dependent outcomes. Table 7 indicates
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Chinese performance peaking at 83.00% Accuracy
in the 5-shot setting, aligning with the distribution
in which Chinese samples skew toward short-term
verification. By contrast, Table 7 reports that few-
shot learning did not improve English performance,
with the zero-shot baseline remaining highest at
49.25%. Table 1 documents a large share of
English samples labeled “Other” (245), suggesting
indefinite timelines or non-temporal constraints
that are underrepresented in the demonstrations.
The task is further complicated by large
corporations balancing short-term verification with
long-term goals extending beyond five years, as
Table 4 highlights.

4.3 Best-Case Performance by Language

Aggregating the optimal configurations reveals a
marked cross-lingual disparity. Table 8 reports
Chinese with the highest average Accuracy at
85.12%, substantially exceeding Japanese at
68.94% and English at 63.62%. This apparent
Chinese advantage chiefly reflects dataset
characteristics and severe class imbalance:
SemEval analyses (Chen et al., 2025) note that the
Chinese subset—owing to annotation
methodology—contains a much lower proportion
of positive samples. Table 1 documents this pattern
in Actionable Evidence, where Chinese samples
are predominantly labeled “No” (832 in the full
dataset). As a result, Accuracy and Macro-F1
diverge widely for Chinese—Table 6 shows
Evidence Quality at 78.00% Accuracy versus
40.98% Macro-F1—underscoring the need to treat
Macro-F1 as the primary, less biased metric for fair
cross-lingual comparison.



Language Strategy Accuracy Macro-F1 Micro-F1
0 shot 76.25% 39.35% 76.25%

1 shot 77.50% 41.01% 77.50%

Chinese 3 shot 77.00% 39.71% 77.00%
5 shot 77.50% 39.97% 77.50%

5 shot_COT 78.00% 40.98% 78.00%

0 shot 32.75% 21.16% 32.75%

1 shot 37.25% 23.17% 37.25%

Japanese 3 shot 38.50% 23.49% 38.50%
5 shot 36.25% 23.20% 36.25%

5 shot COT 36.50% 22.86% 36.50%

0 shot 44.25% 32.81% 44.25%

1 shot 43.75% 32.16% 43.75%

English 3 shot 52.00% 37.15% 52.00%
5 shot 46.50% 33.39% 46.50%

5 shot COT 50.25% 36.40% 50.25%

Table 6: Evidence Quality Evaluation Performance by Language and Strategy.

Language Strategy Accuracy Macro-F1 Micro-F1
0 shot 76.75% 30.27% 76.75%

1 shot 79.00% 35.83% 79.00%

Chinese 3 shot 80.75% 45.40% 80.75%
5 shot 83.00% 48.36% 83.00%

5 shot COT 81.00% 43.22% 81.00%

0 shot 74.50% 28.90% 74.50%

1 shot 75.25% 27.76% 75.25%

Japanese 3 shot 74.50% 31.71% 74.50%
5 shot 73.25% 30.64% 73.25%

5 shot COT 70.25% 32.22% 70.25%

0 shot 49.25% 20.04% 49.25%

1 shot 46.75% 18.71% 46.75%

English 3 shot 45.50% 18.10% 45.50%
5 shot 46.25% 18.98% 46.25%

5 shot COT 48.00% 19.45% 48.00%

Table 7: Verification Timeline Prediction Performance by Language and Strategy.

Task Chinese Japanese English
Promise Status 91.50% 92.25% 78.00%
Evidence Status 88.00% 69.75% 75.25%
Evidence Quality 78.00% 38.50% 52.00%
Verification Timeline 83.00% 75.25% 49.25%
Average 85.12% 68.94% 63.62%

Table 8: Best Performance by Task and Language (Highest Accuracy Configuration).
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Task With COT(Accuracy) | Without COT(Accuracy) | With COT(Macro-F1) | Without COT(Macro-F1)
Promise Status 85.42% 86.92% 76.77% 78.39%
Evidence Status 66.42% 67.50% 31.63% 32.66%

Evidence Quality 75.58% 76.67% 62.35% 64.44%
Verification Timeline 54.92% 53.42% 33.41% 32.19%

Table 9: Effectiveness of CoT Reasoning (Accuracy, %)

44

Table 9 shows that the utility of CoT reasoning is
highly task-dependent: when averaged across all
languages and tasks, CoT yields a small but
consistent aggregate decline—Accuracy decreases
by 0.54 pp and Macro-F1 decreases by 0.88 pp.
This confirms that CoT introduces unproductive
processing overhead for tasks driven by direct
semantic pattern matching. A phenomenon
consistent with recent findings that step-by-step
reasoning can actively degrade model accuracy in
tasks resembling human overthinking scenarios
(Liu et al., 2024).

However, CoT proved selectively effective,
providing a measurable benefit in the Evidence
Quality Evaluation subtask. This utility is
maximized in inferentially complex scenarios
demanding explicit, structured reasoning—such as
assessing the likelihood of greenwashing.
Therefore, CoT should be reserved for nuanced
alignment tasks where multi-step judgment is
required, rather than being applied as a default
strategy for generalized classification.

Impact of Chain-of-Thought Reasoning

5 Conclusion

This study aims to establish a multilingual
evaluation framework for ESG promise
verification using Large Language Models
(LLMs) and to assess model performance across
four verification subtasks in Chinese, Japanese,
and English sustainability reports.

Our findings indicate that few-shot prompting,
particularly the 5-shot configuration, provides
more stable and reliable classification outcomes
than zero-shot prompting, while the relative task
difficulty  differs  significantly. = Promise
Identification is comparatively more tractable,
whereas Evidence Quality Evaluation requires
more complex contextual reasoning and remains
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the most challenging. Chain-of-Thought
reasoning is not universally beneficial but
demonstrates selective improvements in nuanced
inference tasks.

In terms of academic contribution, this study
provides a systematic benchmark for multilingual
ESG promise verification and clarifies how task
complexity, linguistic variation, and annotation
imbalance jointly influence model reasoning
behavior. It also enriches understanding of
prompt design effects in  cross-lingual
sustainability contexts.

Regarding managerial implications, our results
offer actionable guidance for ESG governance
stakeholders. Organizations seeking to reduce
greenwashing risks may adopt Al-driven
verification mechanisms to enhance sustainability
disclosure transparency and consistency, while
regulatory bodies and investors can leverage these
tools to improve oversight, credibility assessment,
and accountability in sustainable finance.

Future work may incorporate retrieval-
augmented techniques or domain-specific model
adaptation to improve evidence relevance, extend
evaluation to additional languages and industries,
and develop explainable reasoning outputs to
support real-world audits and compliance
processes in sustainability reporting.
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