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Abstract

Sentence stress reflects the relative promi-
nence of words within a sentence. It is fun-
damental to speech intelligibility and natu-
ralness, and is particularly important in sec-
ond language (L2) learning. Accurate stress
production facilitates effective communica-
tion and reduces misinterpretation. In this
work, we investigate Sentence Stress Detec-
tion (SSD) using Whisper-based Transformer
speech models under diverse settings, includ-
ing model scaling, backbone—decoder inter-
actions, architectural and regularization en-
hancements, and embedding visualization for
interpretability. Results show that smaller
Whisper variants outperform larger ones un-
der limited data. With architectural and reg-
ularization enhancements, and by fixing a
decoder whose capacity matches the dataset
scale, both small and large backbones ben-
efit. Consequently, even larger models can
achieve competitive or superior performance
under data-scarce conditions, partially mitigat-
ing data limitation effects. Embedding anal-
ysis reveals clear separation between stressed
and unstressed words. These findings offer
practical insights into model selection, archi-
tecture design, and interpretability for SSD ap-
plications, with implications for L2 learning
support tools.

1 Introduction

Automatic detection of sentence stress in spo-
ken language is crucial for speech intelligibility,
prosodic naturalness, and perceived fluency, par-
ticularly in second language (L2) learning (Ladd,
2008; Lee et al., 2016; van Heuven, 2014). Mis-
placed stress in L2 learners can lead to misunder-
standings and reduced comprehension, motivating
the development of automated Sentence Stress De-
tection (SSD) systems for assessment and feed-
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back (Lin et al.,, 2020; Kakouros and Risinen,
2016).

Recent advances in pre-trained speech founda-
tion models, such as Whisper, enable the extrac-
tion of rich embeddings that encode both acous-
tic and prosodic information (Radford et al., 2022;
Bain et al., 2023). Whisper models, trained on
massive multilingual corpora, can be adapted to
downstream tasks like SSD without requiring ex-
tensive task-specific data (Nguyen et al., 2023;
de Seyssel et al., 2023). Building on this, the
WhiStress model (Yosha et al., 2025) demon-
strated the effectiveness of Whisper embeddings
for prosodic feature learning. However, systematic
studies investigating how model size, architectural
choices, and regularization strategies affect SSD
performance and interpretability remain limited.

To this end, we explore Whisper-based SSD
under diverse settings, including model scaling,
backbone—decoder interactions, and architectural
enhancements. We also analyze embedding repre-
sentations for interpretability (Van Heuven, 2018;
Arvaniti, 2020).

Our main contributions are as follows:

* evaluating Whisper-based SSD across multi-
ple model sizes,

 analyzing the impact of decoder configura-
tion, architectural enhancements, and regu-
larization,

* conducting embedding visualization to inter-
pret stress representations.

2 Related Work

2.1 Sentence Stress Detection

Early studies on SSD relied on handcrafted
acoustic-prosodic features such as pitch (FO), in-
tensity, and duration, modeled using Support Vec-
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tor Machines (SVMs) or Hidden Markov Mod-
els (HMMs).(Mishra et al., 2012; Auran et al.,
2004). While effective in constrained settings,
these methods required extensive domain exper-
tise and failed to capture complex interactions
among prosodic cues. Subsequent deep learning
approaches, using Convolutional Neural Networks
(CNNs), Recurrent Neural Networks (RNNs), or
Transformer architectures (Vaswani et al., 2017),
advanced SSD by learning hierarchical features
directly from raw speech (Baevski et al., 2020;
Pasad et al., 2021). However, these models remain
data-intensive and often lack interpretability, par-
ticularly in low-resource L2 contexts.

2.2 Pre-trained Speech Models and Whisper

Self-supervised models such as Wav2Vec 2.0
(Baevski et al., 2020) and HuBERT (Hsu et al.,
2021) learn general-purpose speech representa-
tions that encode both phonetic and prosodic cues,
facilitating transfer to downstream tasks. More re-
cently, Whisper (Radford et al., 2022) introduced
a large-scale encoder—decoder architecture trained
on massive multilingual corpora. Whisper embed-
dings have demonstrated utility beyond ASR, in-
cluding emotion recognition and prosodic analy-
sis (Nguyen et al., 2023). Building on this foun-
dation, the WhiStress model (Yosha et al., 2025)
adapted Whisper for SSD using an alignment-free
framework, but its evaluation was limited to a sin-
gle variant (Whisper-small.en). Broader studies
examining scaling behavior, architectural design,
and regularization effects remain scarce.
Although pre-trained speech models have signif-
icantly advanced prosodic modeling, there has
been limited investigation into how model size, ar-
chitecture, and regularization influence SSD per-
formance and interpretability.

3 Method

3.1 Model Architectures and Configurations

Our architecture, which is similar to
WhiStress (Yosha et al.,, 2025), is based on
the Whisper encoder to extract speech em-
beddings that implicitly encode acoustic and
prosodic cues. A stress decoder then predicts
word-level stress labels. The overall architecture
is shown in Figure 1. Compared with WhiStress,
which directly applies Whisper embeddings to
a classification head, our design introduces sev-
eral modifications: Backbone—decoder scaling:
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Figure 1: Overall architecture of the proposed SSD
model. Input speech is processed by the Whisper en-
coder, followed by a fixed or trainable stress decoder.
Optional components, including Conv1D, L2 normal-
ization, and dropout, are applied depending on the
model configuration.

varying both encoder size and decoder capacity.
Following WhiStress (Yosha et al., 2025), which
utilized the 9th layer out of 12 encoder layers in
Whisper-small for optimal stress representation,
intermediate-to-upper encoder layers were found
to capture prosodic and phonetic cues most effec-
tively. Accordingly, We generalize this approach
by selecting approximately three-quarters of the
encoder layers for each Whisper variant, namely
3,5,9, 18, and 24 layers for the tiny, base, small,
medium, and large models, respectively.

This proportional selection strategy aims to pre-
serve high-level prosodic features while maintain-
ing training efficiency and mitigating overfitting
risks.

We incorporate architectural enhancements by
adding ConvlD and projection layers to better
capture local prosodic dynamics. We also apply
regularization mechanisms, including dropout and
L2 normalization, to improve training stability and
model generalization.

3.2 Experimental Configurations

Configuration I: Joint Scaling of Backbone and
Stress Decoder. In this configuration, both the
Whisper backbone and the stress decoder vary be-
tween Base, Small, Medium, and Large (Radford
et al., 2022). This allows us to examine how the
overall model capacity affects SSD, including po-



tential overfitting for larger models.

Configuration II: Fixed Decoder, Varying
Backbone. Here, the stress decoder is fixed as
Whisper-Small.en (Radford et al., 2022), while the
backbone varies in size. This isolates the contri-
bution of the backbone to SSD performance, pro-
viding a fair comparison of different representa-
tion capacities without confounding changes in the
classification head.

Configuration III: Architectural and Regular-
ization Enhancements. The backbone is fixed
at Whisper-Small.en. The stress decoder incorpo-
rates several enhancements:

* ConvlD layer: captures local temporal de-
pendencies in frame-level embeddings, en-
hancing local prosodic pattern learning.

* L2 normalization: word-level embeddings x
are normalized as & = x/||z||2, standardizing
embedding magnitudes to improve general-
ization and stability.

* Dropout: randomly zeros out portions
of embeddings during training to prevent
overfitting, especially important for high-
dimensional embeddings.

Configuration IV: Embedding Visualization
and POS Analysis. We use t-SNE to project
word-level embeddings and inspect stress clus-
tering. Part-of-speech (POS) analysis examines
whether specific word types, such as nouns, verbs,
or function words, are more challenging, provid-
ing insight into systematic error patterns.

4 Experiments

4.1 Dataset

All  experiments are conducted on the
TINYSTRESS-15K dataset (Eldan and Li,
2023), a fully synthetic English speech corpus
designed for SSD evaluation. It contains 15,000
training samples and 1,000 test samples, totaling
approximately 15 hours of audio. Word-level
stress annotations and precise time alignment
are provided. Prosodic parameters such as pitch,
duration, and amplitude are manipulated to
simulate natural sentence stress, while multiple
synthetic speaker voices increase variability. This
controlled synthetic design allows for consistent
evaluation of model performance under diverse
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prosodic variations without the need for costly
manual labeling. However, as the dataset is
fully synthetic, it may not perfectly capture the
acoustic nuances of natural speech. Future work
will include testing on natural speech corpora to
further validate model performance.

4.2 Training Details

All experiments are trained for 20 epochs with
batch size 16, using the AdamW optimizer
(Kingma and Ba, 2015) with an initial learning
rate of le—4 and cross-entropy loss. Whisper
backbones are frozen, and only the stress decoder
is updated. The training set is split into 90% for
training and 10% for validation. No early stopping
is applied; the model achieving the best F1 score
on the validation set among all 20 epochs is used
for reporting results. Models are evaluated using
word-level F1 score, precision, and recall.

4.3 Results

Table 1 summarizes the performance of different
backbone-decoder combinations. To isolate the ef-
fect of backbone representation power, we fix the
decoder as Whisper-Small.en and vary the back-
bone size, as shown in Table 2.

Model Precision Recall F1

Tiny 0.8733 0.8576 0.8653
Base 0.8834 0.8885 0.8859
Small 0.9301 0.9288 0.9294
Medium 0.8399 0.8381 0.8390
Large 0.7309 0.8245 0.7748

Table 1: Configuration I: Joint scaling of backbone and
stress decoder. Larger models do not necessarily im-
prove performance, likely due to overfitting.

Backbone Precision Recall F1

Tiny 0.8664 0.8957 0.8808
Base 0.8726 0.9065 0.8892
Small 0.9348 0.9187 0.9267
Medium 0.9509 0.9612 0.9560

Table 2: Configuration II: Fixed decoder (Small.en)
with varying backbone sizes. Small backbone provides
optimal trade-off between capacity and generalization,
while Medium achieves the highest F1.

5 Discussion

Configuration I: Joint Scaling Larger models
do not consistently improve SSD performance;
the Large backbone shows overfitting under lim-
ited data. Small and Base achieve better gener-
alization, suggesting that model capacity must be



Enhancement Precision Recall F1

Baseline 0.8664  0.8957 0.8808
Dropout only 0.9095 0.9324 0.9208
L2 normalization only 0.9125 0.8928 0.9025
Conv1D only 0.9209 0.9302 0.9256
Conv1D + L2 normalization  0.9366 0.9144 0.9254
Dropout + L2 normalization  0.8941  0.9295 009115
Dropout + Conv1D 0.9364 0.9317 0.9340

Table 3: Configuration III: Ablation study of architec-
tural and regularization enhancements on SSD perfor-
mance using the Whisper-Tiny backbone with a fixed
Small decoder.
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Figure 2: Configuration IV: t-SNE visualization of
word-level embeddings. Red points = stressed words,
blue = unstressed. POS analysis indicates nouns and
verbs cluster more distinctly than function words, sug-
gesting systematic differences in classification diffi-
culty.

matched with data scale. The lack of linear projec-
tion may further limit larger models, as seen in the
improvements from architectural enhancements in
Configuration III.

Configuration II: Fixed Decoder, Varying
Backbone With the decoder fixed, the medium
backbone achieves the best F1 (0.9560), confirm-
ing that the backbone size directly impacts SSD
quality. Small still balances accuracy and effi-
ciency, making it practical in resource-constrained
settings.

Configuration III: Architectural Enhance-
ments Ablation in the tiny backbone shows that
Conv1D (F1 = 0.9256), Dropout (0.9208) and L2
normalization (0.9025) each improve performance
over baseline (0.8808). Additional analysesexam-
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Figure 3: FNR/FPR by POS with sample counts (line).
High-frequency POS (VERB/NOUN) show low FNR
and near-zero FPR, while low-frequency categories
such as SCONJ and NUM exhibit higher FNR despite
smaller counts.

ining partial module combinations reveal that: us-
ing only Dropout + L2 normalization yields F1 =
0.9115; only Conv1D + L2 normalization gives F1
= 0.9253; and only Conv1D + Dropout results in
F1 = 0.9340, making it the bbest performingpar-
tial module combination. Gains on larger back-
bones were marginal, indicating current perfor-
mance may be bounded by dataset size. These
targeted enhancements remain crucial for stable
training on limited data.

Configuration IV: Embedding and POS Anal-
ysis t-SNE visualizations of word-level embed-
dings show a clear separation between stressed
and unstressed words, with stressed words form-
ing more compact clusters. POS analysis fur-
ther reveals that function words are more error-
prone compared to content words. In a more de-
tailed breakdown, high-frequency categories such
as VERB, NOUN, PRON, DET, and ADP exhibit
low FNR and near-zero FPR, indicating reliable
predictions, while low-frequency categories like
SCONIJ, NUM, and INTJ have high FNR but low
FPR, meaning many true instances are missed but
mislabeling is rare. These observations suggest
that improving VERB prediction and increasing
data for rare POS, as well as incorporating POS-
aware modeling or additional prosodic cues, could
enhance the overall performance.

6 Conclusion and Future Work

This study systematically investigated Sentence
Stress Detection (SSD) using Whisper-based mod-
els, focusing on model scaling, decoder config-
uration, architectural enhancements, and embed-



ding interpretability. Results show that scaling
backbone and decoder simultaneously may cause
overfitting under limited data, while fixing the de-
coder provides a clearer evaluation of backbone
capacity, benefiting both small and large back-
bones. Consequently, larger models can achieve
competitive or superior performance under data-
scarce conditions, partially mitigating data limi-
tation effects. Lightweight modifications such as
Conv1D, L2 normalization, and dropout improve
robustness, and embedding analyses reveal both
stress separability and systematic misclassification
patterns, particularly for smaller backbones. POS
analysis indicates that function words are more
challenging, suggesting potential benefits from
POS-aware modeling or additional prosodic cues.

Future work will extend SSD to multilingual
and cross-lingual contexts, incorporate richer lin-
guistic features (e.g., syllable structure, phono-
logical rules, POS embeddings), and evaluate
real-world scenarios including noisy, spontaneous,
and accented speech. Multi-layer embedding fu-
sion may further capture complementary prosodic
cues. Finally, given current performance ap-
pears constrained by dataset scale, exploring data-
efficient strategies such as semi-supervised learn-
ing, augmentation, or active learning will be crit-
ical to overcoming data scarcity and advancing
SSD performance.

Overall, this work provides practical insights
for designing SSD models and informs the devel-
opment of L2 learning support tools, offering both
quantitative and qualitative guidance for future re-
search.
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