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Abstract

Anti-Money Laundering (AML) is a crit-
ical research area in Financial Technol-
ogy (FinTech) focused on detecting sus-
picious financial activity. However, the
rise of new transaction types has led to in-
creasingly subtle and complex money laun-
dering schemes, rendering traditional rule-
based methods inadequate for both detec-
tion and generalization. While machine
learning and deep learning offer a promis-
ing alternative, there are still many chal-
lenges. To address these challenges, we pro-
pose an AML prediction framework based
on sequence-graph fusion. Its core innova-
tion is the joint modeling of an account’s
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individual temporal behavior and its struc-
tural features within the transaction net-
work. Our approach begins by decompos-
ing each account’s transaction history into
incoming and outgoing sequences, which
are encoded via a dual-branch Gated Re-
current Unit (GRU) to capture nuanced
temporal patterns. We then utilize a
bidirectional attention-based graph convo-
lutional layer that employs a difference-
aware message-passing mechanism to pro-
cess relationships in both forward and
backward directions, learning the behav-
ioral contrasts between connected accounts.
Through the attention mechanism, the
model adaptively fuses each node’ s intrin-
sic features with the aggregated features
from both forward and backward neigh-
bors. To counteract the extreme class im-
balance inherent in AML data, our frame-
work incorporates class re-weighting and
balanced sampling strategies. We wvali-
dated our proposed method on a public
AML dataset. The experimental results
demonstrate that our approach achieves
stable F1-scores under severely imbalanced
datasets, significantly outperforming tradi-
tional baseline methods.
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