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Abstract 

Previous studies on recommender systems 
have primarily focused on learning implicit 
preferences from individual user behaviors or 
enhancing recommendation performance by 
identifying similar users. However, in real-
life scenarios, group decision-making is often 
required, such as when a group of friends 
decides which movie to watch together. Thus, 
discovering common interests has become a 
key research issue in group recommendation. 
      The most straightforward approach to 
group recommendation is to model the past 
joint behaviors of a user group. Nevertheless, 
this method fails to handle newly formed 
groups with no historical interactions. To 
address this limitation, we apply Graph 
Convolution Networks to capture high-order 
structural features within the user–item 
interaction graph, thereby uncovering the 
potential common interests of cold-start 
groups. Experimental evaluations on three 
real-world datasets demonstrate the 
feasibility and effectiveness of the proposed 
method. 

Keywords: Discovery of Common Interests, Cold-
Start Groups, Group Recommendation   

1 Introduction 

Recommender systems have become an 
essential component of modern digital 
experiences, assisting users in exploring 
products and potential social connections by 
analyzing their behaviors and preferences. For 
example, platforms such as Amazon and 
TripAdvisor provide personalized product and 

hotel suggestions based on user interactions 
and reviews. 
    Despite the impressive success of existing 
recommender systems in delivering 
personalized recommendations, they often 
overlook group decision-making scenarios, 
such as a group of friends choosing a movie to 
watch together or deciding on a restaurant for 
dining. Our work aims to bridge this gap by 
uncovering common interests within user 
groups, particularly for cold-start groups (a set 
of users who come together for the first time 
and for whom the system has no prior record 
of collective interactions or shared history). 
This capability not only enables 
recommendations that align with collective 
group preferences but also opens new 
possibilities for collaborative content creation, 
such as co-writing a script. 
    Prior research on group recommendation 
(Berkovsky, 2010; Baltrunas, 2010; Amer-
Yahia, 2009) has primarily targeted persistent 
groups, in which members are fixed and have 
interacted multiple times as a group. In 
contrast, cold-start group recommendation 
poses a greater challenge, since ephemeral 
groups typically lack prior interactions or 
shared histories. In such cases, balancing 
individual preferences with group dynamics to 
produce recommendations that satisfy all 
members is a highly non-trivial problem. 

Recent group recommendation advances 
(Sajjadi Ghaemmaghami, 2021) include 
attention-based aggregation over persistent 
groups (AGREE) (Cao, 2018) and multi-view 
modeling for occasional groups (GAME) (He, 
2020a). For ephemeral groups without joint 
history, GroupIM (Sankar, 2020) maximizes 
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mutual information between group/user/item 
representations. These works generally lack 
interpretability and do not uncover the latent 
semantics behind group members’ shared 
interests. Disentangled recommendation 
methods (Ma, 2019) are capable of learning 
factorized representations to capture latent 
semantics in user–item interaction data, but 
their focus remains on individual user 
behavior rather than on cold-start groups.  
    In this paper, we propose the COmmon 
INtereset model (COIN) to discover potential 
common interests in cold-start user groups. We 
leverage Graph Convolution Networks (GCNs) 
to capture high-order relations in user–item 
interactions and construct a virtual item for a 
cold-start group. This virtual item represents 
the most suitable recommendation for a given 
group, and by incorporating its tag attributes as 
auxiliary data (Liu, 2020), COIN can 
effectively reflect the group’s potential 
common interests. The COIN model consists 
of four main components: (1) a tag encoder 
that transforms sparse item tag attributes into 
dense vectors; (2) LightGCN (He, 2020b), 
which captures high-order user–item 
interactions; (3) a user clustering module that 
models user–group–tag level preferences; and 
(4) a tag decoder that reconstructs tag-level 
semantics from the learned dense 
representations. Extensive experiments have 
been conducted on three real-world datasets, 
and the results demonstrate the feasibility and 
effectiveness of the proposed method. 

2 The Proposed COIN Model 

As	shown	in	Fig.	1,	the COIN model consists 
of four main components working together to 
uncover group-level common interests. First, 
the Encoder transforms sparse item tag 
attributes into dense embeddings, providing 
compact semantic representations for items. 
Next, LightGCN captures high-order 
relations in the user–item interaction graph, 
refining embeddings through graph 
propagation. Meanwhile, the User Clustering 
component models user–group–tag 
preferences by softly assigning users to latent 
groups and generating group-aware item 
embeddings. Finally, the Decoder combines 
the outputs from LightGCN and clustering, 
reconstructs tag semantics, and predicts the 
common interests of cold-start groups, 
optimized via a binary cross-entropy loss.    

2.1	Problem	Formulation		

    Let U denote the set of users, I the set of 
items, and T the set of tag attributes. Each 
item i is associated with a multi-hot vector tᵢ 
representing its tag attributes. We define the 
set of user–item interactions as R⁺ = {(u, i) | 
u∈U, i∈I}. Given a cold-start user group S (a 
subset of users), the objective is to learn a 
function that predicts the top-k tag attributes 
representing the common interests of this 
cold-start group. 
 

Figure 1: The COIN architecture illustrating training on item 𝑖₁ for user group {𝑢₁, 𝑢₃}. 

335



 
 
 

2.2	Tag	Attribute	Encoder		

Each item tag attribute ti∈RT is represented as 
a high-dimensional multi-hot vector. Since 
directly training with such sparse vectors is 
impractical, we employ a two-layer Multi-
Layer Perceptron (MLP) as the encoder. The 
encoder projects each sparse tag vector into a 
dense embedding space, yielding an initial 
item embedding ei(0)∈Rd for subsequent 
model training. 
    For users, we construct an embedding 
look-up table, where each column represents 
a user embedding eu(0)∈Rd. These user 
embeddings, together with the encoded item 
embeddings, serve as the foundation for later 
components of the COIN model. 
    The encoding process can be expressed as: 
 
 
 
 
where W1 and W2 are trainable weight 
matrices, and Eu denotes the collection of user 
embeddings. 

2.3	LightGCN	

    After obtaining the initial embeddings of 
users and items from the encoder, the next 
step is to capture their potential common 
interests. When multiple users interact with 
the same item, it indicates they may share 
latent preferences reflected in the item’s tag 
attributes. 
    We leverage graph convolution network-
based solutions, particularly LightGCN, 
which has proven highly effective for various 
recommendation tasks. The encoder’s initial 
embeddings serve as the input. LightGCN 
propagates information across the user–item 
interaction graph: 
 
 
 
 
 

where Nu denotes the set of items interacted 
with by user u, and Ni denotes the set of 
users interacting with item i. 

    However, high-order propagation may 
cause the problem of over-smoothing, where 
user embeddings lose their unique semantics 
and become dominated by item embeddings. 
To mitigate this issue, we introduce a residual 
connection for users, which preserves user-
specific information: 
 
 
 
 
 
 
 
The discussion of the training–inference gap 
for items is deferred to Sections 2.6 and 2.7. 
    For efficiency in implementation and 
training, we rewrite the propagation rule in 
matrix form. Let R∈RN×M denote the user–item 
interaction matrix, where Rui=1 if user u has 
interacted with item i, and 0 otherwise. By 
adding user self-loops, the adjacency matrix is 
defined as: 
 
 
 
with degree matrix D. Let E(l) ∈	R(N+M)×d be the 
embeddings at layer l. The propagation 
becomes: 
 
 
After L layers of propagation, we aggregate 
embeddings from all of the layers (including 
the encoder’s initial embeddings) by 
averaging, to retain semantic information 
learned at each stage: 
 
 
 
 
This ensures that the final item embeddings 
preserve both high-order relational knowledge 
and the semantic features from earlier layers. 

2.4	User	Clustering	

We assume the existence of |G| latent user 
groups, each capturing abstract and complex 
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group–tag preferences. A user may belong to 
multiple groups simultaneously, and thus can 
be represented as a combination of these 
group memberships. Since no external 
resources are available, we adopt a simple 
soft clustering approach that is directly 
learned from user embeddings. 
    Formally, let S∈RN×∣G∣ denote the user–
group assignment matrix, where Si,j 
corresponds to the probability of user ui 
belonging to group gj. To obtain this, we 
apply a linear projection Wproj∈Rd×∣G∣ to the 
user embeddings, followed by a softmax 
function to ensure each row forms a valid 
probability distribution: 
 
 
Next, we maintain a group embedding look-
up table, where each column represents a 
latent embedding eg∈Rd. Rather than learning 
direct group–tag preferences (which would 
be computationally prohibitive given the high 
dimensionality of tag attributes), we instead 
learn a latent vector for each group. 
Combining the user–group assignment matrix 
with the group embeddings, we derive user 
representations in the group space: 
 
 
 
 
Finally, an item embedding is represented by 
averaging over the group-based user 
embeddings of its neighboring users: 
 
 
 
 
Through this design, the model captures 
group-level user preferences and mitigates the 
over-smoothing issue encountered in 
LightGCN for low-degree users. 

2.5	Tag	Attribute	Decoder	

To generate the final item representation, we 
apply a linear combination of the outputs from 
LightGCN and the user clustering module. 

Specifically, given hyperparameter α, the final 
item embedding is computed as: 
 
 
 
 
This embedding is then passed through a 
decoder, which mirrors the structure of the 
encoder. The decoder transforms the dense 
item embedding back into the tag attribute 
space, thereby reconstructing semantic 
features. Finally, we apply a sigmoid 
activation to produce probabilities for each tag 
attribute: 
 
 
 
where W3 and W4 are trainable weight matrices. 
These probabilities are compared against the 
ground-truth tag attributes using binary cross-
entropy loss, ensuring that the learned item 
embeddings preserve interpretable semantics 
aligned with observed tag data. 

2.6	Model	Training	

During training, the COIN model jointly 
learns (1) user embeddings, (2) the encoder 
for projecting item tag attributes into a latent 
semantic space, (3) group embeddings with 
user–group assignments to capture group-
level preferences, and (4) the decoder for 
reconstructing item tag attributes to reveal 
common interests.  
    To simulate cold-start groups, we adopt a 
masking strategy in which certain items are 
randomly removed, along with all co-
interacted items from the same subset of users, 
thereby forming a common interest set. For 
instance, if users u1 and u3 interacted with 
items i4 and i7, both items are removed to 
define their shared interest during testing.  
    The model then predicts tag attribute 
distributions for items, which are optimized 
using binary cross-entropy (BCE) loss: 
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where tik is the ground-truth value of the k-th 
tag attribute for item i, and pik is the predicted 
probability. This ensures that reconstructed 
attributes closely align with true tag labels, 
guaranteeing that the learned embeddings 
preserve sufficient semantic information for 
decoding back into the tag attribute space. 

2.7	Model	Inference	

During inference, the goal is to predict the 
probability distribution over tag attributes 
that represent the common interests of a given 
cold-start user group. As in training, the 
encoder first transforms item tag attributes 
into embeddings, producing both item and 
user representations. 
    To handle cold-start groups, we introduce 
a virtual item into the user–item interaction 
graph. This virtual item is connected to all 
users in the input group, enabling propagation 
through both LightGCN and the user 
clustering module. Unlike training, where the 
graph structure remains fixed, the inference 
graph is dynamically constructed for each 
cold-start group. The virtual item’s 
embedding thus encodes the aggregated 
preferences of the group. 
    Finally, the virtual item embedding is 
decoded back into the tag attribute space, 
yielding probabilities for each tag. The top-k 
tag attributes are selected as the predicted 
common interests of the cold-start user group. 

3 Experiments  

In this section, we compare the proposed 
COIN model against several baselines and 
provide an empirical analysis of each model 
component. 

3.1	Experimental	Settings	

We evaluate the COIN model on three 
publicly available real-world datasets: 

Citeulike-a, Citeulike-t (Wang, 2013), and 
Yelp, with their statistics summarized in 
Table 1. The Citeulike-a and Citeulike-t 
datasets are collected from CiteULike, an 
online platform where users share and 
manage academic papers. Each paper 
includes metadata such as title, abstract, and 
tag attributes, and in our experiments we 
utilize the user–paper interactions along with 
paper tag attributes to predict group-level 
common interests. The Yelp dataset is a 
subset of Yelp’s business data, containing 
user–business interactions, reviews, check-
ins, and location tag attributes. For our task, 
we specifically use the user–location 
interactions and location tag attributes to infer 
common interests within user groups. 
    Following the training and inference 
procedures described in Sections 2.6 and 2.7, 
we randomly mask certain items for testing. 
Items co-interacted by the same user subset 
are grouped together, and their averaged tag 
attributes are treated as the ground-truth 
common interests. For evaluation, we adopt 
three top-k ranking metrics (Krichene, 2020): 
Recall@20, F1@20, and NDCG@20. The 
predicted tag attributes of the virtual item are 
ranked and compared against the ground-
truth top-k tag attributes. 
    We compare the COIN model against 
several baselines. The Intersection method is 
a naïve approach that defines a group’s 
common interest as the intersection of all tag 
attributes associated with items interacted by 
group members. The Probability method 
adopts a simple probabilistic strategy, where 
each user’s tag preference is calculated by 
multiplying the probability of the user 
interacting with an item and the tag 
probability of that item, and the group’s 
common interest is then derived by 
combining  the  tag  preferences  of all  group 
members. MAGREE is a modified version of  
the AGREE model (Cao, 2018),  in  which  a 

Table 1: Statistics of the datasets 
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tag attribute prediction layer is added to better 
suit our task. The User Attribute Prediction 
Model (UAP) trains only user embeddings 
and the decoder; item embeddings are 
generated during training by averaging the 
embeddings of interacting users and decoded 
to reconstruct tag attributes, while during 
inference a virtual item embedding is formed 
by averaging the embeddings of the input user 
set and then decoded to predict tag attributes. 
AE+LightGCN employs an encoder for item 
embeddings together with a user embedding 
lookup table, and applies LightGCN with 
residual connections to capture high-order 
semantics in the user–item graph, with the 
resulting embeddings decoded into tag 
attributes. Finally, AE+GCN (Kipf, 2017) 
serves as a variant using graph convolution 
networks, where each layer includes a linear 
transformation and activation function after 
graph propagation; this distinguishes it from 
LightGCN but also introduces potential 
mismatches between training and inference 
due to structural differences in the graphs. 

3.2	Results	and	Discussion	

The results are shown in Table 2, where 
“Improvement” indicates the relative gain of 
COIN over the second-best one (underlined).  
        The Intersection method, though 
intuitive, performs poorly since it only 
considers tag overlaps from user–item 
interactions,  ignoring  latent  semantics  and 
failing to generalize. The User Attribute 
Prediction Model (UAP) underperforms as 
well, since it does not learn item embeddings 
directly from tag attributes and relies on 

averaging user embeddings, which limits its 
ability to capture high-order semantics. 
MAGREE performs better than Intersection 
and UAP due to its attention mechanism, but 
still falls short of COIN because it does not 
explicitly model high-order relations in the 
user–item graph.  
    AE+GCN performs even worse than UAP: 
while it leverages an encoder and high-order 
interactions, its reliance on transformations 
and activations creates mismatches between 
training and inference, leading to degraded 
performance. AE+LightGCN achieves 
stronger results by learning item embeddings 
through an encoder and exploiting high-order 
relations without transformation mismatches; 
however, its performance drops on low-
degree interactions where embeddings are 
prone to over-smoothing. By contrast, the 
COIN model consistently outperforms all 
baselines. Through tag-aware encoding, 
residual-enhanced LightGCN propagation, 
soft clustering to address over-smoothing, 
and effective decoding into tag attributes, 
COIN captures both high-order relations and 
latent semantics, leading to more accurate 
identification of common interests within 
groups. 

3.3	Ablation	Study	

    To evaluate the contribution of each 
component in the COIN model,  we  conduct 
an ablation study on two key modules: the 
residual connection in LightGCN and user 
clustering. The results are shown in Table 3. 

Table 2: Performance comparison 
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   The residual connection improves 
performance by directly preserving user-
specific information during propagation. 
Without it, user embeddings tend to collapse 
into overly similar representations dominated 
by neighboring items, leading to a loss of 
individual semantics. As illustrated in Table 
3, removing the residual connection reduces 
Recall and NDCG across all datasets, 
confirming that retaining user individuality is 
crucial for accurate recommendation. 
    The user clustering module also plays an 
important role. By softly assigning users to 
multiple latent groups, clustering captures 
higher-level group semantics and alleviates 
sparsity in low-degree interactions. This 
effect is evident in Table 3, where removing 
clustering leads to a noticeable performance 
drop, particularly for datasets with many low-
degree users (e.g., CiteULike-t). Clustering 
enables  the  model  to  infer  preferences  for  

 
sparse users by leveraging patterns shared 
with similar users, thereby mitigating cold-
start and over-smoothing issues. 
    We also investigate the impact of user 
clustering on groups with different 
interaction degrees. To this end, users are 
divided into low-degree and high-degree 
categories based on whether their number of 
interactions falls below or above the median 
interaction count in the dataset. The results, 
presented in Tables 4 and 5, show that user 
clustering improves performance in both 
categories but provides a more substantial 
gain for low-degree users. This demonstrates 
that clustering is particularly effective in 
alleviating the over-smoothing problem in 
sparse interaction scenarios, as it allows low-
degree users to leverage shared group-level 
semantics to compensate for limited 
individual interactions. 
 

Table 4: Impact of clustering over low-degree users 

Table 5: Impact of clustering over high-degree users 

 

Table 3: Ablation study 

Table 6: Impact of layer number 
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3.4	Impact	of	Layer	Number	

COIN benefits from light propagation, which 
enables it to capture high-order interactions 
within the user–item graph. To evaluate the 
effect of different propagation depths, we 
tested configurations with 1, 2, 3, and 4 layers, 
and the results are summarized in Table 6. 
The findings show that COIN-2 and COIN-3 
achieve the strongest performance across 
most metrics. In contrast, COIN-1, which 
does not include propagation, performs 
significantly worse, indicating that modeling 
high-order interactions is essential for 
learning meaningful common interests. 
However, when the number of propagation 
layers becomes too large, as in COIN-4, the 
model suffers from over-smoothing, where 
embeddings lose their distinctiveness and fail 
to capture nuanced user–item semantics. This 
suggests that a moderate depth, specifically 
two or three layers, strikes the best balance 
between leveraging high-order relationships 
and preserving semantic richness in the 
embeddings. 

4 Conclusions 

In this paper, we propose the COIN model for 
discovering common interests in cold-start 
user groups. Unlike prior methods focused on 
persistent groups, COIN tackles the problem 
of cold-start group recommendation by 
leveraging item tag attributes and high-order 
semantics captured through LightGCN and 
user clustering. Experiments on Citeulike-a, 
Citeulike-t, and Yelp datasets demonstrate 
that COIN consistently outperforms baseline 
methods. Ablation and sensitivity analyses 
confirm that residual connections reduce 
over-smoothing, clustering enhances low-
degree user modeling, and decoding provides 
interpretable tag-level explanations. 
    Future work could extend the model by 
incorporating temporal dynamics to capture 
evolving group preferences and integrating 
multimodal signals such as reviews or images 
for richer semantics. 
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