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Abstract

Previous studies on recommender systems
have primarily focused on learning implicit
preferences from individual user behaviors or
enhancing recommendation performance by
identifying similar users. However, in real-
life scenarios, group decision-making is often
required, such as when a group of friends
decides which movie to watch together. Thus,
discovering common interests has become a
key research issue in group recommendation.

The most straightforward approach to
group recommendation is to model the past
joint behaviors of a user group. Nevertheless,
this method fails to handle newly formed
groups with no historical interactions. To
address this limitation, we apply Graph
Convolution Networks to capture high-order
structural features within the user—item
interaction graph, thereby uncovering the
potential common interests of cold-start
groups. Experimental evaluations on three
real-world  datasets  demonstrate  the
feasibility and effectiveness of the proposed
method.

Keywords: Discovery of Common Interests, Cold-
Start Groups, Group Recommendation

1 Introduction

Recommender systems have become an
essential component of modern digital
experiences, assisting users in exploring
products and potential social connections by
analyzing their behaviors and preferences. For
example, platforms such as Amazon and
TripAdvisor provide personalized product and
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hotel suggestions based on user interactions
and reviews.

Despite the impressive success of existing
recommender  systems in  delivering
personalized recommendations, they often
overlook group decision-making scenarios,
such as a group of friends choosing a movie to
watch together or deciding on a restaurant for
dining. Our work aims to bridge this gap by
uncovering common interests within user
groups, particularly for cold-start groups (a set
of users who come together for the first time
and for whom the system has no prior record
of collective interactions or shared history).
This  capability not only enables
recommendations that align with collective
group preferences but also opens new
possibilities for collaborative content creation,
such as co-writing a script.

Prior research on group recommendation
(Berkovsky, 2010; Baltrunas, 2010; Amer-
Yahia, 2009) has primarily targeted persistent
groups, in which members are fixed and have
interacted multiple times as a group. In
contrast, cold-start group recommendation
poses a greater challenge, since ephemeral
groups typically lack prior interactions or
shared histories. In such cases, balancing
individual preferences with group dynamics to
produce recommendations that satisfy all
members is a highly non-trivial problem.

Recent group recommendation advances
(Sajjadi  Ghaemmaghami, 2021) include
attention-based aggregation over persistent
groups (AGREE) (Cao, 2018) and multi-view
modeling for occasional groups (GAME) (He,
2020a). For ephemeral groups without joint
history, GroupIM (Sankar, 2020) maximizes
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Figure 1: The COIN architecture illustrating training on item i for user group {u1, us}.

mutual information between group/user/item
representations. These works generally lack
interpretability and do not uncover the latent
semantics behind group members’ shared
interests.  Disentangled = recommendation
methods (Ma, 2019) are capable of learning
factorized representations to capture latent
semantics in user—item interaction data, but
their focus remains on individual user
behavior rather than on cold-start groups.

In this paper, we propose the COmmon
INtereset model (COIN) to discover potential
common interests in cold-start user groups. We
leverage Graph Convolution Networks (GCNs)
to capture high-order relations in user—item
interactions and construct a virtual item for a
cold-start group. This virtual item represents
the most suitable recommendation for a given
group, and by incorporating its tag attributes as
auxiliary data (Liu, 2020), COIN can
effectively reflect the group’s potential
common interests. The COIN model consists
of four main components: (1) a tag encoder
that transforms sparse item tag attributes into
dense vectors; (2) LightGCN (He, 2020b),
which  captures  high-order  user—item
interactions; (3) a user clustering module that
models user—group—tag level preferences; and
(4) a tag decoder that reconstructs tag-level
semantics  from the learned dense
representations. Extensive experiments have
been conducted on three real-world datasets,
and the results demonstrate the feasibility and
effectiveness of the proposed method.
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2 The Proposed COIN Model

As shown in Fig. 1, the COIN model consists
of four main components working together to
uncover group-level common interests. First,
the Encoder transforms sparse item tag
attributes into dense embeddings, providing
compact semantic representations for items.
Next, LightGCN  captures high-order
relations in the user—item interaction graph,
refining  embeddings  through  graph
propagation. Meanwhile, the User Clustering
component models user—group—tag
preferences by softly assigning users to latent
groups and generating group-aware item
embeddings. Finally, the Decoder combines
the outputs from LightGCN and clustering,
reconstructs tag semantics, and predicts the
common interests of cold-start groups,
optimized via a binary cross-entropy loss.

2.1 Problem Formulation

Let U denote the set of users, / the set of
items, and 7 the set of tag attributes. Each
item i is associated with a multi-hot vector ¢
representing its tag attributes. We define the
set of user—item interactions as R* = {(u, i) |
u€U, i€l}. Given a cold-start user group S (a
subset of users), the objective is to learn a
function that predicts the top-k tag attributes
representing the common interests of this
cold-start group.



2.2 Tag Attribute Encoder

Each item tag attribute #,€R is represented as
a high-dimensional multi-hot vector. Since
directly training with such sparse vectors is
impractical, we employ a two-layer Multi-
Layer Perceptron (MLP) as the encoder. The
encoder projects each sparse tag vector into a
dense embedding space, yielding an initial
item embedding e(Y€R? for subsequent
model training.

For users, we construct an embedding
look-up table, where each column represents
a user embedding e, ”€R?. These user
embeddings, together with the encoded item
embeddings, serve as the foundation for later
components of the COIN model.

The encoding process can be expressed as:

e = W, - ReLU(Wit;),
l,

where W; and W; are trainable weight
matrices, and E, denotes the collection of user
embeddings.
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2.3 LightGCN

After obtaining the initial embeddings of
users and items from the encoder, the next
step is to capture their potential common
interests. When multiple users interact with
the same item, it indicates they may share
latent preferences reflected in the item’s tag
attributes.

We leverage graph convolution network-
based solutions, particularly LightGCN,
which has proven highly effective for various
recommendation tasks. The encoder’s initial
embeddings serve as the input. LightGCN
propagates information across the user—item
interaction graph:
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where N, denotes the set of items interacted
with by user u, and N; denotes the set of
users interacting with item i.
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However, high-order propagation may
cause the problem of over-smoothing, where
user embeddings lose their unique semantics
and become dominated by item embeddings.
To mitigate this issue, we introduce a residual
connection for users, which preserves user-
specific information:
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The discussion of the training—inference gap
for items is deferred to Sections 2.6 and 2.7.
For efficiency in implementation and
training, we rewrite the propagation rule in
matrix form. Let RERY*M denote the user—item
interaction matrix, where R,=1 if user u has
interacted with item 7, and O otherwise. By
adding user self-loops, the adjacency matrix is

defined as:
4= (w o):

with degree matrix D. Let E) € RV*M*d be the
embeddings at layer /. The propagation
becomes:

I
RT

R
0

EWY) = D 3AD 2 E0.

After L layers of propagation, we aggregate
embeddings from all of the layers (including
the encoder’s initial embeddings) by
averaging, to retain semantic information
learned at each stage:

(lgen_output)
€;

This ensures that the final item embeddings
preserve both high-order relational knowledge
and the semantic features from earlier layers.

2.4 User Clustering

We assume the existence of |G| latent user
groups, each capturing abstract and complex



group—tag preferences. A user may belong to
multiple groups simultaneously, and thus can
be represented as a combination of these
group memberships. Since no external
resources are available, we adopt a simple
soft clustering approach that is directly
learned from user embeddings.

Formally, let SERY ISl denote the user—
group assignment matrix, where S;;
corresponds to the probability of user u;
belonging to group gj. To obtain this, we
apply a linear projection W, €RY to the
user embeddings, followed by a softmax
function to ensure each row forms a valid
probability distribution:

S = softmax(E, Wpyoj)-

Next, we maintain a group embedding look-
up table, where each column represents a
latent embedding e,ER“. Rather than learning
direct group—tag preferences (which would
be computationally prohibitive given the high
dimensionality of tag attributes), we instead
learn a latent vector for each group.
Combining the user—group assignment matrix
with the group embeddings, we derive user
representations in the group space:

Eg = [691" .- >eg\c:\]a

Euser_group =S Eg-

Finally, an item embedding is represented by
averaging over the group-based user
embeddings of its neighboring users:

(group_output) 1 (user_group)
: A '
ueN;
Through this design, the model captures
group-level user preferences and mitigates the
over-smoothing  issue  encountered in
LightGCN for low-degree users.

2.5 Tag Attribute Decoder

To generate the final item representation, we
apply a linear combination of the outputs from
LightGCN and the user clustering module.
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Specifically, given hyperparameter a, the final
item embedding is computed as:

(lgen_output)

(final)
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i
(group_output)
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This embedding is then passed through a
decoder, which mirrors the structure of the
encoder. The decoder transforms the dense
item embedding back into the tag attribute
space, thereby reconstructing semantic
features. Finally, we apply a sigmoid
activation to produce probabilities for each tag
attribute:

pi = O’(W4 . ReLU(Wge(ﬁnal)

i)
where W3 and W, are trainable weight matrices.
These probabilities are compared against the
ground-truth tag attributes using binary cross-
entropy loss, ensuring that the learned item
embeddings preserve interpretable semantics
aligned with observed tag data.

2.6 Model Training

During training, the COIN model jointly
learns (1) user embeddings, (2) the encoder
for projecting item tag attributes into a latent
semantic space, (3) group embeddings with
user—group assignments to capture group-
level preferences, and (4) the decoder for
reconstructing item tag attributes to reveal
common interests.

To simulate cold-start groups, we adopt a
masking strategy in which certain items are
randomly removed, along with all co-
interacted items from the same subset of users,
thereby forming a common interest set. For
instance, if users u; and u3 interacted with
items iy and i7, both items are removed to
define their shared interest during testing.

The model then predicts tag attribute
distributions for items, which are optimized
using binary cross-entropy (BCE) loss:

7|

Lpop =)  — (tik log(pik)

k=0
+ (1 —ti) log(1 — Pik)),



Table 1: Statistics of the datasets

I #User #Item # Density # Tag Number # Avg Tag per item # Group Avg User
citeulike-a | 5551 16,980 0.00217 46, 390 14.09 5.43
citeulike-t | 7947 25,975 0.00065 52,946 11.19 2.04
yelp 15844 19042 0.00140 889 5.01 2.85

where #; is the ground-truth value of the -th
tag attribute for item 7, and pi is the predicted
probability. This ensures that reconstructed
attributes closely align with true tag labels,
guaranteeing that the learned embeddings
preserve sufficient semantic information for
decoding back into the tag attribute space.

2.7 Model Inference

During inference, the goal is to predict the
probability distribution over tag attributes
that represent the common interests of a given
cold-start user group. As in training, the
encoder first transforms item tag attributes
into embeddings, producing both item and
user representations.

To handle cold-start groups, we introduce
a virtual item into the user—item interaction
graph. This virtual item is connected to all
users in the input group, enabling propagation
through both LightGCN and the user
clustering module. Unlike training, where the
graph structure remains fixed, the inference
graph is dynamically constructed for each
cold-start group. The virtual item’s
embedding thus encodes the aggregated
preferences of the group.

Finally, the virtual item embedding is
decoded back into the tag attribute space,
yielding probabilities for each tag. The top-k
tag attributes are selected as the predicted
common interests of the cold-start user group.

3 Experiments

In this section, we compare the proposed
COIN model against several baselines and
provide an empirical analysis of each model
component.

3.1 Experimental Settings

We evaluate the COIN model on three
publicly available real-world datasets:
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Citeulike-a, Citeulike-t (Wang, 2013), and
Yelp, with their statistics summarized in
Table 1. The Citeulike-a and Citeulike-t
datasets are collected from CiteULike, an
online platform where users share and
manage academic papers. Each paper
includes metadata such as title, abstract, and
tag attributes, and in our experiments we
utilize the user—paper interactions along with
paper tag attributes to predict group-level
common interests. The Yelp dataset is a
subset of Yelp’s business data, containing
user—business interactions, reviews, check-
ins, and location tag attributes. For our task,
we specifically use the user—location
interactions and location tag attributes to infer
common interests within user groups.

Following the training and inference
procedures described in Sections 2.6 and 2.7,
we randomly mask certain items for testing.
Items co-interacted by the same user subset
are grouped together, and their averaged tag
attributes are treated as the ground-truth
common interests. For evaluation, we adopt
three top-k ranking metrics (Krichene, 2020):
Recall@20, F1@20, and NDCG@?20. The
predicted tag attributes of the virtual item are
ranked and compared against the ground-
truth top-k tag attributes.

We compare the COIN model against
several baselines. The Intersection method is
a naive approach that defines a group’s
common interest as the intersection of all tag
attributes associated with items interacted by
group members. The Probability method
adopts a simple probabilistic strategy, where
each user’s tag preference is calculated by
multiplying the probability of the user
interacting with an item and the tag
probability of that item, and the group’s
common interest is then derived by
combining the tag preferences of all group
members. MAGREE is a modified version of
the AGREE model (Cao, 2018), in which a



Table 2: Performance comparison

citeulike-a citeulike-t yelp

Recall F1 NDCG | Recall F1 NDCG | Recall F1 NDCG
Intersection 0.0002  0.0004 0.0019 | 0.0001 0.0003 0.0048 | 0.0015 0.0014 0.0013
Probability 0.0724  0.0987 0.2030 | 0.0336 0.0550 0.1825 | 0.2825 0.2436 0.4022
UAP 0.0570  0.0897 0.0234 | 0.0322 0.0600 0.3510 | 0.2597 0.2262 0.3640
MAGREE 0.0628  0.0978 0.2526 | 0.0355 0.0646 0.3822 | 0.2911 0.2454 0.3813
AE+GCN 0.0125  0.0184 0.0401 | 0.0018 0.0033 0.0166 | 0.0379 0.0314 0.0283
AE+LightGCN | 0.0971 0.1379  0.2896 | 0.0617 0.1028 0.3431 | 0.2990 0.2477 0.4127
COIN 0.1097  0.1517 0.3104 | 0.0646 0.1077 0.3644 | 0.3540 0.2930 0.4735
Improvement | 1297% 10.00% 7.18% ’ 470% 4.76% -4.88% \ 836% 6.33% 6.32%

UAP: User Attribute Prediction Model
tag attribute prediction layer is added to better
suit our task. The User Attribute Prediction
Model (UAP) trains only user embeddings
and the decoder; item embeddings are
generated during training by averaging the
embeddings of interacting users and decoded
to reconstruct tag attributes, while during
inference a virtual item embedding is formed
by averaging the embeddings of the input user
set and then decoded to predict tag attributes.
AE+LightGCN employs an encoder for item
embeddings together with a user embedding
lookup table, and applies LightGCN with
residual connections to capture high-order
semantics in the user—item graph, with the
resulting embeddings decoded into tag
attributes. Finally, AE+GCN (Kipf, 2017)
serves as a variant using graph convolution
networks, where each layer includes a linear
transformation and activation function after
graph propagation; this distinguishes it from
LightGCN but also introduces potential
mismatches between training and inference
due to structural differences in the graphs.

3.2 Results and Discussion

The results are shown in Table 2, where
“Improvement” indicates the relative gain of
COIN over the second-best one (underlined).

The Intersection method, though
intuitive, performs poorly since it only
considers tag overlaps from user—item
interactions, ignoring latent semantics and
failing to generalize. The User Attribute
Prediction Model (UAP) underperforms as
well, since it does not learn item embeddings
directly from tag attributes and relies on
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MAGREE: Modified AGREE

averaging user embeddings, which limits its
ability to capture high-order semantics.
MAGREE performs better than Intersection
and UAP due to its attention mechanism, but
still falls short of COIN because it does not
explicitly model high-order relations in the
user—item graph.

AE+GCN performs even worse than UAP:
while it leverages an encoder and high-order
interactions, its reliance on transformations
and activations creates mismatches between
training and inference, leading to degraded
performance. = AE+LightGCN  achieves
stronger results by learning item embeddings
through an encoder and exploiting high-order
relations without transformation mismatches;
however, its performance drops on low-
degree interactions where embeddings are
prone to over-smoothing. By contrast, the
COIN model consistently outperforms all
baselines. Through tag-aware encoding,
residual-enhanced LightGCN propagation,
soft clustering to address over-smoothing,
and effective decoding into tag attributes,
COIN captures both high-order relations and
latent semantics, leading to more accurate
identification of common interests within
groups.

3.3 Ablation Study

To evaluate the contribution of each
component in the COIN model, we conduct
an ablation study on two key modules: the
residual connection in LightGCN and user
clustering. The results are shown in Table 3.



Table 3: Ablation study

citeulike-a citeulike-t yelp .
Recall Fl NDCG | Recall Fl NDCG | Recall Fl NDCG
COIN 0.1097 0.1517 0.3104 | 0.0646 0.1077 0.3644 | 0.3546 0.2900 70.47357
w/o residual 0.0876 0.1263 0.2677 | 0.0585 0.0986 0.3495 | 0.3446 0.2881 0.4698
w/o clustering | 0.1009 0.1428 0.2942 | 0.0635 0.1055 0.3498 | 0.3179 0.2588 0.4318
Table 4: Impact of clustering over low-degree users
citeulike-a citeulike-t yelp
Recall F1 NDCG | Recall F1 NDCG | Recall F1 NDCG
w/o clustering | 0.0944 0.1017 0.2380 | 0.0709 0.0865 0.2724 | 0.3104 0.2107 0.4013
with clustering | 0.1108 0.1145 0.2698 | 0.0751 0.0901 0.2829 | 0.3674 0.2530 0.4643
Improvement | 17.37% 13.36% 12.58% | 5.92% 4.16% 3.85% | 18.36% 20.07% 15.69%
Table 5: Impact of clustering over high-degree users
citeulike-a citeulike-t yelp
Recall Fl1 NDCG | Recall F1 NDCG | Recall F1 NDCG
w/o clustering | 0.0991 0.1214 0.3553 | 0.0366 0.0573 0.5322 | 0.3027 0.2357 0.4469
with clustering | 0.1061 0.1304 0.3775 | 0.0372 0.0579 0.5606 | 0.3333 0.2613 0.4878
Improvement | 7.06% 7.04% 6.27% | 1.63% 1.04% 5.33% | 10.10% 10.86% 9.15%
Table 6: Impact of layer number
citeulike-a citeulike-t yelp
Recall F1 NDCG | Recall F1 NDCG | Recall F1 NDCG
COIN-1 | 0.0492 0.0782 0.2156 | 0.0494 0.0048 0.0508 | 0.0507 0.0521 0.0814
COIN-2 | 0.1097 0.1517 0.3104 | 0.0646 0.1077 0.3644 | 0.3540 0.2930 0.4735
COIN-3 | 0.0984 0.1382 0.2777 | 0.0636 0.1064 03643 | 0.3240 0.2668 0.4396
COIN-4 | 0.0997 0.1399 0.2828 | 0.0665 0.1082 0.3545 | 0.3078 0.2634  0.4388
The residual connection improves  sparse users by leveraging patterns shared

performance by directly preserving user-
specific information during propagation.
Without it, user embeddings tend to collapse
into overly similar representations dominated
by neighboring items, leading to a loss of
individual semantics. As illustrated in Table
3, removing the residual connection reduces
Recall and NDCG across all datasets,
confirming that retaining user individuality is
crucial for accurate recommendation.

The user clustering module also plays an
important role. By softly assigning users to
multiple latent groups, clustering captures
higher-level group semantics and alleviates
sparsity in low-degree interactions. This
effect is evident in Table 3, where removing
clustering leads to a noticeable performance
drop, particularly for datasets with many low-
degree users (e.g., CiteULike-t). Clustering
enables the model to infer preferences for

with similar users, thereby mitigating cold-
start and over-smoothing issues.

We also investigate the impact of user
clustering on groups with different
interaction degrees. To this end, users are
divided into low-degree and high-degree
categories based on whether their number of
interactions falls below or above the median
interaction count in the dataset. The results,
presented in Tables 4 and 5, show that user
clustering improves performance in both
categories but provides a more substantial
gain for low-degree users. This demonstrates
that clustering is particularly effective in
alleviating the over-smoothing problem in
sparse interaction scenarios, as it allows low-
degree users to leverage shared group-level
semantics to compensate for limited
individual interactions.
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3.4 Impact of Layer Number

COIN benefits from light propagation, which
enables it to capture high-order interactions
within the user—item graph. To evaluate the
effect of different propagation depths, we
tested configurations with 1, 2, 3, and 4 layers,
and the results are summarized in Table 6.
The findings show that COIN-2 and COIN-3
achieve the strongest performance across
most metrics. In contrast, COIN-1, which
does not include propagation, performs
significantly worse, indicating that modeling
high-order interactions is essential for
learning meaningful common interests.
However, when the number of propagation
layers becomes too large, as in COIN-4, the
model suffers from over-smoothing, where
embeddings lose their distinctiveness and fail
to capture nuanced user—item semantics. This
suggests that a moderate depth, specifically
two or three layers, strikes the best balance
between leveraging high-order relationships
and preserving semantic richness in the
embeddings.

4 Conclusions

In this paper, we propose the COIN model for
discovering common interests in cold-start
user groups. Unlike prior methods focused on
persistent groups, COIN tackles the problem
of cold-start group recommendation by
leveraging item tag attributes and high-order
semantics captured through LightGCN and
user clustering. Experiments on Citeulike-a,
Citeulike-t, and Yelp datasets demonstrate
that COIN consistently outperforms baseline
methods. Ablation and sensitivity analyses
confirm that residual connections reduce
over-smoothing, clustering enhances low-
degree user modeling, and decoding provides
interpretable tag-level explanations.

Future work could extend the model by
incorporating temporal dynamics to capture
evolving group preferences and integrating
multimodal signals such as reviews or images
for richer semantics.
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