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Abstract

This paper describes the ROCLING-2025
shared task aimed at Chinese dimensional
sentiment analysis for medical self-
refection texts, including task organization,
data preparation, performance metrics, and
evaluation results. A total of six
participating teams submitted results for
techniques developed for valence-arousal
intensity prediction. All datasets with gold
standards and evaluation scripts used in this
shared task are publicly available online for
further research.
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1 Introduction

In dimensional sentiment analysis, affective states
are generally represented as continuous numerical
values on multiple dimensions, such as valence-
arousal (VA) space, as shown in Fig. 1 (Yu et al.,
2016b). Based on this two-dimensional
representation, any affective state can be
represented as a point in the VA coordinate plane
by determining the degrees of valence and arousal
of given texts.

The existing methods for sentiment valence-
arousal intensity prediction at different
granularities from the word, phrase to text levels
can be categorized as lexicon-based (Taboada et al.,
2011; Thelwall et al., 2012; Paltoglou and Thelwall,
2013), regression-based (Wei et al., 2011,
Malandrakis et al., 2013; Wang et al., 2016), neural-
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Figure 1: Two-dimensional valence-arousal space

network-based (Kulshreshtha et al., 2018; Yu et al.,
2018; Zhu et al., 2019; Yu et al., 2020; Deng et al.,
2022), or transformer-based (Hung et al., 2021;
Mukherjee et al., 2021; Park et al., 2021; Deng et
al., 2023; Lin et al., 2023; Mendes and Martins,
2023). Recently, large language models (Liu et al.,
2024; Xu et al., 2025) have also been used for
sentiment intensity prediction with promising
results.

The first dimensional sentiment analysis (DSA)
task for Chinese words (Yu et al.,, 2016a) was
organized at the IALP-2016 conference. The
second edition was organized at the [JCNLP-2017
conference and included both Chinese words and
phrases (Yu et al., 2017). The third edition was
organized at the ROCLING-2021 conference to
explore the sentence-level educational texts from
students’ self-evaluated comments (Yu et al., 2021).
This year, we organized the fourth edition of the
DSA task to analyze medical multi-sentence texts
to describe doctors’ self-reflection feelings.
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2 CRENEREREEE FMECSHE  XBHEESEAEDHE -
(The attending physician has repeatedly emphasized that, given the patient’s

condition, he/she does not recommend hemodialysis or blood transfusion. The
patient has already been receiving intensive care in the ICU for two weeks, yet the

Input: ex02, RFWFR - BREINE-ES—EZHUZERER - B ICU
RRIERRAFEANKXBILER (24 - KRS DHNHEE - THBEA

(The saying ‘treat patients as if they were your own family’ has long been an
admirable yet challenging ideal to realize. However, during my time in the ICU, I
was deeply moved by the dedication of the medical team, who stood in solidarity
with the patient and their family, working tirelessly together to combat illness and

Examples Input & Output
Input: ex01, 588

Example 1
family has been unable to reach a consensus.)
Output: ex01, 4.750, 2.750
MFREMNSE T - ERTOHNEE -

Example 2
fulfill the patient’s final wishes.)
Output: ex02, 6.900, 5.600

Table 1: Examples of the DSA-MST task.

The rest of this article is organized as follows.
Section 2 provides a description of the Chinese
Dimensional Sentiment Analysis for Medical Self-
reflection Texts (DAS-MST) shared task. Section
3 introduces the constructed data sets. Section 4
describes the evaluation metrics. Section 5
compares evaluation results from the various
participating teams. Finally, Section 6 provides
conclusion and proposes future research directions.

2 Task Description

The goal of the DSA-MST shared task is to
develop and evaluate the performance of Chinese
sentiment analysis systems for multi-sentence texts
written by doctors. The input is a self-reflective
text describing a doctor’s feelings and opinions
regarding his/her medical internship in Intensive
Care Unit (ICU) rotation. The system should
predict the real-valued valence-arousal (VA)
intensity ratings using a nine-degree scale. A value
of 1 on the valence and arousal dimensions
respectively denotes extremely high-negative and
most-calm sentiment, while a 9 denotes extremely
high-positive and most-excited sentiment, and 5
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denotes a neutral-valence and medium-arousal
sentiment.

Example instances are presented in Table 1. The
input format is the instance ID followed by given
texts and the output format is the same ID,
followed by valence and arousal ratings. In
Example 1, the valence intensity is slightly
negative at 4.75 and the arousal sentiment tends to
be calm at 2.75. Example 2 shows a positive
sentiment of 6.9 and medium-arousal of 5.6.

3 Data Preparation

The training set for this DSA-MST shared task is
the Chinese EmoBank (Lee et al., 2022), a
dimensional sentiment resource annotated with
real-valued scores for both valence and arousal
dimensions. The valence represents the degree of
positive and negative sentiment, and arousal
represents the degree of calm and excitement. Both
dimensions range from 1 (highly negative or calm)
to 9 (highly positive or excited). The Chinese
EmoBank features various levels of text
granularity including two lexicons called Chinese
valence-arousal words (CVAW with 5,512 single
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Figure 2: Scatter plots of valence-arousal distributions

words) and Chinese valence-arousal phrases
(CVAP with 2,998 multi-word phrases), and two
corpora called Chinese valence-arousal sentences
(CVAS with 2,582 single sentences) and Chinese
valence-arousal texts (CVAT with 2,969 multi-
sentence texts).

The development and test sets consist of self-
reflection texts written by doctors in their ICU
rotation during their medical internship. The
content covers the doctors’ feelings and opinions
towards patients and the patients’ families. First,
self-reflection texts were segmented into sentences
and those containing sentiment words in the
CVAW of Chinese EmoBank (Lee et al., 2022)
were selected for manual annotation. Each
sentence was presented to five Chinese native
speakers for VA rating. Once the annotation
process was finished, a cleanup procedure (Lee et
al., 2022) was performed to remove outlier values
which did not fall within 1.5 standard deviations
(SD) of the mean. These outliers were then
excluded from calculating the average VA values
for each instance.

The annotated instances were randomly
included in two mutually exclusive datasets. The
development set contains 994 self-reflection texts
(average 76.51 tokens) with VA ratings for system
development, while the remaining 1,541 instances
(average 76.81 tokens) were retained in the test set
for system performance evaluation.

Figure 2 shows scatter plots of valence-arousal
distributions, where the CVAT was used as the
training set. Although they presented similar
results, participating systems were allowed to use
other publicly available data for prediction model
learning, but such training data must be specified
in the final system description.
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4 Performance Metrics

System performance is evaluated by examining the
difference between machine-predicted ratings and
human-annotated ratings based on evaluation
metrics  including Mean Absolute  Error
(MAE) and Pearson Correlation Coefficient (PCC),
defined as follows:

n
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where a; € A and p; € P respectively denote
the i-th actual value and predicted value, n is the
number of  test samples, and Ua
and o, respectively represent the mean value and
the standard deviation of A, while pp
and op respectively represent the mean value and
the standard deviation of P.

The actual and predicted real values range from
1 to 9, so MAE measures the error rate in a range
where the lowest value is 0 and the highest value is
8. The PCC is a value between —1 and 1 that
measures the linear correlation between the actual
value and the predicated value. A lower MAE and
a higher PCC indicate more accurate prediction
performance.

Each metric for the wvalence and arousal
dimensions is ranked independently. A model’s
overall ranking is computed based on the mean
rank across the four metrics. The lower the mean
rank, the better the system performance.




Evaluation Metric
Team Overall
(Submission) V-MAE | V-PCC A-MAE A-PCC Rank
(rank) (rank) (rank) (rank)
CYUT-NLP (#356721) | 0.46 (1) | 0.78 (2) 0.74 (1) 0.63 (1) 1
TCU (#356930) 0.46 (1) | 0.81(1) 0.76 (2) 0.61(2) 2
NTULAW (#357770) 0.50(3) | 0.75(5) 0.79 (3) 0.59 (3) 3
SCUNLP (#357007) 0.51(4) | 0.76 (3) 0.87 (5) 0.59 (3) 4
KOLab (#358133) 0.53(5) | 0.76 (3) 0.82 (4) 0.58 (5) 5
HeyVergil (#356794) 0.63 (6) | 0.62(6) 1.01(6) 0.21 (6) 6

Table 2: Evaluation results of the DSA-MST task.

5 Evaluation Results

A total of six teams provided submissions to the
leaderboard and submitted their technical papers.
CYUT-NLP (Jian et al., 2025) applied the retrieval-
augmented generation (RAG) and pseudo-labeling
techniques to generate augmented data, and then
used fine-tuned transformer-based models to
predict VA ratings. TCU (Li and Lin, 2025) used
several large language models (LLM) to extract
contextual embedding representations and then fed
semantic vectors into a regression model for VA
rating prediction. The averaging ensemble
technique was applied to assemble multiple
prediction models for performance enhancement.
NTULAW (Huang and Shao, 2025) fused
encoders trained at different levels of granularity
including word, phrase, and sentence to

independently predict valence and arousal intensity.

SCU-NLP (Pan and Wu, 2025) presented a dual-
layer agent-executor framework for dimensional
sentiment analysis. KOLab (Chan et al., 2025) and
HeyVergil (Lin et al., 2025) systems were mainly
based on BERT (Devlin et al., 2019) transformer
fine-tuning for VA score prediction.

Table 2 shows the evaluation results. For the
valence dimension, the best MAE 0f 0.46 and PCC
0f 0.81 was achieved by the TCU team (Li and Lin,
2025). For the arousal dimension, the best MAE of
0.74 and PCC of 0.63 was achieved by the CYUT-
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NLP system (Jian et al., 2025). In summary, the
overall best results were provided by CYUT-NLP,
followed by TCU and NTULAW (Huang and Shao,
2025).

6 Conclusion and Future Work

This paper provides an overview of the
ROCLING-2025 shared DSA-MST task for
Chinese dimensional sentiment analysis for
medical self-reflection texts, including task
descriptions, data preparation, performance
metrics and evaluation results. Regardless of actual
performance, all submissions contribute to the
development of effective DSA systems in the
medical domain, and each system description
paper for this shared task also provides useful
insights for further research.

We hope the data sets collected and annotated
for this shared task can facilitate and expedite
future development of Chinese DSA. The gold
standard and evaluation scripts are made publicly
available in a GitHub repository at
https://github.com/NY CU-NLP/ROCLING-2025-
ST-DSA-MST

Future directions will focus on the development
of a Chinese domain-specific DSA. We plan to
build new resources to develop techniques for the
future enrichment of this research topic, especially
for valence-arousal datasets in new domains.
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