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Abstract 

This paper describes the ROCLING-2025 
shared task aimed at Chinese dimensional 
sentiment analysis for medical self-
refection texts, including task organization, 
data preparation, performance metrics, and 
evaluation results. A total of six 
participating teams submitted results for 
techniques developed for valence-arousal 
intensity prediction. All datasets with gold 
standards and evaluation scripts used in this 
shared task are publicly available online for 
further research.   

Keywords: dimensional sentiment analysis, valence-
arousal intensity prediction, medical education, domain 
adaption, Chinese language processing 

1 Introduction 

In dimensional sentiment analysis, affective states 
are generally represented as continuous numerical 
values on multiple dimensions, such as valence-
arousal (VA) space, as shown in Fig. 1 (Yu et al., 
2016b). Based on this two-dimensional 
representation, any affective state can be 
represented as a point in the VA coordinate plane 
by determining the degrees of valence and arousal 
of given texts. 

The existing methods for sentiment valence-
arousal intensity prediction at different 
granularities from the word, phrase to text levels 
can be categorized as lexicon-based (Taboada et al., 
2011; Thelwall et al., 2012; Paltoglou and Thelwall, 
2013), regression-based (Wei et al., 2011; 
Malandrakis et al., 2013; Wang et al., 2016), neural-

network-based (Kulshreshtha  et al., 2018; Yu et al., 
2018; Zhu et al., 2019; Yu et al., 2020; Deng et al., 
2022), or transformer-based (Hung et al., 2021; 
Mukherjee  et al., 2021; Park et al., 2021; Deng et 
al., 2023; Lin et al., 2023; Mendes and Martins, 
2023). Recently, large language models (Liu et al., 
2024; Xu et al., 2025) have also been used for 
sentiment intensity prediction with promising 
results.  

The first dimensional sentiment analysis (DSA) 
task for Chinese words (Yu et al., 2016a) was 
organized at the IALP-2016 conference. The 
second edition was organized at the IJCNLP-2017 
conference and included both Chinese words and 
phrases (Yu et al., 2017). The third edition was 
organized at the ROCLING-2021 conference to 
explore the sentence-level educational texts from 
students’ self-evaluated comments (Yu et al., 2021). 
This year, we organized the fourth edition of the 
DSA task to analyze medical multi-sentence texts 
to describe doctors’ self-reflection feelings. 
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Figure 1: Two-dimensional valence-arousal space 
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The rest of this article is organized as follows. 
Section 2 provides a description of the Chinese 
Dimensional Sentiment Analysis for Medical Self-
reflection Texts (DAS-MST) shared task. Section 
3 introduces the constructed data sets. Section 4 
describes the evaluation metrics. Section 5 
compares evaluation results from the various 
participating teams. Finally, Section 6 provides 
conclusion and proposes future research directions. 

2 Task Description 

The goal of the DSA-MST shared task is to 
develop and evaluate the performance of Chinese 
sentiment analysis systems for multi-sentence texts 
written by doctors. The input is a self-reflective 
text describing a doctor’s feelings and opinions 
regarding his/her medical internship in Intensive 
Care Unit (ICU) rotation. The system should 
predict the real-valued valence-arousal (VA) 
intensity ratings using a nine-degree scale. A value 
of 1 on the valence and arousal dimensions 
respectively denotes extremely high-negative and 
most-calm sentiment, while a 9 denotes extremely 
high-positive and most-excited sentiment, and 5 

denotes a neutral-valence and medium-arousal 
sentiment.  

Example instances are presented in Table 1. The 
input format is the instance ID followed by given 
texts and the output format is the same ID, 
followed by valence and arousal ratings. In 
Example 1, the valence intensity is slightly 
negative at 4.75 and the arousal sentiment tends to 
be calm at 2.75. Example 2 shows a positive 
sentiment of 6.9 and medium-arousal of 5.6.  

3 Data Preparation 

The training set for this DSA-MST shared task is 
the Chinese EmoBank (Lee et al., 2022), a 
dimensional sentiment resource annotated with 
real-valued scores for both valence and arousal 
dimensions. The valence represents the degree of 
positive and negative sentiment, and arousal 
represents the degree of calm and excitement. Both 
dimensions range from 1 (highly negative or calm) 
to 9 (highly positive or excited). The Chinese 
EmoBank features various levels of text 
granularity including two lexicons called Chinese 
valence-arousal words (CVAW with 5,512 single 

Examples Input & Output 

Example 1 

Input: ex01, 主治醫師曾經多次強調血液透析和輸血，以病人的狀況就是不

建議，已經在加護病房積極治療了兩個禮拜，家屬却遲遲無法達到共識。
(The attending physician has repeatedly emphasized that, given the patient’s 
condition, he/she does not recommend hemodialysis or blood transfusion. The 
patient has already been receiving intensive care in the ICU for two weeks, yet the 
family has been unable to reach a consensus.) 
 
Output: ex01, 4.750, 2.750 
 

Example 2 

Input: ex02, 視病如親，這個成語一直是一個難以達成的理想，但在 ICU 我

感受到醫療端與病人和家屬站在同一陣線、共同努力對抗病魔，完成病人

的願望的努力，讓我十分的動容。 
(The saying ‘treat patients as if they were your own family’ has long been an 
admirable yet challenging ideal to realize. However, during my time in the ICU, I 
was deeply moved by the dedication of the medical team, who stood in solidarity 
with the patient and their family, working tirelessly together to combat illness and 
fulfill the patient’s final wishes.) 
 
Output: ex02, 6.900, 5.600 
 

Table 1:  Examples of the DSA-MST task. 
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words) and Chinese valence-arousal phrases 
(CVAP with 2,998 multi-word phrases), and two 
corpora called Chinese valence-arousal sentences 
(CVAS with 2,582 single sentences) and Chinese 
valence-arousal texts (CVAT with 2,969 multi-
sentence texts). 

The development and test sets consist of self-
reflection texts written by doctors in their ICU 
rotation during their medical internship. The 
content covers the doctors’ feelings and opinions 
towards patients and the patients’ families. First, 
self-reflection texts were segmented into sentences 
and those containing sentiment words in the 
CVAW of Chinese EmoBank (Lee et al., 2022) 
were selected for manual annotation. Each 
sentence was presented to five Chinese native 
speakers for VA rating. Once the annotation 
process was finished, a cleanup procedure (Lee et 
al., 2022) was performed to remove outlier values 
which did not fall within 1.5 standard deviations 
(SD) of the mean. These outliers were then 
excluded from calculating the average VA values 
for each instance.  

The annotated instances were randomly 
included in two mutually exclusive datasets. The 
development set contains 994 self-reflection texts 
(average 76.51 tokens) with VA ratings for system 
development, while the remaining 1,541 instances 
(average 76.81 tokens) were retained in the test set 
for system performance evaluation.  

Figure 2 shows scatter plots of valence-arousal 
distributions, where the CVAT was used as the 
training set. Although they presented similar 
results, participating systems were allowed to use 
other publicly available data for prediction model 
learning, but such training data must be specified 
in the final system description.  

4 Performance Metrics  

System performance is evaluated by examining the 
difference between machine-predicted ratings and 
human-annotated ratings based on evaluation 
metrics including Mean Absolute Error 
(MAE) and Pearson Correlation Coefficient (PCC), 
defined as follows: 

 

𝑀𝐴𝐸 =
1
𝑛
'|𝑎! − 𝑝!|
"

!#$

 

 

𝑃𝐶𝐶 =
1

𝑛 − 1
'.

𝑎! − 𝜇%
𝜎%

1 .
𝑝! − 𝜇&
𝜎&

1
"

!#$

 

 
where 𝑎! ∈ 𝐴  and 𝑝! ∈ 𝑃  respectively denote 

the i-th actual value and predicted value, n is the 
number of test samples, and  𝜇% 
and 𝜎%	respectively represent the mean value and 
the standard deviation of A, while  𝜇& 
and 𝜎& respectively represent the mean value and 
the standard deviation of P. 

The actual and predicted real values range from 
1 to 9, so MAE measures the error rate in a range 
where the lowest value is 0 and the highest value is 
8. The PCC is a value between −1 and 1 that 
measures the linear correlation between the actual 
value and the predicated value. A lower MAE and 
a higher PCC indicate more accurate prediction 
performance.  

Each metric for the valence and arousal 
dimensions is ranked independently. A model’s 
overall ranking is computed based on the mean 
rank across the four metrics. The lower the mean 
rank, the better the system performance. 

 

Figure 2: Scatter plots of valence-arousal distributions 
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5 Evaluation Results  

A total of six teams provided submissions to the 
leaderboard and submitted their technical papers. 
CYUT-NLP (Jian et al., 2025) applied the retrieval-
augmented generation (RAG) and pseudo-labeling 
techniques to generate augmented data, and then 
used fine-tuned transformer-based models to 
predict VA ratings. TCU (Li and Lin, 2025) used 
several large language models (LLM) to extract 
contextual embedding representations and then fed 
semantic vectors into a regression model for VA 
rating prediction. The averaging ensemble 
technique was applied to assemble multiple 
prediction models for performance enhancement. 
NTULAW (Huang and Shao, 2025) fused 
encoders trained at different levels of granularity 
including word, phrase, and sentence to 
independently predict valence and arousal intensity. 
SCU-NLP (Pan and Wu, 2025) presented a dual-
layer agent-executor framework for dimensional 
sentiment analysis. KOLab (Chan et al., 2025) and 
HeyVergil (Lin et al., 2025) systems were mainly 
based on BERT (Devlin et al., 2019) transformer 
fine-tuning for VA score prediction.    

Table 2 shows the evaluation results. For the 
valence dimension, the best MAE of 0.46 and PCC 
of 0.81 was achieved by the TCU team (Li and Lin, 
2025). For the arousal dimension, the best MAE of 
0.74 and PCC of 0.63 was achieved by the CYUT-

NLP system (Jian et al., 2025). In summary, the 
overall best results were provided by CYUT-NLP, 
followed by TCU and NTULAW (Huang and Shao, 
2025). 

6 Conclusion and Future Work  

This paper provides an overview of the 
ROCLING-2025 shared DSA-MST task for 
Chinese dimensional sentiment analysis for 
medical self-reflection texts, including task 
descriptions, data preparation, performance 
metrics and evaluation results. Regardless of actual 
performance, all submissions contribute to the 
development of effective DSA systems in the 
medical domain, and each system description 
paper for this shared task also provides useful 
insights for further research. 

We hope the data sets collected and annotated 
for this shared task can facilitate and expedite 
future development of Chinese DSA. The gold 
standard and evaluation scripts are made publicly 
available in a GitHub repository at 
https://github.com/NYCU-NLP/ROCLING-2025-
ST-DSA-MST 

Future directions will focus on the development 
of a Chinese domain-specific DSA. We plan to 
build new resources to develop techniques for the 
future enrichment of this research topic, especially 
for valence-arousal datasets in new domains. 

Team 
(Submission) 

Evaluation Metric 
Overall  
Rank V-MAE 

(rank) 
V-PCC 
(rank) 

A-MAE 
(rank) 

A-PCC 
(rank) 

CYUT-NLP (#356721) 0.46 (1) 0.78 (2) 0.74 (1) 0.63 (1) 1  

TCU (#356930) 0.46 (1) 0.81 (1) 0.76 (2) 0.61(2) 2  

NTULAW (#357770) 0.50 (3) 0.75 (5) 0.79 (3) 0.59 (3) 3  

SCUNLP (#357007) 0.51 (4) 0.76 (3) 0.87 (5) 0.59 (3) 4  

KOLab (#358133) 0.53 (5) 0.76 (3) 0.82 (4) 0.58 (5) 5  

HeyVergil (#356794) 0.63 (6) 0.62 (6) 1.01(6) 0.21 (6) 6  

Table 2:  Evaluation results of the DSA-MST task. 
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